1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions related to segment and merge handling
4 */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/scatterlist.h>
11
12 #include <trace/events/block.h>
13
14 #include "blk.h"
15 #include "blk-rq-qos.h"
16 #include "blk-throttle.h"
17
bio_get_first_bvec(struct bio * bio,struct bio_vec * bv)18 static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
19 {
20 *bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
21 }
22
bio_get_last_bvec(struct bio * bio,struct bio_vec * bv)23 static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
24 {
25 struct bvec_iter iter = bio->bi_iter;
26 int idx;
27
28 bio_get_first_bvec(bio, bv);
29 if (bv->bv_len == bio->bi_iter.bi_size)
30 return; /* this bio only has a single bvec */
31
32 bio_advance_iter(bio, &iter, iter.bi_size);
33
34 if (!iter.bi_bvec_done)
35 idx = iter.bi_idx - 1;
36 else /* in the middle of bvec */
37 idx = iter.bi_idx;
38
39 *bv = bio->bi_io_vec[idx];
40
41 /*
42 * iter.bi_bvec_done records actual length of the last bvec
43 * if this bio ends in the middle of one io vector
44 */
45 if (iter.bi_bvec_done)
46 bv->bv_len = iter.bi_bvec_done;
47 }
48
bio_will_gap(struct request_queue * q,struct request * prev_rq,struct bio * prev,struct bio * next)49 static inline bool bio_will_gap(struct request_queue *q,
50 struct request *prev_rq, struct bio *prev, struct bio *next)
51 {
52 struct bio_vec pb, nb;
53
54 if (!bio_has_data(prev) || !queue_virt_boundary(q))
55 return false;
56
57 /*
58 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
59 * is quite difficult to respect the sg gap limit. We work hard to
60 * merge a huge number of small single bios in case of mkfs.
61 */
62 if (prev_rq)
63 bio_get_first_bvec(prev_rq->bio, &pb);
64 else
65 bio_get_first_bvec(prev, &pb);
66 if (pb.bv_offset & queue_virt_boundary(q))
67 return true;
68
69 /*
70 * We don't need to worry about the situation that the merged segment
71 * ends in unaligned virt boundary:
72 *
73 * - if 'pb' ends aligned, the merged segment ends aligned
74 * - if 'pb' ends unaligned, the next bio must include
75 * one single bvec of 'nb', otherwise the 'nb' can't
76 * merge with 'pb'
77 */
78 bio_get_last_bvec(prev, &pb);
79 bio_get_first_bvec(next, &nb);
80 if (biovec_phys_mergeable(q, &pb, &nb))
81 return false;
82 return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
83 }
84
req_gap_back_merge(struct request * req,struct bio * bio)85 static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
86 {
87 return bio_will_gap(req->q, req, req->biotail, bio);
88 }
89
req_gap_front_merge(struct request * req,struct bio * bio)90 static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
91 {
92 return bio_will_gap(req->q, NULL, bio, req->bio);
93 }
94
blk_bio_discard_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)95 static struct bio *blk_bio_discard_split(struct request_queue *q,
96 struct bio *bio,
97 struct bio_set *bs,
98 unsigned *nsegs)
99 {
100 unsigned int max_discard_sectors, granularity;
101 int alignment;
102 sector_t tmp;
103 unsigned split_sectors;
104
105 *nsegs = 1;
106
107 /* Zero-sector (unknown) and one-sector granularities are the same. */
108 granularity = max(q->limits.discard_granularity >> 9, 1U);
109
110 max_discard_sectors = min(q->limits.max_discard_sectors,
111 bio_allowed_max_sectors(q));
112 max_discard_sectors -= max_discard_sectors % granularity;
113
114 if (unlikely(!max_discard_sectors)) {
115 /* XXX: warn */
116 return NULL;
117 }
118
119 if (bio_sectors(bio) <= max_discard_sectors)
120 return NULL;
121
122 split_sectors = max_discard_sectors;
123
124 /*
125 * If the next starting sector would be misaligned, stop the discard at
126 * the previous aligned sector.
127 */
128 alignment = (q->limits.discard_alignment >> 9) % granularity;
129
130 tmp = bio->bi_iter.bi_sector + split_sectors - alignment;
131 tmp = sector_div(tmp, granularity);
132
133 if (split_sectors > tmp)
134 split_sectors -= tmp;
135
136 return bio_split(bio, split_sectors, GFP_NOIO, bs);
137 }
138
blk_bio_write_zeroes_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)139 static struct bio *blk_bio_write_zeroes_split(struct request_queue *q,
140 struct bio *bio, struct bio_set *bs, unsigned *nsegs)
141 {
142 *nsegs = 0;
143
144 if (!q->limits.max_write_zeroes_sectors)
145 return NULL;
146
147 if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors)
148 return NULL;
149
150 return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs);
151 }
152
blk_bio_write_same_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * nsegs)153 static struct bio *blk_bio_write_same_split(struct request_queue *q,
154 struct bio *bio,
155 struct bio_set *bs,
156 unsigned *nsegs)
157 {
158 *nsegs = 1;
159
160 if (!q->limits.max_write_same_sectors)
161 return NULL;
162
163 if (bio_sectors(bio) <= q->limits.max_write_same_sectors)
164 return NULL;
165
166 return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs);
167 }
168
169 /*
170 * Return the maximum number of sectors from the start of a bio that may be
171 * submitted as a single request to a block device. If enough sectors remain,
172 * align the end to the physical block size. Otherwise align the end to the
173 * logical block size. This approach minimizes the number of non-aligned
174 * requests that are submitted to a block device if the start of a bio is not
175 * aligned to a physical block boundary.
