1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Ram backed block device driver.
4 *
5 * Copyright (C) 2007 Nick Piggin
6 * Copyright (C) 2007 Novell Inc.
7 *
8 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
9 * of their respective owners.
10 */
11
12 #include <linux/init.h>
13 #include <linux/initrd.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/major.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/highmem.h>
20 #include <linux/mutex.h>
21 #include <linux/pagemap.h>
22 #include <linux/radix-tree.h>
23 #include <linux/fs.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/debugfs.h>
27
28 #include <linux/uaccess.h>
29
30 /*
31 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
32 * the pages containing the block device's contents. A brd page's ->index is
33 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
34 * with, the kernel's pagecache or buffer cache (which sit above our block
35 * device).
36 */
37 struct brd_device {
38 int brd_number;
39 struct gendisk *brd_disk;
40 struct list_head brd_list;
41
42 /*
43 * Backing store of pages and lock to protect it. This is the contents
44 * of the block device.
45 */
46 spinlock_t brd_lock;
47 struct radix_tree_root brd_pages;
48 u64 brd_nr_pages;
49 };
50
51 /*
52 * Look up and return a brd's page for a given sector.
53 */
brd_lookup_page(struct brd_device * brd,sector_t sector)54 static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
55 {
56 pgoff_t idx;
57 struct page *page;
58
59 /*
60 * The page lifetime is protected by the fact that we have opened the
61 * device node -- brd pages will never be deleted under us, so we
62 * don't need any further locking or refcounting.
63 *
64 * This is strictly true for the radix-tree nodes as well (ie. we
65 * don't actually need the rcu_read_lock()), however that is not a
66 * documented feature of the radix-tree API so it is better to be
67 * safe here (we don't have total exclusion from radix tree updates
68 * here, only deletes).
69 */
70 rcu_read_lock();
71 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
72 page = radix_tree_lookup(&brd->brd_pages, idx);
73 rcu_read_unlock();
74
75 BUG_ON(page && page->index != idx);
76
77 return page;
78 }
79
80 /*
81 * Look up and return a brd's page for a given sector.
82 * If one does not exist, allocate an empty page, and insert that. Then
83 * return it.
84 */
brd_insert_page(struct brd_device * brd,sector_t sector)85 static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
86 {
87 pgoff_t idx;
88 struct page *page;
89 gfp_t gfp_flags;
90
91 page = brd_lookup_page(brd, sector);
92 if (page)
93 return page;
94
95 /*
96 * Must use NOIO because we don't want to recurse back into the
97 * block or filesystem layers from page reclaim.
98 */
99 gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
100 page = alloc_page(gfp_flags);
101 if (!page)
102 return NULL;
103
104 if (radix_tree_preload(GFP_NOIO)) {
105 __free_page(page);
106 return NULL;
107 }
108
109 spin_lock(&brd->brd_lock);
110 idx = sector >> PAGE_SECTORS_SHIFT;
111 page->index = idx;
112 if (radix_tree_insert(&brd->brd_pages, idx, page)) {
113 __free_page(page);
114 page = radix_tree_lookup(&brd->brd_pages, idx);
115 BUG_ON(!page);
116 BUG_ON(page->index != idx);
117 } else {
118 brd->brd_nr_pages++;
119 }
120 spin_unlock(&brd->brd_lock);
121
122 radix_tree_preload_end();
123
124 return page;
125 }
126
127 /*
128 * Free all backing store pages and radix tree. This must only be called when
129 * there are no other users of the device.
130 */
131 #define FREE_BATCH 16
brd_free_pages(struct brd_device * brd)132 static void brd_free_pages(struct brd_device *brd)
133 {
134 unsigned long pos = 0;
135 struct page *pages[FREE_BATCH];
136 int nr_pages;
137
138 do {
139 int i;
140
141 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
142 (void **)pages, pos, FREE_BATCH);
143
144 for (i = 0; i < nr_pages; i++) {
145 void *ret;
146
147 BUG_ON(pages[i]->index < pos);
148 pos = pages[i]->index;
149 ret = radix_tree_delete(&brd->brd_pages, pos);
150 BUG_ON(!ret || ret != pages[i]);
151 __free_page(pages[i]);
152 }
153
154 pos++;
155
156 /*
157 * It takes 3.4 seconds to remove 80GiB ramdisk.
