1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * main.c - Multi purpose firmware loading support
4 *
5 * Copyright (c) 2003 Manuel Estrada Sainz
6 *
7 * Please see Documentation/driver-api/firmware/ for more information.
8 *
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/capability.h>
14 #include <linux/device.h>
15 #include <linux/kernel_read_file.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/initrd.h>
19 #include <linux/timer.h>
20 #include <linux/vmalloc.h>
21 #include <linux/interrupt.h>
22 #include <linux/bitops.h>
23 #include <linux/mutex.h>
24 #include <linux/workqueue.h>
25 #include <linux/highmem.h>
26 #include <linux/firmware.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/file.h>
30 #include <linux/list.h>
31 #include <linux/fs.h>
32 #include <linux/async.h>
33 #include <linux/pm.h>
34 #include <linux/suspend.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/reboot.h>
37 #include <linux/security.h>
38 #include <linux/xz.h>
39
40 #include <generated/utsrelease.h>
41
42 #include "../base.h"
43 #include "firmware.h"
44 #include "fallback.h"
45
46 MODULE_AUTHOR("Manuel Estrada Sainz");
47 MODULE_DESCRIPTION("Multi purpose firmware loading support");
48 MODULE_LICENSE("GPL");
49
50 struct firmware_cache {
51 /* firmware_buf instance will be added into the below list */
52 spinlock_t lock;
53 struct list_head head;
54 int state;
55
56 #ifdef CONFIG_FW_CACHE
57 /*
58 * Names of firmware images which have been cached successfully
59 * will be added into the below list so that device uncache
60 * helper can trace which firmware images have been cached
61 * before.
62 */
63 spinlock_t name_lock;
64 struct list_head fw_names;
65
66 struct delayed_work work;
67
68 struct notifier_block pm_notify;
69 #endif
70 };
71
72 struct fw_cache_entry {
73 struct list_head list;
74 const char *name;
75 };
76
77 struct fw_name_devm {
78 unsigned long magic;
79 const char *name;
80 };
81
to_fw_priv(struct kref * ref)82 static inline struct fw_priv *to_fw_priv(struct kref *ref)
83 {
84 return container_of(ref, struct fw_priv, ref);
85 }
86
87 #define FW_LOADER_NO_CACHE 0
88 #define FW_LOADER_START_CACHE 1
89
90 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
91 * guarding for corner cases a global lock should be OK */
92 DEFINE_MUTEX(fw_lock);
93
94 static struct firmware_cache fw_cache;
95
fw_state_init(struct fw_priv * fw_priv)96 static void fw_state_init(struct fw_priv *fw_priv)
97 {
98 struct fw_state *fw_st = &fw_priv->fw_st;
99
100 init_completion(&fw_st->completion);
101 fw_st->status = FW_STATUS_UNKNOWN;
102 }
103
fw_state_wait(struct fw_priv * fw_priv)104 static inline int fw_state_wait(struct fw_priv *fw_priv)
105 {
106 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
107 }
108
109 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
110
__allocate_fw_priv(const char * fw_name,struct firmware_cache * fwc,void * dbuf,size_t size,size_t offset,u32 opt_flags)111 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
112 struct firmware_cache *fwc,
113 void *dbuf,
114 size_t size,
115 size_t offset,
116 u32 opt_flags)
117 {
118 struct fw_priv *fw_priv;
119
120 /* For a partial read, the buffer must be preallocated. */
121 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
122 return NULL;
123
124 /* Only partial reads are allowed to use an offset. */
125 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
126 return NULL;
127
128 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
129 if (!fw_priv)
130 return NULL;
131
132 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
133 if (!fw_priv->fw_name) {
134 kfree(fw_priv);
135 return NULL;
136 }
137
138 kref_init(&fw_priv->ref);
139 fw_priv->fwc = fwc;
140 fw_priv->data = dbuf;
141 fw_priv->allocated_size = size;
142 fw_priv->offset = offset;
143 fw_priv->opt_flags = opt_flags;
144 fw_state_init(fw_priv);
145 #ifdef CONFIG_FW_LOADER_USER_HELPER
146 INIT_LIST_HEAD(&fw_priv->pending_list);
147 #endif
148
149 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
150
151 return fw_priv;
152 }
153
__lookup_fw_priv(const char * fw_name)154 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
155 {
156 struct fw_priv *tmp;
157 struct firmware_cache *fwc = &fw_cache;
158
159 list_for_each_entry(tmp, &fwc->head, list)
160 if (!strcmp(tmp->fw_name, fw_name))
161 return tmp;
162 return NULL;
163 }
164
165 /* Returns 1 for batching firmware requests with the same name */
alloc_lookup_fw_priv(const char * fw_name,struct firmware_cache * fwc,struct fw_priv ** fw_priv,void * dbuf,size_t size,size_t offset,u32 opt_flags)166 static int alloc_lookup_fw_priv(const char *fw_name,
167 struct firmware_cache *fwc,
168 struct fw_priv **fw_priv,
169 void *dbuf,
170 size_t size,
171 size_t offset,
172 u32 opt_flags)
173 {
174 struct fw_priv *tmp;
175
176 spin_lock(&fwc->lock);
177 /*
178 * Do not merge requests that are marked to be non-cached or
179 * are performing partial reads.