176 */
get_max_io_size(struct request_queue * q,struct bio * bio)177 static inline unsigned get_max_io_size(struct request_queue *q,
178 struct bio *bio)
179 {
180 unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector, 0);
181 unsigned max_sectors = sectors;
182 unsigned pbs = queue_physical_block_size(q) >> SECTOR_SHIFT;
183 unsigned lbs = queue_logical_block_size(q) >> SECTOR_SHIFT;
184 unsigned start_offset = bio->bi_iter.bi_sector & (pbs - 1);
185
186 max_sectors += start_offset;
187 max_sectors &= ~(pbs - 1);
188 if (max_sectors > start_offset)
189 return max_sectors - start_offset;
190
191 return sectors & ~(lbs - 1);
192 }
193
get_max_segment_size(const struct request_queue * q,struct page * start_page,unsigned long offset)194 static inline unsigned get_max_segment_size(const struct request_queue *q,
195 struct page *start_page,
196 unsigned long offset)
197 {
198 unsigned long mask = queue_segment_boundary(q);
199
200 offset = mask & (page_to_phys(start_page) + offset);
201
202 /*
203 * overflow may be triggered in case of zero page physical address
204 * on 32bit arch, use queue's max segment size when that happens.
205 */
206 return min_not_zero(mask - offset + 1,
207 (unsigned long)queue_max_segment_size(q));
208 }
209
210 /**
211 * bvec_split_segs - verify whether or not a bvec should be split in the middle
212 * @q: [in] request queue associated with the bio associated with @bv
213 * @bv: [in] bvec to examine
214 * @nsegs: [in,out] Number of segments in the bio being built. Incremented
215 * by the number of segments from @bv that may be appended to that
216 * bio without exceeding @max_segs
217 * @sectors: [in,out] Number of sectors in the bio being built. Incremented
218 * by the number of sectors from @bv that may be appended to that
219 * bio without exceeding @max_sectors
220 * @max_segs: [in] upper bound for *@nsegs
221 * @max_sectors: [in] upper bound for *@sectors
222 *
223 * When splitting a bio, it can happen that a bvec is encountered that is too
224 * big to fit in a single segment and hence that it has to be split in the
225 * middle. This function verifies whether or not that should happen. The value
226 * %true is returned if and only if appending the entire @bv to a bio with
227 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
228 * the block driver.
229 */
bvec_split_segs(const struct request_queue * q,const struct bio_vec * bv,unsigned * nsegs,unsigned * sectors,unsigned max_segs,unsigned max_sectors)230 static bool bvec_split_segs(const struct request_queue *q,
231 const struct bio_vec *bv, unsigned *nsegs,
232 unsigned *sectors, unsigned max_segs,
233 unsigned max_sectors)
234 {
235 unsigned max_len = (min(max_sectors, UINT_MAX >> 9) - *sectors) << 9;
236 unsigned len = min(bv->bv_len, max_len);
237 unsigned total_len = 0;
238 unsigned seg_size = 0;
239
240 while (len && *nsegs < max_segs) {
241 seg_size = get_max_segment_size(q, bv->bv_page,
242 bv->bv_offset + total_len);
243 seg_size = min(seg_size, len);
244
245 (*nsegs)++;
246 total_len += seg_size;
247 len -= seg_size;
248
249 if ((bv->bv_offset + total_len) & queue_virt_boundary(q))
250 break;
251 }
252
253 *sectors += total_len >> 9;
254
255 /* tell the caller to split the bvec if it is too big to fit */
256 return len > 0 || bv->bv_len > max_len;
257 }
258
259 /**
260 * blk_bio_segment_split - split a bio in two bios
261 * @q: [in] request queue pointer
262 * @bio: [in] bio to be split
263 * @bs: [in] bio set to allocate the clone from
264 * @segs: [out] number of segments in the bio with the first half of the sectors
265 *
266 * Clone @bio, update the bi_iter of the clone to represent the first sectors
267 * of @bio and update @bio->bi_iter to represent the remaining sectors. The
268 * following is guaranteed for the cloned bio:
269 * - That it has at most get_max_io_size(@q, @bio) sectors.
270 * - That it has at most queue_max_segments(@q) segments.
271 *
272 * Except for discard requests the cloned bio will point at the bi_io_vec of
273 * the original bio. It is the responsibility of the caller to ensure that the
274 * original bio is not freed before the cloned bio. The caller is also
275 * responsible for ensuring that @bs is only destroyed after processing of the
276 * split bio has finished.
