1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2020 Xillybus Ltd, http://xillybus.com
4 *
5 * Driver for the XillyUSB FPGA/host framework.
6 *
7 * This driver interfaces with a special IP core in an FPGA, setting up
8 * a pipe between a hardware FIFO in the programmable logic and a device
9 * file in the host. The number of such pipes and their attributes are
10 * set up on the logic. This driver detects these automatically and
11 * creates the device files accordingly.
12 */
13
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/list.h>
17 #include <linux/device.h>
18 #include <linux/module.h>
19 #include <asm/byteorder.h>
20 #include <linux/io.h>
21 #include <linux/interrupt.h>
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/spinlock.h>
25 #include <linux/mutex.h>
26 #include <linux/workqueue.h>
27 #include <linux/crc32.h>
28 #include <linux/poll.h>
29 #include <linux/delay.h>
30 #include <linux/usb.h>
31
32 #include "xillybus_class.h"
33
34 MODULE_DESCRIPTION("Driver for XillyUSB FPGA IP Core");
35 MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
36 MODULE_ALIAS("xillyusb");
37 MODULE_LICENSE("GPL v2");
38
39 #define XILLY_RX_TIMEOUT (10 * HZ / 1000)
40 #define XILLY_RESPONSE_TIMEOUT (500 * HZ / 1000)
41
42 #define BUF_SIZE_ORDER 4
43 #define BUFNUM 8
44 #define LOG2_IDT_FIFO_SIZE 16
45 #define LOG2_INITIAL_FIFO_BUF_SIZE 16
46
47 #define MSG_EP_NUM 1
48 #define IN_EP_NUM 1
49
50 static const char xillyname[] = "xillyusb";
51
52 static unsigned int fifo_buf_order;
53
54 #define USB_VENDOR_ID_XILINX 0x03fd
55 #define USB_VENDOR_ID_ALTERA 0x09fb
56
57 #define USB_PRODUCT_ID_XILLYUSB 0xebbe
58
59 static const struct usb_device_id xillyusb_table[] = {
60 { USB_DEVICE(USB_VENDOR_ID_XILINX, USB_PRODUCT_ID_XILLYUSB) },
61 { USB_DEVICE(USB_VENDOR_ID_ALTERA, USB_PRODUCT_ID_XILLYUSB) },
62 { }
63 };
64
65 MODULE_DEVICE_TABLE(usb, xillyusb_table);
66
67 struct xillyusb_dev;
68
69 struct xillyfifo {
70 unsigned int bufsize; /* In bytes, always a power of 2 */
71 unsigned int bufnum;
72 unsigned int size; /* Lazy: Equals bufsize * bufnum */
73 unsigned int buf_order;
74
75 int fill; /* Number of bytes in the FIFO */
76 spinlock_t lock;
77 wait_queue_head_t waitq;
78
79 unsigned int readpos;
80 unsigned int readbuf;
81 unsigned int writepos;
82 unsigned int writebuf;
83 char **mem;
84 };
85
86 struct xillyusb_channel;
87
88 struct xillyusb_endpoint {
89 struct xillyusb_dev *xdev;
90
91 struct mutex ep_mutex; /* serialize operations on endpoint */
92
93 struct list_head buffers;
94 struct list_head filled_buffers;
95 spinlock_t buffers_lock; /* protect these two lists */
96
97 unsigned int order;
98 unsigned int buffer_size;
99
100 unsigned int fill_mask;
101
102 int outstanding_urbs;
103
104 struct usb_anchor anchor;
105
106 struct xillyfifo fifo;
107
108 struct work_struct workitem;
109
110 bool shutting_down;
111 bool drained;
112 bool wake_on_drain;
113
114 u8 ep_num;
115 };
116
117 struct xillyusb_channel {
118 struct xillyusb_dev *xdev;
119
120 struct xillyfifo *in_fifo;
121 struct xillyusb_endpoint *out_ep;
122 struct mutex lock; /* protect @out_ep, @in_fifo, bit fields below */
123
124 struct mutex in_mutex; /* serialize fops on FPGA to host stream */
125 struct mutex out_mutex; /* serialize fops on host to FPGA stream */
126 wait_queue_head_t flushq;
127
128 int chan_idx;
129
130 u32 in_consumed_bytes;
131 u32 in_current_checkpoint;
132 u32 out_bytes;
133
134 unsigned int in_log2_element_size;
135 unsigned int out_log2_element_size;
136 unsigned int in_log2_fifo_size;
137 unsigned int out_log2_fifo_size;
138
139 unsigned int read_data_ok; /* EOF not arrived (yet) */
140 unsigned int poll_used;
141 unsigned int flushing;
142 unsigned int flushed;
143 unsigned int canceled;
144
145 /* Bit fields protected by @lock except for initialization */
146 unsigned readable:1;
147 unsigned writable:1;
148 unsigned open_for_read:1;
149 unsigned open_for_write:1;
150 unsigned in_synchronous:1;
151 unsigned out_synchronous:1;
152 unsigned in_seekable:1;
153 unsigned out_seekable:1;
154 };
155
156 struct xillybuffer {
157 struct list_head entry;
158 struct xillyusb_endpoint *ep;
159 void *buf;
160 unsigned int len;
161 };
162
163 struct xillyusb_dev {
164 struct xillyusb_channel *channels;
165