158 * So, we need cond_resched to avoid stalling the CPU.
159 */
160 cond_resched();
161
162 /*
163 * This assumes radix_tree_gang_lookup always returns as
164 * many pages as possible. If the radix-tree code changes,
165 * so will this have to.
166 */
167 } while (nr_pages == FREE_BATCH);
168 }
169
170 /*
171 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
172 */
copy_to_brd_setup(struct brd_device * brd,sector_t sector,size_t n)173 static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
174 {
175 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
176 size_t copy;
177
178 copy = min_t(size_t, n, PAGE_SIZE - offset);
179 if (!brd_insert_page(brd, sector))
180 return -ENOSPC;
181 if (copy < n) {
182 sector += copy >> SECTOR_SHIFT;
183 if (!brd_insert_page(brd, sector))
184 return -ENOSPC;
185 }
186 return 0;
187 }
188
189 /*
190 * Copy n bytes from src to the brd starting at sector. Does not sleep.
191 */
copy_to_brd(struct brd_device * brd,const void * src,sector_t sector,size_t n)192 static void copy_to_brd(struct brd_device *brd, const void *src,
193 sector_t sector, size_t n)
194 {
195 struct page *page;
196 void *dst;
197 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
198 size_t copy;
199
200 copy = min_t(size_t, n, PAGE_SIZE - offset);
201 page = brd_lookup_page(brd, sector);
202 BUG_ON(!page);
203
204 dst = kmap_atomic(page);
205 memcpy(dst + offset, src, copy);
206 kunmap_atomic(dst);
207
208 if (copy < n) {
209 src += copy;
210 sector += copy >> SECTOR_SHIFT;
211 copy = n - copy;
212 page = brd_lookup_page(brd, sector);
213 BUG_ON(!page);
214
215 dst = kmap_atomic(page);
216 memcpy(dst, src, copy);
217 kunmap_atomic(dst);
218 }
219 }
220
221 /*
222 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
223 */
copy_from_brd(void * dst,struct brd_device * brd,sector_t sector,size_t n)224 static void copy_from_brd(void *dst, struct brd_device *brd,
225 sector_t sector, size_t n)
226 {
227 struct page *page;
228 void *src;
229 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
230 size_t copy;
231
232 copy = min_t(size_t, n, PAGE_SIZE - offset);
233 page = brd_lookup_page(brd, sector);
234 if (page) {
235 src = kmap_atomic(page);
236 memcpy(dst, src + offset, copy);
237 kunmap_atomic(src);
238 } else
239 memset(dst, 0, copy);
240
241 if (copy < n) {
242 dst += copy;
243 sector += copy >> SECTOR_SHIFT;
244 copy = n - copy;
245 page = brd_lookup_page(brd, sector);
246 if (page) {
247 src = kmap_atomic(page);
248 memcpy(dst, src, copy);
249 kunmap_atomic(src);
250 } else
251 memset(dst, 0, copy);
252 }
253 }
254
255 /*
256 * Process a single bvec of a bio.