277 */
blk_bio_segment_split(struct request_queue * q,struct bio * bio,struct bio_set * bs,unsigned * segs)278 static struct bio *blk_bio_segment_split(struct request_queue *q,
279 struct bio *bio,
280 struct bio_set *bs,
281 unsigned *segs)
282 {
283 struct bio_vec bv, bvprv, *bvprvp = NULL;
284 struct bvec_iter iter;
285 unsigned nsegs = 0, sectors = 0;
286 const unsigned max_sectors = get_max_io_size(q, bio);
287 const unsigned max_segs = queue_max_segments(q);
288
289 bio_for_each_bvec(bv, bio, iter) {
290 /*
291 * If the queue doesn't support SG gaps and adding this
292 * offset would create a gap, disallow it.
293 */
294 if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset))
295 goto split;
296
297 if (nsegs < max_segs &&
298 sectors + (bv.bv_len >> 9) <= max_sectors &&
299 bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
300 nsegs++;
301 sectors += bv.bv_len >> 9;
302 } else if (bvec_split_segs(q, &bv, &nsegs, §ors, max_segs,
303 max_sectors)) {
304 goto split;
305 }
306
307 bvprv = bv;
308 bvprvp = &bvprv;
309 }
310
311 *segs = nsegs;
312 return NULL;
313 split:
314 *segs = nsegs;
315
316 /*
317 * Bio splitting may cause subtle trouble such as hang when doing sync
318 * iopoll in direct IO routine. Given performance gain of iopoll for
319 * big IO can be trival, disable iopoll when split needed.
320 */
321 bio_clear_polled(bio);
322 return bio_split(bio, sectors, GFP_NOIO, bs);
323 }
324
325 /**
326 * __blk_queue_split - split a bio and submit the second half
327 * @q: [in] request_queue new bio is being queued at
328 * @bio: [in, out] bio to be split
329 * @nr_segs: [out] number of segments in the first bio
330 *
331 * Split a bio into two bios, chain the two bios, submit the second half and
332 * store a pointer to the first half in *@bio. If the second bio is still too
333 * big it will be split by a recursive call to this function. Since this
334 * function may allocate a new bio from q->bio_split, it is the responsibility
335 * of the caller to ensure that q->bio_split is only released after processing
336 * of the split bio has finished.
337 */
__blk_queue_split(struct request_queue * q,struct bio ** bio,unsigned int * nr_segs)338 void __blk_queue_split(struct request_queue *q, struct bio **bio,
339 unsigned int *nr_segs)
340 {
341 struct bio *split = NULL;
342
343 switch (bio_op(*bio)) {
344 case REQ_OP_DISCARD:
345 case REQ_OP_SECURE_ERASE:
346 split = blk_bio_discard_split(q, *bio, &q->bio_split, nr_segs);
347 break;
348 case REQ_OP_WRITE_ZEROES:
349 split = blk_bio_write_zeroes_split(q, *bio, &q->bio_split,
350 nr_segs);
351 break;
352 case REQ_OP_WRITE_SAME:
353 split = blk_bio_write_same_split(q, *bio, &q->bio_split,
354 nr_segs);
355 break;
356 default:
357 split = blk_bio_segment_split(q, *bio, &q->bio_split, nr_segs);
358 break;
359 }
360
361 if (split) {
362 /* there isn't chance to merge the splitted bio */
363 split->bi_opf |= REQ_NOMERGE;
364
365 bio_chain(split, *bio);
366 trace_block_split(split, (*bio)->bi_iter.bi_sector);
367 submit_bio_noacct(*bio);
368 *bio = split;
369
370 blk_throtl_charge_bio_split(*bio);
371 }
372 }
373
374 /**
375 * blk_queue_split - split a bio and submit the second half
376 * @bio: [in, out] bio to be split
377 *
378 * Split a bio into two bios, chains the two bios, submit the second half and
379 * store a pointer to the first half in *@bio. Since this function may allocate
380 * a new bio from q->bio_split, it is the responsibility of the caller to ensure
381 * that q->bio_split is only released after processing of the split bio has
382 * finished.