166 struct usb_device *udev;
167 struct device *dev; /* For dev_err() and such */
168 struct kref kref;
169 struct workqueue_struct *workq;
170
171 int error;
172 spinlock_t error_lock; /* protect @error */
173 struct work_struct wakeup_workitem;
174
175 int num_channels;
176
177 struct xillyusb_endpoint *msg_ep;
178 struct xillyusb_endpoint *in_ep;
179
180 struct mutex msg_mutex; /* serialize opcode transmission */
181 int in_bytes_left;
182 int leftover_chan_num;
183 unsigned int in_counter;
184 struct mutex process_in_mutex; /* synchronize wakeup_all() */
185 };
186
187 /* FPGA to host opcodes */
188 enum {
189 OPCODE_DATA = 0,
190 OPCODE_QUIESCE_ACK = 1,
191 OPCODE_EOF = 2,
192 OPCODE_REACHED_CHECKPOINT = 3,
193 OPCODE_CANCELED_CHECKPOINT = 4,
194 };
195
196 /* Host to FPGA opcodes */
197 enum {
198 OPCODE_QUIESCE = 0,
199 OPCODE_REQ_IDT = 1,
200 OPCODE_SET_CHECKPOINT = 2,
201 OPCODE_CLOSE = 3,
202 OPCODE_SET_PUSH = 4,
203 OPCODE_UPDATE_PUSH = 5,
204 OPCODE_CANCEL_CHECKPOINT = 6,
205 OPCODE_SET_ADDR = 7,
206 };
207
208 /*
209 * fifo_write() and fifo_read() are NOT reentrant (i.e. concurrent multiple
210 * calls to each on the same FIFO is not allowed) however it's OK to have
211 * threads calling each of the two functions once on the same FIFO, and
212 * at the same time.
213 */
214
fifo_write(struct xillyfifo * fifo,const void * data,unsigned int len,int (* copier)(void *,const void *,int))215 static int fifo_write(struct xillyfifo *fifo,
216 const void *data, unsigned int len,
217 int (*copier)(void *, const void *, int))
218 {
219 unsigned int done = 0;
220 unsigned int todo = len;
221 unsigned int nmax;
222 unsigned int writepos = fifo->writepos;
223 unsigned int writebuf = fifo->writebuf;
224 unsigned long flags;
225 int rc;
226
227 nmax = fifo->size - READ_ONCE(fifo->fill);
228
229 while (1) {
230 unsigned int nrail = fifo->bufsize - writepos;
231 unsigned int n = min(todo, nmax);
232
233 if (n == 0) {
234 spin_lock_irqsave(&fifo->lock, flags);
235 fifo->fill += done;
236 spin_unlock_irqrestore(&fifo->lock, flags);
237
238 fifo->writepos = writepos;
239 fifo->writebuf = writebuf;
240
241 return done;
242 }
243
244 if (n > nrail)
245 n = nrail;
246
247 rc = (*copier)(fifo->mem[writebuf] + writepos, data + done, n);
248
249 if (rc)
250 return rc;
251
252 done += n;
253 todo -= n;
254
255 writepos += n;
256 nmax -= n;
257
258 if (writepos == fifo->bufsize) {
259 writepos = 0;
260 writebuf++;
261
262 if (writebuf == fifo->bufnum)
263 writebuf = 0;
264 }
265 }
266 }
267
fifo_read(struct xillyfifo * fifo,void * data,unsigned int len,int (* copier)(void *,const void *,int))268 static int fifo_read(struct xillyfifo *fifo,
269 void *data, unsigned int len,
270 int (*copier)(void *, const void *, int))
271 {
272 unsigned int done = 0;
273 unsigned int todo = len;
274 unsigned int fill;
275 unsigned int readpos = fifo->readpos;
276 unsigned int readbuf = fifo->readbuf;
277 unsigned long flags;
278 int rc;
279
280 /*
281 * The spinlock here is necessary, because otherwise fifo->fill
282 * could have been increased by fifo_write() after writing data
283 * to the buffer, but this data would potentially not have been
284 * visible on this thread at the time the updated fifo->fill was.
285 * That could lead to reading invalid data.
286 */
287
288 spin_lock_irqsave(&fifo->lock, flags);
289 fill = fifo->fill;
290 spin_unlock_irqrestore(&fifo->lock, flags);
291
292 while (1) {
293 unsigned int nrail = fifo->bufsize - readpos;
294 unsigned int n = min(todo, fill);
295
296 if (n == 0) {
297 spin_lock_irqsave(&fifo->lock, flags);
298 fifo->fill -= done;
299 spin_unlock_irqrestore(&fifo->lock, flags);
300
301 fifo->readpos = readpos;
302 fifo->readbuf = readbuf;
303
304 return done;
305 }
306
307 if (n > nrail)
308 n = nrail;
309
310 rc = (*copier)(data + done, fifo->mem[readbuf] + readpos, n);
311
312 if (rc)
313 return rc;
314
315 done += n;
316 todo -= n;
317
318 readpos += n;
319 fill -= n;
320
321 if (readpos == fifo->bufsize) {
322 readpos = 0;
323 readbuf++;
324
325 if (readbuf == fifo->bufnum)
326 readbuf = 0;
327 }
328 }
329 }
330
331 /*
332 * These three wrapper functions are used as the @copier argument to
333 * fifo_write() and fifo_read(), so that they can work directly with
334 * user memory as well.