180 */
181 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
182 tmp = __lookup_fw_priv(fw_name);
183 if (tmp) {
184 kref_get(&tmp->ref);
185 spin_unlock(&fwc->lock);
186 *fw_priv = tmp;
187 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
188 return 1;
189 }
190 }
191
192 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
193 if (tmp) {
194 INIT_LIST_HEAD(&tmp->list);
195 if (!(opt_flags & FW_OPT_NOCACHE))
196 list_add(&tmp->list, &fwc->head);
197 }
198 spin_unlock(&fwc->lock);
199
200 *fw_priv = tmp;
201
202 return tmp ? 0 : -ENOMEM;
203 }
204
__free_fw_priv(struct kref * ref)205 static void __free_fw_priv(struct kref *ref)
206 __releases(&fwc->lock)
207 {
208 struct fw_priv *fw_priv = to_fw_priv(ref);
209 struct firmware_cache *fwc = fw_priv->fwc;
210
211 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
212 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
213 (unsigned int)fw_priv->size);
214
215 list_del(&fw_priv->list);
216 spin_unlock(&fwc->lock);
217
218 if (fw_is_paged_buf(fw_priv))
219 fw_free_paged_buf(fw_priv);
220 else if (!fw_priv->allocated_size)
221 vfree(fw_priv->data);
222
223 kfree_const(fw_priv->fw_name);
224 kfree(fw_priv);
225 }
226
free_fw_priv(struct fw_priv * fw_priv)227 static void free_fw_priv(struct fw_priv *fw_priv)
228 {
229 struct firmware_cache *fwc = fw_priv->fwc;
230 spin_lock(&fwc->lock);
231 if (!kref_put(&fw_priv->ref, __free_fw_priv))
232 spin_unlock(&fwc->lock);
233 }
234
235 #ifdef CONFIG_FW_LOADER_PAGED_BUF
fw_is_paged_buf(struct fw_priv * fw_priv)236 bool fw_is_paged_buf(struct fw_priv *fw_priv)
237 {
238 return fw_priv->is_paged_buf;
239 }
240
fw_free_paged_buf(struct fw_priv * fw_priv)241 void fw_free_paged_buf(struct fw_priv *fw_priv)
242 {
243 int i;
244
245 if (!fw_priv->pages)
246 return;
247
248 vunmap(fw_priv->data);
249
250 for (i = 0; i < fw_priv->nr_pages; i++)
251 __free_page(fw_priv->pages[i]);
252 kvfree(fw_priv->pages);
253 fw_priv->pages = NULL;
254 fw_priv->page_array_size = 0;
255 fw_priv->nr_pages = 0;
256 }
257
fw_grow_paged_buf(struct fw_priv * fw_priv,int pages_needed)258 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
259 {
260 /* If the array of pages is too small, grow it */
261 if (fw_priv->page_array_size < pages_needed) {
262 int new_array_size = max(pages_needed,
263 fw_priv->page_array_size * 2);
264 struct page **new_pages;
265
266 new_pages = kvmalloc_array(new_array_size, sizeof(void *),
267 GFP_KERNEL);
268 if (!new_pages)
269 return -ENOMEM;
270 memcpy(new_pages, fw_priv->pages,
271 fw_priv->page_array_size * sizeof(void *));
272 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
273 (new_array_size - fw_priv->page_array_size));
274 kvfree(fw_priv->pages);
275 fw_priv->pages = new_pages;
276 fw_priv->page_array_size = new_array_size;
277 }
278
279 while (fw_priv->nr_pages < pages_needed) {
280 fw_priv->pages[fw_priv->nr_pages] =
281 alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
282
283 if (!fw_priv->pages[fw_priv->nr_pages])
284 return -ENOMEM;
285 fw_priv->nr_pages++;
286 }
287
288 return 0;
289 }
290
fw_map_paged_buf(struct fw_priv * fw_priv)291 int fw_map_paged_buf(struct fw_priv *fw_priv)
292 {
293 /* one pages buffer should be mapped/unmapped only once */
294 if (!fw_priv->pages)
295 return 0;
296
297 vunmap(fw_priv->data);
298 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
299 PAGE_KERNEL_RO);
300 if (!fw_priv->data)
301 return -ENOMEM;
302
303 return 0;
304 }
305 #endif
306
307 /*
308 * XZ-compressed firmware support
309 */
310 #ifdef CONFIG_FW_LOADER_COMPRESS
311 /* show an error and return the standard error code */
fw_decompress_xz_error(struct device * dev,enum xz_ret xz_ret)312 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
313 {
314 if (xz_ret != XZ_STREAM_END) {
315 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
316 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
317 }
318 return 0;
319 }
320
321 /* single-shot decompression onto the pre-allocated buffer */
fw_decompress_xz_single(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)322 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
323 size_t in_size, const void *in_buffer)
324 {
325 struct xz_dec *xz_dec;
326 struct xz_buf xz_buf;
327 enum xz_ret xz_ret;
328
329 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
330 if (!xz_dec)
331 return -ENOMEM;
332
333 xz_buf.in_size = in_size;
334 xz_buf.in = in_buffer;
335 xz_buf.in_pos = 0;
336 xz_buf.out_size = fw_priv->allocated_size;
337 xz_buf.out = fw_priv->data;
338 xz_buf.out_pos = 0;
339
340 xz_ret = xz_dec_run(xz_dec, &xz_buf);
341 xz_dec_end(xz_dec);
342
343 fw_priv->size = xz_buf.out_pos;
344 return fw_decompress_xz_error(dev, xz_ret);
345 }
346
347 /* decompression on paged buffer and map it */
fw_decompress_xz_pages(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)348 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
349 size_t in_size, const void *in_buffer)
350 {
351 struct xz_dec *xz_dec;
352 struct xz_buf xz_buf;
353 enum xz_ret xz_ret;
354 struct page *page;
355 int err = 0;
356
357 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
358 if (!xz_dec)
359 return -ENOMEM;
360
361 xz_buf.in_size = in_size;
362 xz_buf.in = in_buffer;
363 xz_buf.in_pos = 0;
364
365 fw_priv->is_paged_buf = true;
366 fw_priv->size = 0;
367 do {
368 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
369 err = -ENOMEM;
370 goto out;
371 }
372
373 /* decompress onto the new allocated page */
374 page = fw_priv->pages[fw_priv->nr_pages - 1];
375 xz_buf.out = kmap(page);
376 xz_buf.out_pos = 0;
377 xz_buf.out_size = PAGE_SIZE;
378 xz_ret = xz_dec_run(xz_dec, &xz_buf);
379 kunmap(page);
380 fw_priv->size += xz_buf.out_pos;
381 /* partial decompression means either end or error */
382 if (xz_buf.out_pos != PAGE_SIZE)
383 break;
384 } while (xz_ret == XZ_OK);
385
386 err = fw_decompress_xz_error(dev, xz_ret);
387 if (!err)
388 err = fw_map_paged_buf(fw_priv);
389
390 out:
391 xz_dec_end(xz_dec);
392 return err;
393 }
394
fw_decompress_xz(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)395 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
396 size_t in_size, const void *in_buffer)
397 {
398 /* if the buffer is pre-allocated, we can perform in single-shot mode */
399 if (fw_priv->data)
400 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
401 else
402 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
403 }
404 #endif /* CONFIG_FW_LOADER_COMPRESS */
405
406 /* direct firmware loading support */
407 static char fw_path_para[256];
408 static const char * const fw_path[] = {
409 fw_path_para,
410 "/lib/firmware/updates/" UTS_RELEASE,
411 "/lib/firmware/updates",
412 "/lib/firmware/" UTS_RELEASE,
413 "/lib/firmware"
414 };
415
416 /*
417 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
418 * from kernel command line because firmware_class is generally built in
419 * kernel instead of module.