383 */
blk_queue_split(struct bio ** bio)384 void blk_queue_split(struct bio **bio)
385 {
386 struct request_queue *q = bdev_get_queue((*bio)->bi_bdev);
387 unsigned int nr_segs;
388
389 if (blk_may_split(q, *bio))
390 __blk_queue_split(q, bio, &nr_segs);
391 }
392 EXPORT_SYMBOL(blk_queue_split);
393
blk_recalc_rq_segments(struct request * rq)394 unsigned int blk_recalc_rq_segments(struct request *rq)
395 {
396 unsigned int nr_phys_segs = 0;
397 unsigned int nr_sectors = 0;
398 struct req_iterator iter;
399 struct bio_vec bv;
400
401 if (!rq->bio)
402 return 0;
403
404 switch (bio_op(rq->bio)) {
405 case REQ_OP_DISCARD:
406 case REQ_OP_SECURE_ERASE:
407 if (queue_max_discard_segments(rq->q) > 1) {
408 struct bio *bio = rq->bio;
409
410 for_each_bio(bio)
411 nr_phys_segs++;
412 return nr_phys_segs;
413 }
414 return 1;
415 case REQ_OP_WRITE_ZEROES:
416 return 0;
417 case REQ_OP_WRITE_SAME:
418 return 1;
419 }
420
421 rq_for_each_bvec(bv, rq, iter)
422 bvec_split_segs(rq->q, &bv, &nr_phys_segs, &nr_sectors,
423 UINT_MAX, UINT_MAX);
424 return nr_phys_segs;
425 }
426
blk_next_sg(struct scatterlist ** sg,struct scatterlist * sglist)427 static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
428 struct scatterlist *sglist)
429 {
430 if (!*sg)
431 return sglist;
432
433 /*
434 * If the driver previously mapped a shorter list, we could see a
435 * termination bit prematurely unless it fully inits the sg table
436 * on each mapping. We KNOW that there must be more entries here
437 * or the driver would be buggy, so force clear the termination bit
438 * to avoid doing a full sg_init_table() in drivers for each command.
439 */
440 sg_unmark_end(*sg);
441 return sg_next(*sg);
442 }
443
blk_bvec_map_sg(struct request_queue * q,struct bio_vec * bvec,struct scatterlist * sglist,struct scatterlist ** sg)444 static unsigned blk_bvec_map_sg(struct request_queue *q,
445 struct bio_vec *bvec, struct scatterlist *sglist,
446 struct scatterlist **sg)
447 {
448 unsigned nbytes = bvec->bv_len;
449 unsigned nsegs = 0, total = 0;
450
451 while (nbytes > 0) {
452 unsigned offset = bvec->bv_offset + total;
453 unsigned len = min(get_max_segment_size(q, bvec->bv_page,
454 offset), nbytes);
455 struct page *page = bvec->bv_page;
456
457 /*
458 * Unfortunately a fair number of drivers barf on scatterlists
459 * that have an offset larger than PAGE_SIZE, despite other
460 * subsystems dealing with that invariant just fine. For now
461 * stick to the legacy format where we never present those from
462 * the block layer, but the code below should be removed once
463 * these offenders (mostly MMC/SD drivers) are fixed.
464 */
465 page += (offset >> PAGE_SHIFT);
466 offset &= ~PAGE_MASK;
467
468 *sg = blk_next_sg(sg, sglist);
469 sg_set_page(*sg, page, len, offset);
470
471 total += len;
472 nbytes -= len;
473 nsegs++;
474 }
475
476 return nsegs;
477 }
478
__blk_bvec_map_sg(struct bio_vec bv,struct scatterlist * sglist,struct scatterlist ** sg)479 static inline int __blk_bvec_map_sg(struct bio_vec bv,
480 struct scatterlist *sglist, struct scatterlist **sg)
481 {
482 *sg = blk_next_sg(sg, sglist);
483 sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
484 return 1;
485 }
486
487 /* only try to merge bvecs into one sg if they are from two bios */
488 static inline bool
__blk_segment_map_sg_merge(struct request_queue * q,struct bio_vec * bvec,struct bio_vec * bvprv,struct scatterlist ** sg)489 __blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
490 struct bio_vec *bvprv, struct scatterlist **sg)
491 {
492
493 int nbytes = bvec->bv_len;
494
495 if (!*sg)
496 return false;
497
498 if ((*sg)->length + nbytes > queue_max_segment_size(q))
499 return false;
500
501 if (!biovec_phys_mergeable(q, bvprv, bvec))
502 return false;
503
504 (*sg)->length += nbytes;
505
506 return true;
507 }
508
__blk_bios_map_sg(struct request_queue * q,struct bio * bio,struct scatterlist * sglist,struct scatterlist ** sg)509 static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
510 struct scatterlist *sglist,
511 struct scatterlist **sg)
512 {
513 struct bio_vec bvec, bvprv = { NULL };
514 struct bvec_iter iter;
515 int nsegs = 0;
516 bool new_bio = false;
517
518 for_each_bio(bio) {
519 bio_for_each_bvec(bvec, bio, iter) {
520 /*
521 * Only try to merge bvecs from two bios given we
522 * have done bio internal merge when adding pages
523 * to bio
524 */
525 if (new_bio &&
526 __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
527 goto next_bvec;
528
529 if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
530 nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
531 else
532 nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
533 next_bvec:
534 new_bio = false;
535 }
536 if (likely(bio->bi_iter.bi_size)) {
537 bvprv = bvec;
538 new_bio = true;
539 }
540 }
541
542 return nsegs;
543 }
544
545 /*
546 * map a request to scatterlist, return number of sg entries setup. Caller
547 * must make sure sg can hold rq->nr_phys_segments entries
548 */
__blk_rq_map_sg(struct request_queue * q,struct request * rq,struct scatterlist * sglist,struct scatterlist ** last_sg)549 int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
550 struct scatterlist *sglist, struct scatterlist **last_sg)