335 */
336
xilly_copy_from_user(void * dst,const void * src,int n)337 static int xilly_copy_from_user(void *dst, const void *src, int n)
338 {
339 if (copy_from_user(dst, (const void __user *)src, n))
340 return -EFAULT;
341
342 return 0;
343 }
344
xilly_copy_to_user(void * dst,const void * src,int n)345 static int xilly_copy_to_user(void *dst, const void *src, int n)
346 {
347 if (copy_to_user((void __user *)dst, src, n))
348 return -EFAULT;
349
350 return 0;
351 }
352
xilly_memcpy(void * dst,const void * src,int n)353 static int xilly_memcpy(void *dst, const void *src, int n)
354 {
355 memcpy(dst, src, n);
356
357 return 0;
358 }
359
fifo_init(struct xillyfifo * fifo,unsigned int log2_size)360 static int fifo_init(struct xillyfifo *fifo,
361 unsigned int log2_size)
362 {
363 unsigned int log2_bufnum;
364 unsigned int buf_order;
365 int i;
366
367 unsigned int log2_fifo_buf_size;
368
369 retry:
370 log2_fifo_buf_size = fifo_buf_order + PAGE_SHIFT;
371
372 if (log2_size > log2_fifo_buf_size) {
373 log2_bufnum = log2_size - log2_fifo_buf_size;
374 buf_order = fifo_buf_order;
375 fifo->bufsize = 1 << log2_fifo_buf_size;
376 } else {
377 log2_bufnum = 0;
378 buf_order = (log2_size > PAGE_SHIFT) ?
379 log2_size - PAGE_SHIFT : 0;
380 fifo->bufsize = 1 << log2_size;
381 }
382
383 fifo->bufnum = 1 << log2_bufnum;
384 fifo->size = fifo->bufnum * fifo->bufsize;
385 fifo->buf_order = buf_order;
386
387 fifo->mem = kmalloc_array(fifo->bufnum, sizeof(void *), GFP_KERNEL);
388
389 if (!fifo->mem)
390 return -ENOMEM;
391
392 for (i = 0; i < fifo->bufnum; i++) {
393 fifo->mem[i] = (void *)
394 __get_free_pages(GFP_KERNEL, buf_order);
395
396 if (!fifo->mem[i])
397 goto memfail;
398 }
399
400 fifo->fill = 0;
401 fifo->readpos = 0;
402 fifo->readbuf = 0;
403 fifo->writepos = 0;
404 fifo->writebuf = 0;
405 spin_lock_init(&fifo->lock);
406 init_waitqueue_head(&fifo->waitq);
407 return 0;
408
409 memfail:
410 for (i--; i >= 0; i--)
411 free_pages((unsigned long)fifo->mem[i], buf_order);
412
413 kfree(fifo->mem);
414 fifo->mem = NULL;
415
416 if (fifo_buf_order) {
417 fifo_buf_order--;
418 goto retry;
419 } else {
420 return -ENOMEM;
421 }
422 }
423
fifo_mem_release(struct xillyfifo * fifo)424 static void fifo_mem_release(struct xillyfifo *fifo)
425 {
426 int i;
427
428 if (!fifo->mem)
429 return;
430
431 for (i = 0; i < fifo->bufnum; i++)
432 free_pages((unsigned long)fifo->mem[i], fifo->buf_order);
433
434 kfree(fifo->mem);
435 }
436
437 /*
438 * When endpoint_quiesce() returns, the endpoint has no URBs submitted,
439 * won't accept any new URB submissions, and its related work item doesn't
440 * and won't run anymore.
441 */
442
endpoint_quiesce(struct xillyusb_endpoint * ep)443 static void endpoint_quiesce(struct xillyusb_endpoint *ep)
444 {
445 mutex_lock(&ep->ep_mutex);
446 ep->shutting_down = true;
447 mutex_unlock(&ep->ep_mutex);
448
449 usb_kill_anchored_urbs(&ep->anchor);
450 cancel_work_sync(&ep->workitem);
451 }
452
453 /*
454 * Note that endpoint_dealloc() also frees fifo memory (if allocated), even
455 * though endpoint_alloc doesn't allocate that memory.