257 */
brd_do_bvec(struct brd_device * brd,struct page * page,unsigned int len,unsigned int off,unsigned int op,sector_t sector)258 static int brd_do_bvec(struct brd_device *brd, struct page *page,
259 unsigned int len, unsigned int off, unsigned int op,
260 sector_t sector)
261 {
262 void *mem;
263 int err = 0;
264
265 if (op_is_write(op)) {
266 err = copy_to_brd_setup(brd, sector, len);
267 if (err)
268 goto out;
269 }
270
271 mem = kmap_atomic(page);
272 if (!op_is_write(op)) {
273 copy_from_brd(mem + off, brd, sector, len);
274 flush_dcache_page(page);
275 } else {
276 flush_dcache_page(page);
277 copy_to_brd(brd, mem + off, sector, len);
278 }
279 kunmap_atomic(mem);
280
281 out:
282 return err;
283 }
284
brd_submit_bio(struct bio * bio)285 static void brd_submit_bio(struct bio *bio)
286 {
287 struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
288 sector_t sector = bio->bi_iter.bi_sector;
289 struct bio_vec bvec;
290 struct bvec_iter iter;
291
292 bio_for_each_segment(bvec, bio, iter) {
293 unsigned int len = bvec.bv_len;
294 int err;
295
296 /* Don't support un-aligned buffer */
297 WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
298 (len & (SECTOR_SIZE - 1)));
299
300 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
301 bio_op(bio), sector);
302 if (err) {
303 bio_io_error(bio);
304 return;
305 }
306 sector += len >> SECTOR_SHIFT;
307 }
308
309 bio_endio(bio);
310 }
311
brd_rw_page(struct block_device * bdev,sector_t sector,struct page * page,unsigned int op)312 static int brd_rw_page(struct block_device *bdev, sector_t sector,
313 struct page *page, unsigned int op)
314 {
315 struct brd_device *brd = bdev->bd_disk->private_data;
316 int err;
317
318 if (PageTransHuge(page))
319 return -ENOTSUPP;
320 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
321 page_endio(page, op_is_write(op), err);
322 return err;
323 }
324
325 static const struct block_device_operations brd_fops = {
326 .owner = THIS_MODULE,
327 .submit_bio = brd_submit_bio,
328 .rw_page = brd_rw_page,
329 };
330
331 /*
332 * And now the modules code and kernel interface.
333 */
334 static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
335 module_param(rd_nr, int, 0444);
336 MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
337
338 unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
339 module_param(rd_size, ulong, 0444);
340 MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
341
342 static int max_part = 1;
343 module_param(max_part, int, 0444);
344 MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
345
346 MODULE_LICENSE("GPL");
347 MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
348 MODULE_ALIAS("rd");
349
350 #ifndef MODULE
351 /* Legacy boot options - nonmodular */
ramdisk_size(char * str)352 static int __init ramdisk_size(char *str)
353 {
354 rd_size = simple_strtol(str, NULL, 0);
355 return 1;
356 }
357 __setup("ramdisk_size=", ramdisk_size);
358 #endif
359
360 /*
361 * The device scheme is derived from loop.c. Keep them in synch where possible
362 * (should share code eventually).
363 */
364 static LIST_HEAD(brd_devices);
365 static DEFINE_MUTEX(brd_devices_mutex);
366 static struct dentry *brd_debugfs_dir;
367
brd_alloc(int i)368 static int brd_alloc(int i)
369 {
370 struct brd_device *brd;
371 struct gendisk *disk;
372 char buf[DISK_NAME_LEN];
373 int err = -ENOMEM;
374
375 mutex_lock(&brd_devices_mutex);
376 list_for_each_entry(brd, &brd_devices, brd_list) {
377 if (brd->brd_number == i) {
378 mutex_unlock(&brd_devices_mutex);
379 return -EEXIST;
380 }
381 }
382 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
383 if (!brd) {
384 mutex_unlock(&brd_devices_mutex);
385 return -ENOMEM;
386 }
387 brd->brd_number = i;
388 list_add_tail(&brd->brd_list, &brd_devices);
389 mutex_unlock(&brd_devices_mutex);
390
391 spin_lock_init(&brd->brd_lock);
392 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
393
394 snprintf(buf, DISK_NAME_LEN, "ram%d", i);
395 if (!IS_ERR_OR_NULL(brd_debugfs_dir))