551 {
552 int nsegs = 0;
553
554 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
555 nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
556 else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME)
557 nsegs = __blk_bvec_map_sg(bio_iovec(rq->bio), sglist, last_sg);
558 else if (rq->bio)
559 nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
560
561 if (*last_sg)
562 sg_mark_end(*last_sg);
563
564 /*
565 * Something must have been wrong if the figured number of
566 * segment is bigger than number of req's physical segments
567 */
568 WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
569
570 return nsegs;
571 }
572 EXPORT_SYMBOL(__blk_rq_map_sg);
573
blk_rq_get_max_segments(struct request * rq)574 static inline unsigned int blk_rq_get_max_segments(struct request *rq)
575 {
576 if (req_op(rq) == REQ_OP_DISCARD)
577 return queue_max_discard_segments(rq->q);
578 return queue_max_segments(rq->q);
579 }
580
blk_rq_get_max_sectors(struct request * rq,sector_t offset)581 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
582 sector_t offset)
583 {
584 struct request_queue *q = rq->q;
585
586 if (blk_rq_is_passthrough(rq))
587 return q->limits.max_hw_sectors;
588
589 if (!q->limits.chunk_sectors ||
590 req_op(rq) == REQ_OP_DISCARD ||
591 req_op(rq) == REQ_OP_SECURE_ERASE)
592 return blk_queue_get_max_sectors(q, req_op(rq));
593
594 return min(blk_max_size_offset(q, offset, 0),
595 blk_queue_get_max_sectors(q, req_op(rq)));
596 }
597
ll_new_hw_segment(struct request * req,struct bio * bio,unsigned int nr_phys_segs)598 static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
599 unsigned int nr_phys_segs)
600 {
601 if (blk_integrity_merge_bio(req->q, req, bio) == false)
602 goto no_merge;
603
604 /* discard request merge won't add new segment */
605 if (req_op(req) == REQ_OP_DISCARD)
606 return 1;
607
608 if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
609 goto no_merge;
610
611 /*
612 * This will form the start of a new hw segment. Bump both
613 * counters.
614 */
615 req->nr_phys_segments += nr_phys_segs;
616 return 1;
617
618 no_merge:
619 req_set_nomerge(req->q, req);
620 return 0;
621 }
622
ll_back_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)623 int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
624 {
625 if (req_gap_back_merge(req, bio))
626 return 0;
627 if (blk_integrity_rq(req) &&
628 integrity_req_gap_back_merge(req, bio))
629 return 0;
630 if (!bio_crypt_ctx_back_mergeable(req, bio))
631 return 0;
632 if (blk_rq_sectors(req) + bio_sectors(bio) >
633 blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
634 req_set_nomerge(req->q, req);
635 return 0;
636 }
637
638 return ll_new_hw_segment(req, bio, nr_segs);
639 }
640
ll_front_merge_fn(struct request * req,struct bio * bio,unsigned int nr_segs)641 static int ll_front_merge_fn(struct request *req, struct bio *bio,
642 unsigned int nr_segs)
643 {
644 if (req_gap_front_merge(req, bio))
645 return 0;
646 if (blk_integrity_rq(req) &&
647 integrity_req_gap_front_merge(req, bio))
648 return 0;
649 if (!bio_crypt_ctx_front_mergeable(req, bio))
650 return 0;
651 if (blk_rq_sectors(req) + bio_sectors(bio) >
652 blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
653 req_set_nomerge(req->q, req);
654 return 0;
655 }
656
657 return ll_new_hw_segment(req, bio, nr_segs);
658 }
659
req_attempt_discard_merge(struct request_queue * q,struct request * req,struct request * next)660 static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
661 struct request *next)
662 {
663 unsigned short segments = blk_rq_nr_discard_segments(req);
664
665 if (segments >= queue_max_discard_segments(q))
666 goto no_merge;
667 if (blk_rq_sectors(req) + bio_sectors(next->bio) >
668 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
669 goto no_merge;
670
671 req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
672 return true;
673 no_merge:
674 req_set_nomerge(q, req);
675 return false;
676 }
677
ll_merge_requests_fn(struct request_queue * q,struct request * req,struct request * next)678 static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
679 struct request *next)
680 {
681 int total_phys_segments;
682
683 if (req_gap_back_merge(req, next->bio))
684 return 0;
685
686 /*
687 * Will it become too large?
688 */
689 if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
690 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
691 return 0;
692
693 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
694 if (total_phys_segments > blk_rq_get_max_segments(req))
695 return 0;
696
697 if (blk_integrity_merge_rq(q, req, next) == false)
698 return 0;
699
700 if (!bio_crypt_ctx_merge_rq(req, next))
701 return 0;
702
703 /* Merge is OK... */
704 req->nr_phys_segments = total_phys_segments;
705 return 1;
706 }
707
708 /**
709 * blk_rq_set_mixed_merge - mark a request as mixed merge
710 * @rq: request to mark as mixed merge
711 *
712 * Description:
713 * @rq is about to be mixed merged. Make sure the attributes
714 * which can be mixed are set in each bio and mark @rq as mixed
715 * merged.