420 */
421 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
422 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
423
424 static int
fw_get_filesystem_firmware(struct device * device,struct fw_priv * fw_priv,const char * suffix,int (* decompress)(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer))425 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
426 const char *suffix,
427 int (*decompress)(struct device *dev,
428 struct fw_priv *fw_priv,
429 size_t in_size,
430 const void *in_buffer))
431 {
432 size_t size;
433 int i, len;
434 int rc = -ENOENT;
435 char *path;
436 size_t msize = INT_MAX;
437 void *buffer = NULL;
438
439 /* Already populated data member means we're loading into a buffer */
440 if (!decompress && fw_priv->data) {
441 buffer = fw_priv->data;
442 msize = fw_priv->allocated_size;
443 }
444
445 path = __getname();
446 if (!path)
447 return -ENOMEM;
448
449 wait_for_initramfs();
450 for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
451 size_t file_size = 0;
452 size_t *file_size_ptr = NULL;
453
454 /* skip the unset customized path */
455 if (!fw_path[i][0])
456 continue;
457
458 len = snprintf(path, PATH_MAX, "%s/%s%s",
459 fw_path[i], fw_priv->fw_name, suffix);
460 if (len >= PATH_MAX) {
461 rc = -ENAMETOOLONG;
462 break;
463 }
464
465 fw_priv->size = 0;
466
467 /*
468 * The total file size is only examined when doing a partial
469 * read; the "full read" case needs to fail if the whole
470 * firmware was not completely loaded.
471 */
472 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
473 file_size_ptr = &file_size;
474
475 /* load firmware files from the mount namespace of init */
476 rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
477 &buffer, msize,
478 file_size_ptr,
479 READING_FIRMWARE);
480 if (rc < 0) {
481 if (rc != -ENOENT)
482 dev_warn(device, "loading %s failed with error %d\n",
483 path, rc);
484 else
485 dev_dbg(device, "loading %s failed for no such file or directory.\n",
486 path);
487 continue;
488 }
489 size = rc;
490 rc = 0;
491
492 dev_dbg(device, "Loading firmware from %s\n", path);
493 if (decompress) {
494 dev_dbg(device, "f/w decompressing %s\n",
495 fw_priv->fw_name);
496 rc = decompress(device, fw_priv, size, buffer);
497 /* discard the superfluous original content */
498 vfree(buffer);
499 buffer = NULL;
500 if (rc) {
501 fw_free_paged_buf(fw_priv);
502 continue;
503 }
504 } else {
505 dev_dbg(device, "direct-loading %s\n",
506 fw_priv->fw_name);
507 if (!fw_priv->data)
508 fw_priv->data = buffer;
509 fw_priv->size = size;
510 }
511 fw_state_done(fw_priv);
512 break;
513 }
514 __putname(path);
515
516 return rc;
517 }
518
519 /* firmware holds the ownership of pages */
firmware_free_data(const struct firmware * fw)520 static void firmware_free_data(const struct firmware *fw)
521 {
522 /* Loaded directly? */
523 if (!fw->priv) {
524 vfree(fw->data);
525 return;
526 }
527 free_fw_priv(fw->priv);
528 }
529
530 /* store the pages buffer info firmware from buf */
fw_set_page_data(struct fw_priv * fw_priv,struct firmware * fw)531 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
532 {
533 fw->priv = fw_priv;
534 fw->size = fw_priv->size;
535 fw->data = fw_priv->data;
536
537 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
538 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
539 (unsigned int)fw_priv->size);
540 }
541
542 #ifdef CONFIG_FW_CACHE
fw_name_devm_release(struct device * dev,void * res)543 static void fw_name_devm_release(struct device *dev, void *res)
544 {
545 struct fw_name_devm *fwn = res;
546
547 if (fwn->magic == (unsigned long)&fw_cache)
548 pr_debug("%s: fw_name-%s devm-%p released\n",
549 __func__, fwn->name, res);
550 kfree_const(fwn->name);
551 }
552
fw_devm_match(struct device * dev,void * res,void * match_data)553 static int fw_devm_match(struct device *dev, void *res,
554 void *match_data)
555 {
556 struct fw_name_devm *fwn = res;
557
558 return (fwn->magic == (unsigned long)&fw_cache) &&
559 !strcmp(fwn->name, match_data);
560 }
561
fw_find_devm_name(struct device * dev,const char * name)562 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
563 const char *name)
564 {
565 struct fw_name_devm *fwn;
566
567 fwn = devres_find(dev, fw_name_devm_release,
568 fw_devm_match, (void *)name);
569 return fwn;
570 }
571
fw_cache_is_setup(struct device * dev,const char * name)572 static bool fw_cache_is_setup(struct device *dev, const char *name)
573 {
574 struct fw_name_devm *fwn;
575
576 fwn = fw_find_devm_name(dev, name);
577 if (fwn)
578 return true;
579
580 return false;
581 }
582
583 /* add firmware name into devres list */
fw_add_devm_name(struct device * dev,const char * name)584 static int fw_add_devm_name(struct device *dev, const char *name)
585 {
586 struct fw_name_devm *fwn;
587
588 if (fw_cache_is_setup(dev, name))
589 return 0;
590
591 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
592 GFP_KERNEL);
593 if (!fwn)
594 return -ENOMEM;
595 fwn->name = kstrdup_const(name, GFP_KERNEL);
596 if (!fwn->name) {
597 devres_free(fwn);
598 return -ENOMEM;
599 }
600
601 fwn->magic = (unsigned long)&fw_cache;
602 devres_add(dev, fwn);
603
604 return 0;
605 }
606 #else
fw_cache_is_setup(struct device * dev,const char * name)607 static bool fw_cache_is_setup(struct device *dev, const char *name)
608 {
609 return false;
610 }
611
fw_add_devm_name(struct device * dev,const char * name)612 static int fw_add_devm_name(struct device *dev, const char *name)
613 {
614 return 0;
615 }
616 #endif
617
assign_fw(struct firmware * fw,struct device * device)618 int assign_fw(struct firmware *fw, struct device *device)
619 {
620 struct fw_priv *fw_priv = fw->priv;
621 int ret;
622
623 mutex_lock(&fw_lock);
624 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
625 mutex_unlock(&fw_lock);
626 return -ENOENT;
627 }
628
629 /*
630 * add firmware name into devres list so that we can auto cache
631 * and uncache firmware for device.