456 */
457
endpoint_dealloc(struct xillyusb_endpoint * ep)458 static void endpoint_dealloc(struct xillyusb_endpoint *ep)
459 {
460 struct list_head *this, *next;
461
462 fifo_mem_release(&ep->fifo);
463
464 /* Join @filled_buffers with @buffers to free these entries too */
465 list_splice(&ep->filled_buffers, &ep->buffers);
466
467 list_for_each_safe(this, next, &ep->buffers) {
468 struct xillybuffer *xb =
469 list_entry(this, struct xillybuffer, entry);
470
471 free_pages((unsigned long)xb->buf, ep->order);
472 kfree(xb);
473 }
474
475 kfree(ep);
476 }
477
478 static struct xillyusb_endpoint
endpoint_alloc(struct xillyusb_dev * xdev,u8 ep_num,void (* work)(struct work_struct *),unsigned int order,int bufnum)479 *endpoint_alloc(struct xillyusb_dev *xdev,
480 u8 ep_num,
481 void (*work)(struct work_struct *),
482 unsigned int order,
483 int bufnum)
484 {
485 int i;
486
487 struct xillyusb_endpoint *ep;
488
489 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
490
491 if (!ep)
492 return NULL;
493
494 INIT_LIST_HEAD(&ep->buffers);
495 INIT_LIST_HEAD(&ep->filled_buffers);
496
497 spin_lock_init(&ep->buffers_lock);
498 mutex_init(&ep->ep_mutex);
499
500 init_usb_anchor(&ep->anchor);
501 INIT_WORK(&ep->workitem, work);
502
503 ep->order = order;
504 ep->buffer_size = 1 << (PAGE_SHIFT + order);
505 ep->outstanding_urbs = 0;
506 ep->drained = true;
507 ep->wake_on_drain = false;
508 ep->xdev = xdev;
509 ep->ep_num = ep_num;
510 ep->shutting_down = false;
511
512 for (i = 0; i < bufnum; i++) {
513 struct xillybuffer *xb;
514 unsigned long addr;
515
516 xb = kzalloc(sizeof(*xb), GFP_KERNEL);
517
518 if (!xb) {
519 endpoint_dealloc(ep);
520 return NULL;
521 }
522
523 addr = __get_free_pages(GFP_KERNEL, order);
524
525 if (!addr) {
526 kfree(xb);
527 endpoint_dealloc(ep);
528 return NULL;
529 }
530
531 xb->buf = (void *)addr;
532 xb->ep = ep;
533 list_add_tail(&xb->entry, &ep->buffers);
534 }
535 return ep;
536 }
537
cleanup_dev(struct kref * kref)538 static void cleanup_dev(struct kref *kref)
539 {
540 struct xillyusb_dev *xdev =
541 container_of(kref, struct xillyusb_dev, kref);
542
543 if (xdev->in_ep)
544 endpoint_dealloc(xdev->in_ep);
545
546 if (xdev->msg_ep)
547 endpoint_dealloc(xdev->msg_ep);
548
549 if (xdev->workq)
550 destroy_workqueue(xdev->workq);
551
552 kfree(xdev->channels); /* Argument may be NULL, and that's fine */
553 kfree(xdev);
554 }
555
556 /*
557 * @process_in_mutex is taken to ensure that bulk_in_work() won't call
558 * process_bulk_in() after wakeup_all()'s execution: The latter zeroes all
559 * @read_data_ok entries, which will make process_bulk_in() report false
560 * errors if executed. The mechanism relies on that xdev->error is assigned
561 * a non-zero value by report_io_error() prior to queueing wakeup_all(),
562 * which prevents bulk_in_work() from calling process_bulk_in().
563 *
564 * The fact that wakeup_all() and bulk_in_work() are queued on the same
565 * workqueue makes their concurrent execution very unlikely, however the
566 * kernel's API doesn't seem to ensure this strictly.
567 */
568
wakeup_all(struct work_struct * work)569 static void wakeup_all(struct work_struct *work)
570 {
571 int i;
572 struct xillyusb_dev *xdev = container_of(work, struct xillyusb_dev,
573 wakeup_workitem);
574
575 mutex_lock(&xdev->process_in_mutex);
576
577 for (i = 0; i < xdev->num_channels; i++) {
578 struct xillyusb_channel *chan = &xdev->channels[i];
579
580 mutex_lock(&chan->lock);
581
582 if (chan->in_fifo) {
583 /*
584 * Fake an EOF: Even if such arrives, it won't be
585 * processed.
586 */
587 chan->read_data_ok = 0;
588 wake_up_interruptible(&chan->in_fifo->waitq);
589 }
590
591 if (chan->out_ep)
592 wake_up_interruptible(&chan->out_ep->fifo.waitq);
593
594 mutex_unlock(&chan->lock);
595
596 wake_up_interruptible(&chan->flushq);
597 }
598
599 mutex_unlock(&xdev->process_in_mutex);
600
601 wake_up_interruptible(&xdev->msg_ep->fifo.waitq);
602
603 kref_put(&xdev->kref, cleanup_dev);
604 }
605
report_io_error(struct xillyusb_dev * xdev,int errcode)606 static void report_io_error(struct xillyusb_dev *xdev,
607 int errcode)
608 {
609 unsigned long flags;
610 bool do_once = false;
611
612 spin_lock_irqsave(&xdev->error_lock, flags);
613 if (!xdev->error) {
614 xdev->error = errcode;
615 do_once = true;
616 }
617 spin_unlock_irqrestore(&xdev->error_lock, flags);
618
619 if (do_once) {
620 kref_get(&xdev->kref); /* xdev is used by work item */
621 queue_work(xdev->workq, &xdev->wakeup_workitem);
622 }
623 }
624
625 /*
626 * safely_assign_in_fifo() changes the value of chan->in_fifo and ensures
627 * the previous pointer is never used after its return.