716 */
blk_rq_set_mixed_merge(struct request * rq)717 void blk_rq_set_mixed_merge(struct request *rq)
718 {
719 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
720 struct bio *bio;
721
722 if (rq->rq_flags & RQF_MIXED_MERGE)
723 return;
724
725 /*
726 * @rq will no longer represent mixable attributes for all the
727 * contained bios. It will just track those of the first one.
728 * Distributes the attributs to each bio.
729 */
730 for (bio = rq->bio; bio; bio = bio->bi_next) {
731 WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
732 (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
733 bio->bi_opf |= ff;
734 }
735 rq->rq_flags |= RQF_MIXED_MERGE;
736 }
737
blk_account_io_merge_request(struct request * req)738 static void blk_account_io_merge_request(struct request *req)
739 {
740 if (blk_do_io_stat(req)) {
741 part_stat_lock();
742 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
743 part_stat_unlock();
744 }
745 }
746
blk_try_req_merge(struct request * req,struct request * next)747 static enum elv_merge blk_try_req_merge(struct request *req,
748 struct request *next)
749 {
750 if (blk_discard_mergable(req))
751 return ELEVATOR_DISCARD_MERGE;
752 else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
753 return ELEVATOR_BACK_MERGE;
754
755 return ELEVATOR_NO_MERGE;
756 }
757
blk_write_same_mergeable(struct bio * a,struct bio * b)758 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
759 {
760 if (bio_page(a) == bio_page(b) && bio_offset(a) == bio_offset(b))
761 return true;
762 return false;
763 }
764
765 /*
766 * For non-mq, this has to be called with the request spinlock acquired.
767 * For mq with scheduling, the appropriate queue wide lock should be held.
768 */
attempt_merge(struct request_queue * q,struct request * req,struct request * next)769 static struct request *attempt_merge(struct request_queue *q,
770 struct request *req, struct request *next)
771 {
772 if (!rq_mergeable(req) || !rq_mergeable(next))
773 return NULL;
774
775 if (req_op(req) != req_op(next))
776 return NULL;
777
778 if (rq_data_dir(req) != rq_data_dir(next)
779 || req->rq_disk != next->rq_disk)
780 return NULL;
781
782 if (req_op(req) == REQ_OP_WRITE_SAME &&
783 !blk_write_same_mergeable(req->bio, next->bio))
784 return NULL;
785
786 /*
787 * Don't allow merge of different write hints, or for a hint with
788 * non-hint IO.
789 */
790 if (req->write_hint != next->write_hint)
791 return NULL;
792
793 if (req->ioprio != next->ioprio)
794 return NULL;
795
796 /*
797 * If we are allowed to merge, then append bio list
798 * from next to rq and release next. merge_requests_fn
799 * will have updated segment counts, update sector
800 * counts here. Handle DISCARDs separately, as they
801 * have separate settings.
802 */
803
804 switch (blk_try_req_merge(req, next)) {
805 case ELEVATOR_DISCARD_MERGE:
806 if (!req_attempt_discard_merge(q, req, next))
807 return NULL;
808 break;
809 case ELEVATOR_BACK_MERGE:
810 if (!ll_merge_requests_fn(q, req, next))
811 return NULL;
812 break;
813 default:
814 return NULL;
815 }
816
817 /*
818 * If failfast settings disagree or any of the two is already
819 * a mixed merge, mark both as mixed before proceeding. This
820 * makes sure that all involved bios have mixable attributes
821 * set properly.
822 */
823 if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
824 (req->cmd_flags & REQ_FAILFAST_MASK) !=
825 (next->cmd_flags & REQ_FAILFAST_MASK)) {
826 blk_rq_set_mixed_merge(req);
827 blk_rq_set_mixed_merge(next);
828 }
829
830 /*
831 * At this point we have either done a back merge or front merge. We
832 * need the smaller start_time_ns of the merged requests to be the
833 * current request for accounting purposes.
834 */
835 if (next->start_time_ns < req->start_time_ns)
836 req->start_time_ns = next->start_time_ns;
837
838 req->biotail->bi_next = next->bio;
839 req->biotail = next->biotail;
840
841 req->__data_len += blk_rq_bytes(next);
842
843 if (!blk_discard_mergable(req))
844 elv_merge_requests(q, req, next);
845
846 /*
847 * 'next' is going away, so update stats accordingly
848 */
849 blk_account_io_merge_request(next);
850
851 trace_block_rq_merge(next);
852
853 /*
854 * ownership of bio passed from next to req, return 'next' for
855 * the caller to free
856 */
857 next->bio = NULL;
858 return next;
859 }
860
attempt_back_merge(struct request_queue * q,struct request * rq)861 static struct request *attempt_back_merge(struct request_queue *q,
862 struct request *rq)
863 {
864 struct request *next = elv_latter_request(q, rq);
865
866 if (next)
867 return attempt_merge(q, rq, next);
868
869 return NULL;
870 }
871
attempt_front_merge(struct request_queue * q,struct request * rq)872 static struct request *attempt_front_merge(struct request_queue *q,
873 struct request *rq)
874 {
875 struct request *prev = elv_former_request(q, rq);
876
877 if (prev)
878 return attempt_merge(q, prev, rq);
879
880 return NULL;
881 }
882
883 /*
884 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
885 * otherwise. The caller is responsible for freeing 'next' if the merge
886 * happened.