632 *
633 * device may has been deleted already, but the problem
634 * should be fixed in devres or driver core.
635 */
636 /* don't cache firmware handled without uevent */
637 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
638 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
639 ret = fw_add_devm_name(device, fw_priv->fw_name);
640 if (ret) {
641 mutex_unlock(&fw_lock);
642 return ret;
643 }
644 }
645
646 /*
647 * After caching firmware image is started, let it piggyback
648 * on request firmware.
649 */
650 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
651 fw_priv->fwc->state == FW_LOADER_START_CACHE)
652 fw_cache_piggyback_on_request(fw_priv);
653
654 /* pass the pages buffer to driver at the last minute */
655 fw_set_page_data(fw_priv, fw);
656 mutex_unlock(&fw_lock);
657 return 0;
658 }
659
660 /* prepare firmware and firmware_buf structs;
661 * return 0 if a firmware is already assigned, 1 if need to load one,
662 * or a negative error code
663 */
664 static int
_request_firmware_prepare(struct firmware ** firmware_p,const char * name,struct device * device,void * dbuf,size_t size,size_t offset,u32 opt_flags)665 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
666 struct device *device, void *dbuf, size_t size,
667 size_t offset, u32 opt_flags)
668 {
669 struct firmware *firmware;
670 struct fw_priv *fw_priv;
671 int ret;
672
673 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
674 if (!firmware) {
675 dev_err(device, "%s: kmalloc(struct firmware) failed\n",
676 __func__);
677 return -ENOMEM;
678 }
679
680 if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
681 dev_dbg(device, "using built-in %s\n", name);
682 return 0; /* assigned */
683 }
684
685 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
686 offset, opt_flags);
687
688 /*
689 * bind with 'priv' now to avoid warning in failure path
690 * of requesting firmware.
691 */
692 firmware->priv = fw_priv;
693
694 if (ret > 0) {
695 ret = fw_state_wait(fw_priv);
696 if (!ret) {
697 fw_set_page_data(fw_priv, firmware);
698 return 0; /* assigned */
699 }
700 }
701
702 if (ret < 0)
703 return ret;
704 return 1; /* need to load */
705 }
706
707 /*
708 * Batched requests need only one wake, we need to do this step last due to the
709 * fallback mechanism. The buf is protected with kref_get(), and it won't be
710 * released until the last user calls release_firmware().
711 *
712 * Failed batched requests are possible as well, in such cases we just share
713 * the struct fw_priv and won't release it until all requests are woken
714 * and have gone through this same path.
715 */
fw_abort_batch_reqs(struct firmware * fw)716 static void fw_abort_batch_reqs(struct firmware *fw)
717 {
718 struct fw_priv *fw_priv;
719
720 /* Loaded directly? */
721 if (!fw || !fw->priv)
722 return;
723
724 fw_priv = fw->priv;
725 mutex_lock(&fw_lock);
726 if (!fw_state_is_aborted(fw_priv))
727 fw_state_aborted(fw_priv);
728 mutex_unlock(&fw_lock);
729 }
730
731 /* called from request_firmware() and request_firmware_work_func() */
732 static int
_request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset,u32 opt_flags)733 _request_firmware(const struct firmware **firmware_p, const char *name,
734 struct device *device, void *buf, size_t size,
735 size_t offset, u32 opt_flags)
736 {
737 struct firmware *fw = NULL;
738 bool nondirect = false;
739 int ret;
740
741 if (!firmware_p)
742 return -EINVAL;
743
744 if (!name || name[0] == '\0') {
745 ret = -EINVAL;
746 goto out;
747 }
748
749 ret = _request_firmware_prepare(&fw, name, device, buf, size,
750 offset, opt_flags);
751 if (ret <= 0) /* error or already assigned */
752 goto out;
753
754 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
755
756 /* Only full reads can support decompression, platform, and sysfs. */
757 if (!(opt_flags & FW_OPT_PARTIAL))
758 nondirect = true;
759
760 #ifdef CONFIG_FW_LOADER_COMPRESS
761 if (ret == -ENOENT && nondirect)
762 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
763 fw_decompress_xz);
764 #endif
765 if (ret == -ENOENT && nondirect)
766 ret = firmware_fallback_platform(fw->priv);
767
768 if (ret) {
769 if (!(opt_flags & FW_OPT_NO_WARN))
770 dev_warn(device,
771 "Direct firmware load for %s failed with error %d\n",
772 name, ret);
773 if (nondirect)
774 ret = firmware_fallback_sysfs(fw, name, device,
775 opt_flags, ret);
776 } else
777 ret = assign_fw(fw, device);
778
779 out:
780 if (ret < 0) {
781 fw_abort_batch_reqs(fw);
782 release_firmware(fw);
783 fw = NULL;
784 }
785
786 *firmware_p = fw;
787 return ret;
788 }
789
790 /**
791 * request_firmware() - send firmware request and wait for it
792 * @firmware_p: pointer to firmware image
793 * @name: name of firmware file
794 * @device: device for which firmware is being loaded
795 *
796 * @firmware_p will be used to return a firmware image by the name
797 * of @name for device @device.
798 *
799 * Should be called from user context where sleeping is allowed.
800 *
801 * @name will be used as $FIRMWARE in the uevent environment and
802 * should be distinctive enough not to be confused with any other
803 * firmware image for this or any other device.