628 */
629
safely_assign_in_fifo(struct xillyusb_channel * chan,struct xillyfifo * fifo)630 static void safely_assign_in_fifo(struct xillyusb_channel *chan,
631 struct xillyfifo *fifo)
632 {
633 mutex_lock(&chan->lock);
634 chan->in_fifo = fifo;
635 mutex_unlock(&chan->lock);
636
637 flush_work(&chan->xdev->in_ep->workitem);
638 }
639
bulk_in_completer(struct urb * urb)640 static void bulk_in_completer(struct urb *urb)
641 {
642 struct xillybuffer *xb = urb->context;
643 struct xillyusb_endpoint *ep = xb->ep;
644 unsigned long flags;
645
646 if (urb->status) {
647 if (!(urb->status == -ENOENT ||
648 urb->status == -ECONNRESET ||
649 urb->status == -ESHUTDOWN))
650 report_io_error(ep->xdev, -EIO);
651
652 spin_lock_irqsave(&ep->buffers_lock, flags);
653 list_add_tail(&xb->entry, &ep->buffers);
654 ep->outstanding_urbs--;
655 spin_unlock_irqrestore(&ep->buffers_lock, flags);
656
657 return;
658 }
659
660 xb->len = urb->actual_length;
661
662 spin_lock_irqsave(&ep->buffers_lock, flags);
663 list_add_tail(&xb->entry, &ep->filled_buffers);
664 spin_unlock_irqrestore(&ep->buffers_lock, flags);
665
666 if (!ep->shutting_down)
667 queue_work(ep->xdev->workq, &ep->workitem);
668 }
669
bulk_out_completer(struct urb * urb)670 static void bulk_out_completer(struct urb *urb)
671 {
672 struct xillybuffer *xb = urb->context;
673 struct xillyusb_endpoint *ep = xb->ep;
674 unsigned long flags;
675
676 if (urb->status &&
677 (!(urb->status == -ENOENT ||
678 urb->status == -ECONNRESET ||
679 urb->status == -ESHUTDOWN)))
680 report_io_error(ep->xdev, -EIO);
681
682 spin_lock_irqsave(&ep->buffers_lock, flags);
683 list_add_tail(&xb->entry, &ep->buffers);
684 ep->outstanding_urbs--;
685 spin_unlock_irqrestore(&ep->buffers_lock, flags);
686
687 if (!ep->shutting_down)
688 queue_work(ep->xdev->workq, &ep->workitem);
689 }
690
try_queue_bulk_in(struct xillyusb_endpoint * ep)691 static void try_queue_bulk_in(struct xillyusb_endpoint *ep)
692 {
693 struct xillyusb_dev *xdev = ep->xdev;
694 struct xillybuffer *xb;
695 struct urb *urb;
696
697 int rc;
698 unsigned long flags;
699 unsigned int bufsize = ep->buffer_size;
700
701 mutex_lock(&ep->ep_mutex);
702
703 if (ep->shutting_down || xdev->error)
704 goto done;
705
706 while (1) {
707 spin_lock_irqsave(&ep->buffers_lock, flags);
708
709 if (list_empty(&ep->buffers)) {
710 spin_unlock_irqrestore(&ep->buffers_lock, flags);
711 goto done;
712 }
713
714 xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
715 list_del(&xb->entry);
716 ep->outstanding_urbs++;
717
718 spin_unlock_irqrestore(&ep->buffers_lock, flags);
719
720 urb = usb_alloc_urb(0, GFP_KERNEL);
721 if (!urb) {
722 report_io_error(xdev, -ENOMEM);
723 goto relist;
724 }
725
726 usb_fill_bulk_urb(urb, xdev->udev,
727 usb_rcvbulkpipe(xdev->udev, ep->ep_num),
728 xb->buf, bufsize, bulk_in_completer, xb);
729
730 usb_anchor_urb(urb, &ep->anchor);
731
732 rc = usb_submit_urb(urb, GFP_KERNEL);
733
734 if (rc) {
735 report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
736 -EIO);
737 goto unanchor;
738 }
739
740 usb_free_urb(urb); /* This just decrements reference count */
741 }
742
743 unanchor:
744 usb_unanchor_urb(urb);
745 usb_free_urb(urb);
746
747 relist:
748 spin_lock_irqsave(&ep->buffers_lock, flags);
749 list_add_tail(&xb->entry, &ep->buffers);
750 ep->outstanding_urbs--;
751 spin_unlock_irqrestore(&ep->buffers_lock, flags);
752
753 done:
754 mutex_unlock(&ep->ep_mutex);
755 }
756
try_queue_bulk_out(struct xillyusb_endpoint * ep)757 static void try_queue_bulk_out(struct xillyusb_endpoint *ep)
758 {
759 struct xillyfifo *fifo = &ep->fifo;
760 struct xillyusb_dev *xdev = ep->xdev;
761 struct xillybuffer *xb;
762 struct urb *urb;
763
764 int rc;
765 unsigned int fill;
766 unsigned long flags;
767 bool do_wake = false;
768
769 mutex_lock(&ep->ep_mutex);
770
771 if (ep->shutting_down || xdev->error)
772 goto done;
773
774 fill = READ_ONCE(fifo->fill) & ep->fill_mask;
775
776 while (1) {
777 int count;
778 unsigned int max_read;
779
780 spin_lock_irqsave(&ep->buffers_lock, flags);
781
782 /*
783 * Race conditions might have the FIFO filled while the
784 * endpoint is marked as drained here. That doesn't matter,
785 * because the sole purpose of @drained is to ensure that
786 * certain data has been sent on the USB channel before
787 * shutting it down. Hence knowing that the FIFO appears
788 * to be empty with no outstanding URBs at some moment
789 * is good enough.