887 */
blk_attempt_req_merge(struct request_queue * q,struct request * rq,struct request * next)888 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
889 struct request *next)
890 {
891 return attempt_merge(q, rq, next);
892 }
893
blk_rq_merge_ok(struct request * rq,struct bio * bio)894 bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
895 {
896 if (!rq_mergeable(rq) || !bio_mergeable(bio))
897 return false;
898
899 if (req_op(rq) != bio_op(bio))
900 return false;
901
902 /* different data direction or already started, don't merge */
903 if (bio_data_dir(bio) != rq_data_dir(rq))
904 return false;
905
906 /* must be same device */
907 if (rq->rq_disk != bio->bi_bdev->bd_disk)
908 return false;
909
910 /* only merge integrity protected bio into ditto rq */
911 if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
912 return false;
913
914 /* Only merge if the crypt contexts are compatible */
915 if (!bio_crypt_rq_ctx_compatible(rq, bio))
916 return false;
917
918 /* must be using the same buffer */
919 if (req_op(rq) == REQ_OP_WRITE_SAME &&
920 !blk_write_same_mergeable(rq->bio, bio))
921 return false;
922
923 /*
924 * Don't allow merge of different write hints, or for a hint with
925 * non-hint IO.
926 */
927 if (rq->write_hint != bio->bi_write_hint)
928 return false;
929
930 if (rq->ioprio != bio_prio(bio))
931 return false;
932
933 return true;
934 }
935
blk_try_merge(struct request * rq,struct bio * bio)936 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
937 {
938 if (blk_discard_mergable(rq))
939 return ELEVATOR_DISCARD_MERGE;
940 else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
941 return ELEVATOR_BACK_MERGE;
942 else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
943 return ELEVATOR_FRONT_MERGE;
944 return ELEVATOR_NO_MERGE;
945 }
946
blk_account_io_merge_bio(struct request * req)947 static void blk_account_io_merge_bio(struct request *req)
948 {
949 if (!blk_do_io_stat(req))
950 return;
951
952 part_stat_lock();
953 part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
954 part_stat_unlock();
955 }
956
957 enum bio_merge_status {
958 BIO_MERGE_OK,
959 BIO_MERGE_NONE,
960 BIO_MERGE_FAILED,
961 };
962
bio_attempt_back_merge(struct request * req,struct bio * bio,unsigned int nr_segs)963 static enum bio_merge_status bio_attempt_back_merge(struct request *req,
964 struct bio *bio, unsigned int nr_segs)
965 {
966 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
967
968 if (!ll_back_merge_fn(req, bio, nr_segs))
969 return BIO_MERGE_FAILED;
970
971 trace_block_bio_backmerge(bio);
972 rq_qos_merge(req->q, req, bio);
973
974 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
975 blk_rq_set_mixed_merge(req);
976
977 req->biotail->bi_next = bio;
978 req->biotail = bio;
979 req->__data_len += bio->bi_iter.bi_size;
980
981 bio_crypt_free_ctx(bio);
982
983 blk_account_io_merge_bio(req);
984 return BIO_MERGE_OK;
985 }
986
bio_attempt_front_merge(struct request * req,struct bio * bio,unsigned int nr_segs)987 static enum bio_merge_status bio_attempt_front_merge(struct request *req,
988 struct bio *bio, unsigned int nr_segs)
989 {
990 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
991
992 if (!ll_front_merge_fn(req, bio, nr_segs))
993 return BIO_MERGE_FAILED;
994
995 trace_block_bio_frontmerge(bio);
996 rq_qos_merge(req->q, req, bio);
997
998 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
999 blk_rq_set_mixed_merge(req);
1000
1001 bio->bi_next = req->bio;
1002 req->bio = bio;
1003
1004 req->__sector = bio->bi_iter.bi_sector;
1005 req->__data_len += bio->bi_iter.bi_size;
1006
1007 bio_crypt_do_front_merge(req, bio);
1008
1009 blk_account_io_merge_bio(req);
1010 return BIO_MERGE_OK;
1011 }
1012
bio_attempt_discard_merge(struct request_queue * q,struct request * req,struct bio * bio)1013 static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
1014 struct request *req, struct bio *bio)
1015 {
1016 unsigned short segments = blk_rq_nr_discard_segments(req);
1017
1018 if (segments >= queue_max_discard_segments(q))
1019 goto no_merge;
1020 if (blk_rq_sectors(req) + bio_sectors(bio) >
1021 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1022 goto no_merge;
1023
1024 rq_qos_merge(q, req, bio);
1025
1026 req->biotail->bi_next = bio;
1027 req->biotail = bio;
1028 req->__data_len += bio->bi_iter.bi_size;
1029 req->nr_phys_segments = segments + 1;
1030
1031 blk_account_io_merge_bio(req);
1032 return BIO_MERGE_OK;
1033 no_merge:
1034 req_set_nomerge(q, req);
1035 return BIO_MERGE_FAILED;
1036 }
1037
blk_attempt_bio_merge(struct request_queue * q,struct request * rq,struct bio * bio,unsigned int nr_segs,bool sched_allow_merge)1038 static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