804 *
805 * Caller must hold the reference count of @device.
806 *
807 * The function can be called safely inside device's suspend and
808 * resume callback.
809 **/
810 int
request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device)811 request_firmware(const struct firmware **firmware_p, const char *name,
812 struct device *device)
813 {
814 int ret;
815
816 /* Need to pin this module until return */
817 __module_get(THIS_MODULE);
818 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
819 FW_OPT_UEVENT);
820 module_put(THIS_MODULE);
821 return ret;
822 }
823 EXPORT_SYMBOL(request_firmware);
824
825 /**
826 * firmware_request_nowarn() - request for an optional fw module
827 * @firmware: pointer to firmware image
828 * @name: name of firmware file
829 * @device: device for which firmware is being loaded
830 *
831 * This function is similar in behaviour to request_firmware(), except it
832 * doesn't produce warning messages when the file is not found. The sysfs
833 * fallback mechanism is enabled if direct filesystem lookup fails. However,
834 * failures to find the firmware file with it are still suppressed. It is
835 * therefore up to the driver to check for the return value of this call and to
836 * decide when to inform the users of errors.
837 **/
firmware_request_nowarn(const struct firmware ** firmware,const char * name,struct device * device)838 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
839 struct device *device)
840 {
841 int ret;
842
843 /* Need to pin this module until return */
844 __module_get(THIS_MODULE);
845 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
846 FW_OPT_UEVENT | FW_OPT_NO_WARN);
847 module_put(THIS_MODULE);
848 return ret;
849 }
850 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
851
852 /**
853 * request_firmware_direct() - load firmware directly without usermode helper
854 * @firmware_p: pointer to firmware image
855 * @name: name of firmware file
856 * @device: device for which firmware is being loaded
857 *
858 * This function works pretty much like request_firmware(), but this doesn't
859 * fall back to usermode helper even if the firmware couldn't be loaded
860 * directly from fs. Hence it's useful for loading optional firmwares, which
861 * aren't always present, without extra long timeouts of udev.
862 **/
request_firmware_direct(const struct firmware ** firmware_p,const char * name,struct device * device)863 int request_firmware_direct(const struct firmware **firmware_p,
864 const char *name, struct device *device)
865 {
866 int ret;
867
868 __module_get(THIS_MODULE);
869 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
870 FW_OPT_UEVENT | FW_OPT_NO_WARN |
871 FW_OPT_NOFALLBACK_SYSFS);
872 module_put(THIS_MODULE);
873 return ret;
874 }
875 EXPORT_SYMBOL_GPL(request_firmware_direct);
876
877 /**
878 * firmware_request_platform() - request firmware with platform-fw fallback
879 * @firmware: pointer to firmware image
880 * @name: name of firmware file
881 * @device: device for which firmware is being loaded
882 *
883 * This function is similar in behaviour to request_firmware, except that if
884 * direct filesystem lookup fails, it will fallback to looking for a copy of the
885 * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
886 **/
firmware_request_platform(const struct firmware ** firmware,const char * name,struct device * device)887 int firmware_request_platform(const struct firmware **firmware,
888 const char *name, struct device *device)
889 {
890 int ret;
891
892 /* Need to pin this module until return */
893 __module_get(THIS_MODULE);
894 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
895 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
896 module_put(THIS_MODULE);
897 return ret;
898 }
899 EXPORT_SYMBOL_GPL(firmware_request_platform);
900
901 /**
902 * firmware_request_cache() - cache firmware for suspend so resume can use it
903 * @name: name of firmware file
904 * @device: device for which firmware should be cached for
905 *
906 * There are some devices with an optimization that enables the device to not
907 * require loading firmware on system reboot. This optimization may still
908 * require the firmware present on resume from suspend. This routine can be
909 * used to ensure the firmware is present on resume from suspend in these
910 * situations. This helper is not compatible with drivers which use
911 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
912 **/
firmware_request_cache(struct device * device,const char * name)913 int firmware_request_cache(struct device *device, const char *name)
914 {
915 int ret;
916
917 mutex_lock(&fw_lock);
918 ret = fw_add_devm_name(device, name);
919 mutex_unlock(&fw_lock);
920
921 return ret;
922 }
923 EXPORT_SYMBOL_GPL(firmware_request_cache);
924
925 /**
926 * request_firmware_into_buf() - load firmware into a previously allocated buffer
927 * @firmware_p: pointer to firmware image
928 * @name: name of firmware file
929 * @device: device for which firmware is being loaded and DMA region allocated
930 * @buf: address of buffer to load firmware into
931 * @size: size of buffer
932 *
933 * This function works pretty much like request_firmware(), but it doesn't
934 * allocate a buffer to hold the firmware data. Instead, the firmware
935 * is loaded directly into the buffer pointed to by @buf and the @firmware_p
936 * data member is pointed at @buf.
937 *
938 * This function doesn't cache firmware either.
939 */
940 int
request_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size)941 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
942 struct device *device, void *buf, size_t size)
943 {
944 int ret;
945
946 if (fw_cache_is_setup(device, name))
947 return -EOPNOTSUPP;
948
949 __module_get(THIS_MODULE);
950 ret = _request_firmware(firmware_p, name, device, buf, size, 0,
951 FW_OPT_UEVENT | FW_OPT_NOCACHE);
952 module_put(THIS_MODULE);
953 return ret;
954 }
955 EXPORT_SYMBOL(request_firmware_into_buf);
956
957 /**
958 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
959 * @firmware_p: pointer to firmware image
960 * @name: name of firmware file
961 * @device: device for which firmware is being loaded and DMA region allocated
962 * @buf: address of buffer to load firmware into
963 * @size: size of buffer
964 * @offset: offset into file to read
965 *
966 * This function works pretty much like request_firmware_into_buf except
967 * it allows a partial read of the file.