396 debugfs_create_u64(buf, 0444, brd_debugfs_dir,
397 &brd->brd_nr_pages);
398
399 disk = brd->brd_disk = blk_alloc_disk(NUMA_NO_NODE);
400 if (!disk)
401 goto out_free_dev;
402
403 disk->major = RAMDISK_MAJOR;
404 disk->first_minor = i * max_part;
405 disk->minors = max_part;
406 disk->fops = &brd_fops;
407 disk->private_data = brd;
408 disk->flags = GENHD_FL_EXT_DEVT;
409 strlcpy(disk->disk_name, buf, DISK_NAME_LEN);
410 set_capacity(disk, rd_size * 2);
411
412 /*
413 * This is so fdisk will align partitions on 4k, because of
414 * direct_access API needing 4k alignment, returning a PFN
415 * (This is only a problem on very small devices <= 4M,
416 * otherwise fdisk will align on 1M. Regardless this call
417 * is harmless)
418 */
419 blk_queue_physical_block_size(disk->queue, PAGE_SIZE);
420
421 /* Tell the block layer that this is not a rotational device */
422 blk_queue_flag_set(QUEUE_FLAG_NONROT, disk->queue);
423 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, disk->queue);
424 err = add_disk(disk);
425 if (err)
426 goto out_cleanup_disk;
427
428 return 0;
429
430 out_cleanup_disk:
431 blk_cleanup_disk(disk);
432 out_free_dev:
433 mutex_lock(&brd_devices_mutex);
434 list_del(&brd->brd_list);
435 mutex_unlock(&brd_devices_mutex);
436 kfree(brd);
437 return err;
438 }
439
brd_probe(dev_t dev)440 static void brd_probe(dev_t dev)
441 {
442 brd_alloc(MINOR(dev) / max_part);
443 }
444
brd_del_one(struct brd_device * brd)445 static void brd_del_one(struct brd_device *brd)
446 {
447 del_gendisk(brd->brd_disk);
448 blk_cleanup_disk(brd->brd_disk);
449 brd_free_pages(brd);
450 mutex_lock(&brd_devices_mutex);
451 list_del(&brd->brd_list);
452 mutex_unlock(&brd_devices_mutex);
453 kfree(brd);
454 }
455
brd_check_and_reset_par(void)456 static inline void brd_check_and_reset_par(void)
457 {
458 if (unlikely(!max_part))
459 max_part = 1;
460
461 /*
462 * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
463 * otherwise, it is possiable to get same dev_t when adding partitions.
464 */
465 if ((1U << MINORBITS) % max_part != 0)
466 max_part = 1UL << fls(max_part);
467
468 if (max_part > DISK_MAX_PARTS) {
469 pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
470 DISK_MAX_PARTS, DISK_MAX_PARTS);
471 max_part = DISK_MAX_PARTS;
472 }
473 }
474
brd_init(void)475 static int __init brd_init(void)
476 {
477 struct brd_device *brd, *next;
478 int err, i;
479
480 /*
481 * brd module now has a feature to instantiate underlying device
482 * structure on-demand, provided that there is an access dev node.
483 *
484 * (1) if rd_nr is specified, create that many upfront. else
485 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
486 * (2) User can further extend brd devices by create dev node themselves
487 * and have kernel automatically instantiate actual device
488 * on-demand. Example:
489 * mknod /path/devnod_name b 1 X # 1 is the rd major
490 * fdisk -l /path/devnod_name
491 * If (X / max_part) was not already created it will be created
492 * dynamically.
493 */
494
495 if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe))
496 return -EIO;
497
498 brd_check_and_reset_par();
499
500 brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
501
502 for (i = 0; i < rd_nr; i++) {
503 err = brd_alloc(i);
504 if (err)
505 goto out_free;
506 }
507
508 pr_info("brd: module loaded\n");
509 return 0;
510
511 out_free:
512 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
513 debugfs_remove_recursive(brd_debugfs_dir);
514
515 list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
516 brd_del_one(brd);
517
518 pr_info("brd: module NOT loaded !!!\n");
519 return err;
520 }
521
brd_exit(void)522 static void __exit brd_exit(void)
523 {
524 struct brd_device *brd, *next;
525
526 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
527 debugfs_remove_recursive(brd_debugfs_dir);
528
529 list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
530 brd_del_one(brd);
531
532 pr_info("brd: module unloaded\n");
533 }
534
535 module_init(brd_init);
536 module_exit(brd_exit);
537
538