1039 struct request *rq,
1040 struct bio *bio,
1041 unsigned int nr_segs,
1042 bool sched_allow_merge)
1043 {
1044 if (!blk_rq_merge_ok(rq, bio))
1045 return BIO_MERGE_NONE;
1046
1047 switch (blk_try_merge(rq, bio)) {
1048 case ELEVATOR_BACK_MERGE:
1049 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1050 return bio_attempt_back_merge(rq, bio, nr_segs);
1051 break;
1052 case ELEVATOR_FRONT_MERGE:
1053 if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
1054 return bio_attempt_front_merge(rq, bio, nr_segs);
1055 break;
1056 case ELEVATOR_DISCARD_MERGE:
1057 return bio_attempt_discard_merge(q, rq, bio);
1058 default:
1059 return BIO_MERGE_NONE;
1060 }
1061
1062 return BIO_MERGE_FAILED;
1063 }
1064
1065 /**
1066 * blk_attempt_plug_merge - try to merge with %current's plugged list
1067 * @q: request_queue new bio is being queued at
1068 * @bio: new bio being queued
1069 * @nr_segs: number of segments in @bio
1070 * @same_queue_rq: output value, will be true if there's an existing request
1071 * from the passed in @q already in the plug list
1072 *
1073 * Determine whether @bio being queued on @q can be merged with the previous
1074 * request on %current's plugged list. Returns %true if merge was successful,
1075 * otherwise %false.
1076 *
1077 * Plugging coalesces IOs from the same issuer for the same purpose without
1078 * going through @q->queue_lock. As such it's more of an issuing mechanism
1079 * than scheduling, and the request, while may have elvpriv data, is not
1080 * added on the elevator at this point. In addition, we don't have
1081 * reliable access to the elevator outside queue lock. Only check basic
1082 * merging parameters without querying the elevator.
1083 *
1084 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1085 */
blk_attempt_plug_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,bool * same_queue_rq)1086 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1087 unsigned int nr_segs, bool *same_queue_rq)
1088 {
1089 struct blk_plug *plug;
1090 struct request *rq;
1091
1092 plug = blk_mq_plug(q, bio);
1093 if (!plug || rq_list_empty(plug->mq_list))
1094 return false;
1095
1096 /* check the previously added entry for a quick merge attempt */
1097 rq = rq_list_peek(&plug->mq_list);
1098 if (rq->q == q) {
1099 /*
1100 * Only blk-mq multiple hardware queues case checks the rq in
1101 * the same queue, there should be only one such rq in a queue
1102 */
1103 *same_queue_rq = true;
1104
1105 if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
1106 BIO_MERGE_OK)
1107 return true;
1108 }
1109 return false;
1110 }
1111
1112 /*
1113 * Iterate list of requests and see if we can merge this bio with any
1114 * of them.
1115 */
blk_bio_list_merge(struct request_queue * q,struct list_head * list,struct bio * bio,unsigned int nr_segs)1116 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
1117 struct bio *bio, unsigned int nr_segs)
1118 {
1119 struct request *rq;
1120 int checked = 8;
1121
1122 list_for_each_entry_reverse(rq, list, queuelist) {
1123 if (!checked--)
1124 break;
1125
1126 switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
1127 case BIO_MERGE_NONE:
1128 continue;
1129 case BIO_MERGE_OK:
1130 return true;
1131 case BIO_MERGE_FAILED:
1132 return false;
1133 }
1134
1135 }
1136
1137 return false;
1138 }
1139 EXPORT_SYMBOL_GPL(blk_bio_list_merge);
1140
blk_mq_sched_try_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs,struct request ** merged_request)1141 bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
1142 unsigned int nr_segs, struct request **merged_request)
1143 {
1144 struct request *rq;
1145
1146 switch (elv_merge(q, &rq, bio)) {
1147 case ELEVATOR_BACK_MERGE:
1148 if (!blk_mq_sched_allow_merge(q, rq, bio))
1149 return false;
1150 if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1151 return false;
1152 *merged_request = attempt_back_merge(q, rq);
1153 if (!*merged_request)
1154 elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
1155 return true;
1156 case ELEVATOR_FRONT_MERGE:
1157 if (!blk_mq_sched_allow_merge(q, rq, bio))
1158 return false;
1159 if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
1160 return false;
1161 *merged_request = attempt_front_merge(q, rq);
1162 if (!*merged_request)
1163 elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
1164 return true;
1165 case ELEVATOR_DISCARD_MERGE:
1166 return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
1167 default:
1168 return false;
1169 }
1170 }
1171 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
1172