968 */
969 int
request_partial_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset)970 request_partial_firmware_into_buf(const struct firmware **firmware_p,
971 const char *name, struct device *device,
972 void *buf, size_t size, size_t offset)
973 {
974 int ret;
975
976 if (fw_cache_is_setup(device, name))
977 return -EOPNOTSUPP;
978
979 __module_get(THIS_MODULE);
980 ret = _request_firmware(firmware_p, name, device, buf, size, offset,
981 FW_OPT_UEVENT | FW_OPT_NOCACHE |
982 FW_OPT_PARTIAL);
983 module_put(THIS_MODULE);
984 return ret;
985 }
986 EXPORT_SYMBOL(request_partial_firmware_into_buf);
987
988 /**
989 * release_firmware() - release the resource associated with a firmware image
990 * @fw: firmware resource to release
991 **/
release_firmware(const struct firmware * fw)992 void release_firmware(const struct firmware *fw)
993 {
994 if (fw) {
995 if (!firmware_is_builtin(fw))
996 firmware_free_data(fw);
997 kfree(fw);
998 }
999 }
1000 EXPORT_SYMBOL(release_firmware);
1001
1002 /* Async support */
1003 struct firmware_work {
1004 struct work_struct work;
1005 struct module *module;
1006 const char *name;
1007 struct device *device;
1008 void *context;
1009 void (*cont)(const struct firmware *fw, void *context);
1010 u32 opt_flags;
1011 };
1012
request_firmware_work_func(struct work_struct * work)1013 static void request_firmware_work_func(struct work_struct *work)
1014 {
1015 struct firmware_work *fw_work;
1016 const struct firmware *fw;
1017
1018 fw_work = container_of(work, struct firmware_work, work);
1019
1020 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1021 fw_work->opt_flags);
1022 fw_work->cont(fw, fw_work->context);
1023 put_device(fw_work->device); /* taken in request_firmware_nowait() */
1024
1025 module_put(fw_work->module);
1026 kfree_const(fw_work->name);
1027 kfree(fw_work);
1028 }
1029
1030 /**
1031 * request_firmware_nowait() - asynchronous version of request_firmware
1032 * @module: module requesting the firmware
1033 * @uevent: sends uevent to copy the firmware image if this flag
1034 * is non-zero else the firmware copy must be done manually.
1035 * @name: name of firmware file
1036 * @device: device for which firmware is being loaded
1037 * @gfp: allocation flags
1038 * @context: will be passed over to @cont, and
1039 * @fw may be %NULL if firmware request fails.
1040 * @cont: function will be called asynchronously when the firmware
1041 * request is over.
1042 *
1043 * Caller must hold the reference count of @device.
1044 *
1045 * Asynchronous variant of request_firmware() for user contexts:
1046 * - sleep for as small periods as possible since it may
1047 * increase kernel boot time of built-in device drivers
1048 * requesting firmware in their ->probe() methods, if
1049 * @gfp is GFP_KERNEL.
1050 *
1051 * - can't sleep at all if @gfp is GFP_ATOMIC.
1052 **/
1053 int
request_firmware_nowait(struct module * module,bool uevent,const char * name,struct device * device,gfp_t gfp,void * context,void (* cont)(const struct firmware * fw,void * context))1054 request_firmware_nowait(
1055 struct module *module, bool uevent,
1056 const char *name, struct device *device, gfp_t gfp, void *context,
1057 void (*cont)(const struct firmware *fw, void *context))
1058 {
1059 struct firmware_work *fw_work;
1060
1061 fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1062 if (!fw_work)
1063 return -ENOMEM;
1064
1065 fw_work->module = module;
1066 fw_work->name = kstrdup_const(name, gfp);
1067 if (!fw_work->name) {
1068 kfree(fw_work);
1069 return -ENOMEM;
1070 }
1071 fw_work->device = device;
1072 fw_work->context = context;
1073 fw_work->cont = cont;
1074 fw_work->opt_flags = FW_OPT_NOWAIT |
1075 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1076
1077 if (!uevent && fw_cache_is_setup(device, name)) {
1078 kfree_const(fw_work->name);
1079 kfree(fw_work);
1080 return -EOPNOTSUPP;
1081 }
1082
1083 if (!try_module_get(module)) {
1084 kfree_const(fw_work->name);
1085 kfree(fw_work);
1086 return -EFAULT;
1087 }
1088
1089 get_device(fw_work->device);
1090 INIT_WORK(&fw_work->work, request_firmware_work_func);
1091 schedule_work(&fw_work->work);
1092 return 0;
1093 }
1094 EXPORT_SYMBOL(request_firmware_nowait);
1095
1096 #ifdef CONFIG_FW_CACHE
1097 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1098
1099 /**
1100 * cache_firmware() - cache one firmware image in kernel memory space
1101 * @fw_name: the firmware image name
1102 *
1103 * Cache firmware in kernel memory so that drivers can use it when
1104 * system isn't ready for them to request firmware image from userspace.
1105 * Once it returns successfully, driver can use request_firmware or its
1106 * nowait version to get the cached firmware without any interacting
1107 * with userspace
1108 *
1109 * Return 0 if the firmware image has been cached successfully
1110 * Return !0 otherwise
1111 *
1112 */
cache_firmware(const char * fw_name)1113 static int cache_firmware(const char *fw_name)
1114 {
1115 int ret;
1116 const struct firmware *fw;
1117
1118 pr_debug("%s: %s\n", __func__, fw_name);
1119
1120 ret = request_firmware(&fw, fw_name, NULL);
1121 if (!ret)
1122 kfree(fw);
1123
1124 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1125
1126 return ret;
1127 }
1128
lookup_fw_priv(const char * fw_name)1129 static struct fw_priv *lookup_fw_priv(const char *fw_name)
1130 {
1131 struct fw_priv *tmp;
1132 struct firmware_cache *fwc = &fw_cache;
1133
1134 spin_lock(&fwc->lock);
1135 tmp = __lookup_fw_priv(fw_name);
1136 spin_unlock(&fwc->lock);
1137
1138 return tmp;
1139 }
1140
1141 /**
1142 * uncache_firmware() - remove one cached firmware image
1143 * @fw_name: the firmware image name
1144 *
1145 * Uncache one firmware image which has been cached successfully
1146 * before.