790 */
791
792 if (!fill) {
793 ep->drained = !ep->outstanding_urbs;
794 if (ep->drained && ep->wake_on_drain)
795 do_wake = true;
796
797 spin_unlock_irqrestore(&ep->buffers_lock, flags);
798 goto done;
799 }
800
801 ep->drained = false;
802
803 if ((fill < ep->buffer_size && ep->outstanding_urbs) ||
804 list_empty(&ep->buffers)) {
805 spin_unlock_irqrestore(&ep->buffers_lock, flags);
806 goto done;
807 }
808
809 xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
810 list_del(&xb->entry);
811 ep->outstanding_urbs++;
812
813 spin_unlock_irqrestore(&ep->buffers_lock, flags);
814
815 max_read = min(fill, ep->buffer_size);
816
817 count = fifo_read(&ep->fifo, xb->buf, max_read, xilly_memcpy);
818
819 /*
820 * xilly_memcpy always returns 0 => fifo_read can't fail =>
821 * count > 0
822 */
823
824 urb = usb_alloc_urb(0, GFP_KERNEL);
825 if (!urb) {
826 report_io_error(xdev, -ENOMEM);
827 goto relist;
828 }
829
830 usb_fill_bulk_urb(urb, xdev->udev,
831 usb_sndbulkpipe(xdev->udev, ep->ep_num),
832 xb->buf, count, bulk_out_completer, xb);
833
834 usb_anchor_urb(urb, &ep->anchor);
835
836 rc = usb_submit_urb(urb, GFP_KERNEL);
837
838 if (rc) {
839 report_io_error(xdev, (rc == -ENOMEM) ? -ENOMEM :
840 -EIO);
841 goto unanchor;
842 }
843
844 usb_free_urb(urb); /* This just decrements reference count */
845
846 fill -= count;
847 do_wake = true;
848 }
849
850 unanchor:
851 usb_unanchor_urb(urb);
852 usb_free_urb(urb);
853
854 relist:
855 spin_lock_irqsave(&ep->buffers_lock, flags);
856 list_add_tail(&xb->entry, &ep->buffers);
857 ep->outstanding_urbs--;
858 spin_unlock_irqrestore(&ep->buffers_lock, flags);
859
860 done:
861 mutex_unlock(&ep->ep_mutex);
862
863 if (do_wake)
864 wake_up_interruptible(&fifo->waitq);
865 }
866
bulk_out_work(struct work_struct * work)867 static void bulk_out_work(struct work_struct *work)
868 {
869 struct xillyusb_endpoint *ep = container_of(work,
870 struct xillyusb_endpoint,
871 workitem);
872 try_queue_bulk_out(ep);
873 }
874
process_in_opcode(struct xillyusb_dev * xdev,int opcode,int chan_num)875 static int process_in_opcode(struct xillyusb_dev *xdev,
876 int opcode,
877 int chan_num)
878 {
879 struct xillyusb_channel *chan;
880 struct device *dev = xdev->dev;
881 int chan_idx = chan_num >> 1;
882
883 if (chan_idx >= xdev->num_channels) {
884 dev_err(dev, "Received illegal channel ID %d from FPGA\n",
885 chan_num);
886 return -EIO;
887 }
888
889 chan = &xdev->channels[chan_idx];
890
891 switch (opcode) {
892 case OPCODE_EOF:
893 if (!chan->read_data_ok) {
894 dev_err(dev, "Received unexpected EOF for channel %d\n",
895 chan_num);
896 return -EIO;
897 }
898
899 /*
900 * A write memory barrier ensures that the FIFO's fill level
901 * is visible before read_data_ok turns zero, so the data in
902 * the FIFO isn't missed by the consumer.