1147 *
1148 * Return 0 if the firmware cache has been removed successfully
1149 * Return !0 otherwise
1150 *
1151 */
uncache_firmware(const char * fw_name)1152 static int uncache_firmware(const char *fw_name)
1153 {
1154 struct fw_priv *fw_priv;
1155 struct firmware fw;
1156
1157 pr_debug("%s: %s\n", __func__, fw_name);
1158
1159 if (firmware_request_builtin(&fw, fw_name))
1160 return 0;
1161
1162 fw_priv = lookup_fw_priv(fw_name);
1163 if (fw_priv) {
1164 free_fw_priv(fw_priv);
1165 return 0;
1166 }
1167
1168 return -EINVAL;
1169 }
1170
alloc_fw_cache_entry(const char * name)1171 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1172 {
1173 struct fw_cache_entry *fce;
1174
1175 fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1176 if (!fce)
1177 goto exit;
1178
1179 fce->name = kstrdup_const(name, GFP_ATOMIC);
1180 if (!fce->name) {
1181 kfree(fce);
1182 fce = NULL;
1183 goto exit;
1184 }
1185 exit:
1186 return fce;
1187 }
1188
__fw_entry_found(const char * name)1189 static int __fw_entry_found(const char *name)
1190 {
1191 struct firmware_cache *fwc = &fw_cache;
1192 struct fw_cache_entry *fce;
1193
1194 list_for_each_entry(fce, &fwc->fw_names, list) {
1195 if (!strcmp(fce->name, name))
1196 return 1;
1197 }
1198 return 0;
1199 }
1200
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1201 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1202 {
1203 const char *name = fw_priv->fw_name;
1204 struct firmware_cache *fwc = fw_priv->fwc;
1205 struct fw_cache_entry *fce;
1206
1207 spin_lock(&fwc->name_lock);
1208 if (__fw_entry_found(name))
1209 goto found;
1210
1211 fce = alloc_fw_cache_entry(name);
1212 if (fce) {
1213 list_add(&fce->list, &fwc->fw_names);
1214 kref_get(&fw_priv->ref);
1215 pr_debug("%s: fw: %s\n", __func__, name);
1216 }
1217 found:
1218 spin_unlock(&fwc->name_lock);
1219 }
1220
free_fw_cache_entry(struct fw_cache_entry * fce)1221 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1222 {
1223 kfree_const(fce->name);
1224 kfree(fce);
1225 }
1226
__async_dev_cache_fw_image(void * fw_entry,async_cookie_t cookie)1227 static void __async_dev_cache_fw_image(void *fw_entry,
1228 async_cookie_t cookie)
1229 {
1230 struct fw_cache_entry *fce = fw_entry;
1231 struct firmware_cache *fwc = &fw_cache;
1232 int ret;
1233
1234 ret = cache_firmware(fce->name);
1235 if (ret) {
1236 spin_lock(&fwc->name_lock);
1237 list_del(&fce->list);
1238 spin_unlock(&fwc->name_lock);
1239
1240 free_fw_cache_entry(fce);
1241 }
1242 }
1243
1244 /* called with dev->devres_lock held */
dev_create_fw_entry(struct device * dev,void * res,void * data)1245 static void dev_create_fw_entry(struct device *dev, void *res,
1246 void *data)
1247 {
1248 struct fw_name_devm *fwn = res;
1249 const char *fw_name = fwn->name;
1250 struct list_head *head = data;
1251 struct fw_cache_entry *fce;
1252
1253 fce = alloc_fw_cache_entry(fw_name);
1254 if (fce)
1255 list_add(&fce->list, head);
1256 }
1257
devm_name_match(struct device * dev,void * res,void * match_data)1258 static int devm_name_match(struct device *dev, void *res,
1259 void *match_data)
1260 {
1261 struct fw_name_devm *fwn = res;
1262 return (fwn->magic == (unsigned long)match_data);
1263 }
1264
dev_cache_fw_image(struct device * dev,void * data)1265 static void dev_cache_fw_image(struct device *dev, void *data)
1266 {
1267 LIST_HEAD(todo);
1268 struct fw_cache_entry *fce;
1269 struct fw_cache_entry *fce_next;
1270 struct firmware_cache *fwc = &fw_cache;
1271
1272 devres_for_each_res(dev, fw_name_devm_release,
1273 devm_name_match, &fw_cache,
1274 dev_create_fw_entry, &todo);
1275
1276 list_for_each_entry_safe(fce, fce_next, &todo, list) {
1277 list_del(&fce->list);
1278
1279 spin_lock(&fwc->name_lock);
1280 /* only one cache entry for one firmware */
1281 if (!__fw_entry_found(fce->name)) {
1282 list_add(&fce->list, &fwc->fw_names);
1283 } else {
1284 free_fw_cache_entry(fce);
1285 fce = NULL;
1286 }
1287 spin_unlock(&fwc->name_lock);
1288
1289 if (fce)
1290 async_schedule_domain(__async_dev_cache_fw_image,
1291 (void *)fce,
1292 &fw_cache_domain);
1293 }
1294 }
1295
__device_uncache_fw_images(void)1296 static void __device_uncache_fw_images(void)
1297 {
1298 struct firmware_cache *fwc = &fw_cache;
1299 struct fw_cache_entry *fce;
1300
1301 spin_lock(&fwc->name_lock);
1302 while (!list_empty(&fwc->fw_names)) {
1303 fce = list_entry(fwc->fw_names.next,
1304 struct fw_cache_entry, list);
1305 list_del(&fce->list);
1306 spin_unlock(&fwc->name_lock);
1307
1308 uncache_firmware(fce->name);
1309 free_fw_cache_entry(fce);
1310
1311 spin_lock(&fwc->name_lock);
1312 }
1313 spin_unlock(&fwc->name_lock);
1314 }
1315
1316 /**
1317 * device_cache_fw_images() - cache devices' firmware
1318 *
1319 * If one device called request_firmware or its nowait version
1320 * successfully before, the firmware names are recored into the
1321 * device's devres link list, so device_cache_fw_images can call
1322 * cache_firmware() to cache these firmwares for the device,
1323 * then the device driver can load its firmwares easily at
1324 * time when system is not ready to complete loading firmware.