903 */
904 smp_wmb();
905 WRITE_ONCE(chan->read_data_ok, 0);
906 wake_up_interruptible(&chan->in_fifo->waitq);
907 break;
908
909 case OPCODE_REACHED_CHECKPOINT:
910 chan->flushing = 0;
911 wake_up_interruptible(&chan->flushq);
912 break;
913
914 case OPCODE_CANCELED_CHECKPOINT:
915 chan->canceled = 1;
916 wake_up_interruptible(&chan->flushq);
917 break;
918
919 default:
920 dev_err(dev, "Received illegal opcode %d from FPGA\n",
921 opcode);
922 return -EIO;
923 }
924
925 return 0;
926 }
927
process_bulk_in(struct xillybuffer * xb)928 static int process_bulk_in(struct xillybuffer *xb)
929 {
930 struct xillyusb_endpoint *ep = xb->ep;
931 struct xillyusb_dev *xdev = ep->xdev;
932 struct device *dev = xdev->dev;
933 int dws = xb->len >> 2;
934 __le32 *p = xb->buf;
935 u32 ctrlword;
936 struct xillyusb_channel *chan;
937 struct xillyfifo *fifo;
938 int chan_num = 0, opcode;
939 int chan_idx;
940 int bytes, count, dwconsume;
941 int in_bytes_left = 0;
942 int rc;
943
944 if ((dws << 2) != xb->len) {
945 dev_err(dev, "Received BULK IN transfer with %d bytes, not a multiple of 4\n",
946 xb->len);
947 return -EIO;
948 }
949
950 if (xdev->in_bytes_left) {
951 bytes = min(xdev->in_bytes_left, dws << 2);
952 in_bytes_left = xdev->in_bytes_left - bytes;
953 chan_num = xdev->leftover_chan_num;
954 goto resume_leftovers;
955 }
956
957 while (dws) {
958 ctrlword = le32_to_cpu(*p++);
959 dws--;
960
961 chan_num = ctrlword & 0xfff;
962 count = (ctrlword >> 12) & 0x3ff;
963 opcode = (ctrlword >> 24) & 0xf;
964
965 if (opcode != OPCODE_DATA) {
966 unsigned int in_counter = xdev->in_counter++ & 0x3ff;
967
968 if (count != in_counter) {
969 dev_err(dev, "Expected opcode counter %d, got %d\n",
970 in_counter, count);
971 return -EIO;
972 }
973
974 rc = process_in_opcode(xdev, opcode, chan_num);
975
976 if (rc)
977 return rc;
978
979 continue;
980 }
981
982 bytes = min(count + 1, dws << 2);
983 in_bytes_left = count + 1 - bytes;
984
985 resume_leftovers:
986 chan_idx = chan_num >> 1;
987
988 if (!(chan_num & 1) || chan_idx >= xdev->num_channels ||
989 !xdev->channels[chan_idx].read_data_ok) {
990 dev_err(dev, "Received illegal channel ID %d from FPGA\n",
991 chan_num);
992 return -EIO;
993 }
994 chan = &xdev->channels[chan_idx];
995
996 fifo = chan->in_fifo;
997
998 if (unlikely(!fifo))
999 return -EIO; /* We got really unexpected data */
1000
1001 if (bytes != fifo_write(fifo, p, bytes, xilly_memcpy)) {
1002 dev_err(dev, "Misbehaving FPGA overflowed an upstream FIFO!\n");
1003 return -EIO;
1004 }
1005
1006 wake_up_interruptible(&fifo->waitq);
1007
1008 dwconsume = (bytes + 3) >> 2;
1009 dws -= dwconsume;
1010 p += dwconsume;
1011 }
1012
1013 xdev->in_bytes_left = in_bytes_left;
1014 xdev->leftover_chan_num = chan_num;
1015 return 0;
1016 }
1017
bulk_in_work(struct work_struct * work)1018 static void bulk_in_work(struct work_struct *work)
1019 {
1020 struct xillyusb_endpoint *ep =
1021 container_of(work, struct xillyusb_endpoint, workitem);
1022 struct xillyusb_dev *xdev = ep->xdev;
1023 unsigned long flags;
1024 struct xillybuffer *xb;
1025 bool consumed = false;
1026 int rc = 0;
1027
1028 mutex_lock(&xdev->process_in_mutex);
1029
1030 spin_lock_irqsave(&ep->buffers_lock, flags);
1031
1032 while (1) {
1033 if (rc || list_empty(&ep->filled_buffers)) {
1034 spin_unlock_irqrestore(&ep->buffers_lock, flags);
1035 mutex_unlock(&xdev->process_in_mutex);
1036
1037 if (rc)
1038 report_io_error(xdev, rc);
1039 else if (consumed)
1040 try_queue_bulk_in(ep);
1041
1042 return;
1043 }
1044
1045 xb = list_first_entry(&ep->filled_buffers, struct xillybuffer,
1046 entry);
1047 list_del(&xb->entry);
1048
1049 spin_unlock_irqrestore(&ep->buffers_lock, flags);
1050
1051 consumed = true;
1052
1053 if (!xdev->error)
1054 rc = process_bulk_in(xb);
1055
1056 spin_lock_irqsave(&ep->buffers_lock, flags);
1057 list_add_tail(&xb->entry, &ep->buffers);
1058 ep->outstanding_urbs--;
1059 }
1060 }
1061
xillyusb_send_opcode(struct xillyusb_dev * xdev,int chan_num,char opcode,u32 data)1062 static int xillyusb_send_opcode(struct xillyusb_dev *xdev,
1063 int chan_num, char opcode, u32 data)
1064 {
1065 struct xillyusb_endpoint *ep = xdev->msg_ep;
1066 struct xillyfifo *fifo = &ep->fifo;
1067 __le32 msg[2];
1068
1069 int rc = 0;
1070
1071 msg[0] = cpu_to_le32((chan_num & 0xfff) |
1072 ((opcode & 0xf) << 24));
1073 msg[1] = cpu_to_le32(data);
1074
1075 mutex_lock(&xdev->msg_mutex);
1076
1077 /*
1078 * The wait queue is woken with the interruptible variant, so the
1079 * wait function matches, however returning because of an interrupt
1080 * will mess things up considerably, in particular when the caller is
1081 * the release method. And the xdev->error part prevents being stuck
1082 * forever in the event of a bizarre hardware bug: Pull the USB plug.