1325 */
device_cache_fw_images(void)1326 static void device_cache_fw_images(void)
1327 {
1328 struct firmware_cache *fwc = &fw_cache;
1329 DEFINE_WAIT(wait);
1330
1331 pr_debug("%s\n", __func__);
1332
1333 /* cancel uncache work */
1334 cancel_delayed_work_sync(&fwc->work);
1335
1336 fw_fallback_set_cache_timeout();
1337
1338 mutex_lock(&fw_lock);
1339 fwc->state = FW_LOADER_START_CACHE;
1340 dpm_for_each_dev(NULL, dev_cache_fw_image);
1341 mutex_unlock(&fw_lock);
1342
1343 /* wait for completion of caching firmware for all devices */
1344 async_synchronize_full_domain(&fw_cache_domain);
1345
1346 fw_fallback_set_default_timeout();
1347 }
1348
1349 /**
1350 * device_uncache_fw_images() - uncache devices' firmware
1351 *
1352 * uncache all firmwares which have been cached successfully
1353 * by device_uncache_fw_images earlier
1354 */
device_uncache_fw_images(void)1355 static void device_uncache_fw_images(void)
1356 {
1357 pr_debug("%s\n", __func__);
1358 __device_uncache_fw_images();
1359 }
1360
device_uncache_fw_images_work(struct work_struct * work)1361 static void device_uncache_fw_images_work(struct work_struct *work)
1362 {
1363 device_uncache_fw_images();
1364 }
1365
1366 /**
1367 * device_uncache_fw_images_delay() - uncache devices firmwares
1368 * @delay: number of milliseconds to delay uncache device firmwares
1369 *
1370 * uncache all devices's firmwares which has been cached successfully
1371 * by device_cache_fw_images after @delay milliseconds.
1372 */
device_uncache_fw_images_delay(unsigned long delay)1373 static void device_uncache_fw_images_delay(unsigned long delay)
1374 {
1375 queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1376 msecs_to_jiffies(delay));
1377 }
1378
fw_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)1379 static int fw_pm_notify(struct notifier_block *notify_block,
1380 unsigned long mode, void *unused)
1381 {
1382 switch (mode) {
1383 case PM_HIBERNATION_PREPARE:
1384 case PM_SUSPEND_PREPARE:
1385 case PM_RESTORE_PREPARE:
1386 /*
1387 * kill pending fallback requests with a custom fallback
1388 * to avoid stalling suspend.
1389 */
1390 kill_pending_fw_fallback_reqs(true);
1391 device_cache_fw_images();
1392 break;
1393
1394 case PM_POST_SUSPEND:
1395 case PM_POST_HIBERNATION:
1396 case PM_POST_RESTORE:
1397 /*
1398 * In case that system sleep failed and syscore_suspend is
1399 * not called.
1400 */
1401 mutex_lock(&fw_lock);
1402 fw_cache.state = FW_LOADER_NO_CACHE;
1403 mutex_unlock(&fw_lock);
1404
1405 device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1406 break;
1407 }
1408
1409 return 0;
1410 }
1411
1412 /* stop caching firmware once syscore_suspend is reached */
fw_suspend(void)1413 static int fw_suspend(void)
1414 {
1415 fw_cache.state = FW_LOADER_NO_CACHE;
1416 return 0;
1417 }
1418
1419 static struct syscore_ops fw_syscore_ops = {
1420 .suspend = fw_suspend,
1421 };
1422
register_fw_pm_ops(void)1423 static int __init register_fw_pm_ops(void)
1424 {
1425 int ret;
1426
1427 spin_lock_init(&fw_cache.name_lock);
1428 INIT_LIST_HEAD(&fw_cache.fw_names);
1429
1430 INIT_DELAYED_WORK(&fw_cache.work,
1431 device_uncache_fw_images_work);
1432
1433 fw_cache.pm_notify.notifier_call = fw_pm_notify;
1434 ret = register_pm_notifier(&fw_cache.pm_notify);
1435 if (ret)
1436 return ret;
1437
1438 register_syscore_ops(&fw_syscore_ops);
1439
1440 return ret;
1441 }
1442
unregister_fw_pm_ops(void)1443 static inline void unregister_fw_pm_ops(void)
1444 {
1445 unregister_syscore_ops(&fw_syscore_ops);
1446 unregister_pm_notifier(&fw_cache.pm_notify);
1447 }
1448 #else
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1449 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1450 {
1451 }
register_fw_pm_ops(void)1452 static inline int register_fw_pm_ops(void)
1453 {
1454 return 0;
1455 }
unregister_fw_pm_ops(void)1456 static inline void unregister_fw_pm_ops(void)
1457 {
1458 }
1459 #endif
1460
fw_cache_init(void)1461 static void __init fw_cache_init(void)
1462 {
1463 spin_lock_init(&fw_cache.lock);
1464 INIT_LIST_HEAD(&fw_cache.head);
1465 fw_cache.state = FW_LOADER_NO_CACHE;
1466 }
1467
fw_shutdown_notify(struct notifier_block * unused1,unsigned long unused2,void * unused3)1468 static int fw_shutdown_notify(struct notifier_block *unused1,
1469 unsigned long unused2, void *unused3)
1470 {
1471 /*
1472 * Kill all pending fallback requests to avoid both stalling shutdown,
1473 * and avoid a deadlock with the usermode_lock.
1474 */
1475 kill_pending_fw_fallback_reqs(false);
1476
1477 return NOTIFY_DONE;
1478 }
1479
1480 static struct notifier_block fw_shutdown_nb = {
1481 .notifier_call = fw_shutdown_notify,
1482 };
1483
firmware_class_init(void)1484 static int __init firmware_class_init(void)
1485 {
1486 int ret;
1487
1488 /* No need to unfold these on exit */
1489 fw_cache_init();
1490
1491 ret = register_fw_pm_ops();
1492 if (ret)
1493 return ret;
1494
1495 ret = register_reboot_notifier(&fw_shutdown_nb);
1496 if (ret)
1497 goto out;
1498
1499 return register_sysfs_loader();
1500
1501 out:
1502 unregister_fw_pm_ops();
1503 return ret;
1504 }
1505
firmware_class_exit(void)1506 static void __exit firmware_class_exit(void)
1507 {
1508 unregister_fw_pm_ops();
1509 unregister_reboot_notifier(&fw_shutdown_nb);
1510 unregister_sysfs_loader();
1511 }
1512
1513 fs_initcall(firmware_class_init);
1514 module_exit(firmware_class_exit);
1515