1083 */
1084
1085 while (wait_event_interruptible(fifo->waitq,
1086 fifo->fill <= (fifo->size - 8) ||
1087 xdev->error))
1088 ; /* Empty loop */
1089
1090 if (xdev->error) {
1091 rc = xdev->error;
1092 goto unlock_done;
1093 }
1094
1095 fifo_write(fifo, (void *)msg, 8, xilly_memcpy);
1096
1097 try_queue_bulk_out(ep);
1098
1099 unlock_done:
1100 mutex_unlock(&xdev->msg_mutex);
1101
1102 return rc;
1103 }
1104
1105 /*
1106 * Note that flush_downstream() merely waits for the data to arrive to
1107 * the application logic at the FPGA -- unlike PCIe Xillybus' counterpart,
1108 * it does nothing to make it happen (and neither is it necessary).
1109 *
1110 * This function is not reentrant for the same @chan, but this is covered
1111 * by the fact that for any given @chan, it's called either by the open,
1112 * write, llseek and flush fops methods, which can't run in parallel (and the
1113 * write + flush and llseek method handlers are protected with out_mutex).
1114 *
1115 * chan->flushed is there to avoid multiple flushes at the same position,
1116 * in particular as a result of programs that close the file descriptor
1117 * e.g. after a dup2() for redirection.
1118 */
1119
flush_downstream(struct xillyusb_channel * chan,long timeout,bool interruptible)1120 static int flush_downstream(struct xillyusb_channel *chan,
1121 long timeout,
1122 bool interruptible)
1123 {
1124 struct xillyusb_dev *xdev = chan->xdev;
1125 int chan_num = chan->chan_idx << 1;
1126 long deadline, left_to_sleep;
1127 int rc;
1128
1129 if (chan->flushed)
1130 return 0;
1131
1132 deadline = jiffies + 1 + timeout;
1133
1134 if (chan->flushing) {
1135 long cancel_deadline = jiffies + 1 + XILLY_RESPONSE_TIMEOUT;
1136
1137 chan->canceled = 0;
1138 rc = xillyusb_send_opcode(xdev, chan_num,
1139 OPCODE_CANCEL_CHECKPOINT, 0);
1140
1141 if (rc)
1142 return rc; /* Only real error, never -EINTR */
1143
1144 /* Ignoring interrupts. Cancellation must be handled */
1145 while (!chan->canceled) {
1146 left_to_sleep = cancel_deadline - ((long)jiffies);
1147
1148 if (left_to_sleep <= 0) {
1149 report_io_error(xdev, -EIO);
1150 return -EIO;
1151 }
1152
1153 rc = wait_event_interruptible_timeout(chan->flushq,
1154 chan->canceled ||
1155 xdev->error,
1156 left_to_sleep);
1157
1158 if (xdev->error)
1159 return xdev->error;
1160 }
1161 }
1162
1163 chan->flushing = 1;
1164
1165 /*
1166 * The checkpoint is given in terms of data elements, not bytes. As
1167 * a result, if less than an element's worth of data is stored in the
1168 * FIFO, it's not flushed, including the flush before closing, which
1169 * means that such data is lost. This is consistent with PCIe Xillybus.
1170 */
1171
1172 rc = xillyusb_send_opcode(xdev, chan_num,
1173 OPCODE_SET_CHECKPOINT,
1174 chan->out_bytes >>
1175 chan->out_log2_element_size);
1176
1177 if (rc)
1178 return rc; /* Only real error, never -EINTR */
1179
1180 if (!timeout) {
1181 while (chan->flushing) {
1182 rc = wait_event_interruptible(chan->flushq,
1183 !chan->flushing ||
1184 xdev->error);
1185 if (xdev->error)
1186 return xdev->error;
1187
1188 if (interruptible && rc)
1189 return -EINTR;
1190 }
1191
1192 goto done;
1193 }
1194
1195 while (chan->flushing) {
1196 left_to_sleep = deadline - ((long)jiffies);
1197
1198 if (left_to_sleep <= 0)
1199 return -ETIMEDOUT;
1200
1201 rc = wait_event_interruptible_timeout(chan->flushq,
1202 !chan->flushing ||
1203 xdev->error,
1204 left_to_sleep);
1205
1206 if (xdev->error)
1207 return xdev->error;
1208
1209 if (interruptible && rc < 0)
1210 return -EINTR;
1211 }
1212
1213 done:
1214 chan->flushed = 1;
1215 return 0;
1216 }
1217
1218 /* request_read_anything(): Ask the FPGA for any little amount of data */
request_read_anything(struct xillyusb_channel * chan,char opcode)1219 static int request_read_anything(struct xillyusb_channel *chan,
1220 char opcode)
1221 {
1222 struct xillyusb_dev *xdev = chan->xdev;
1223 unsigned int sh = chan->in_log2_element_size;
1224 int chan_num = (chan->chan_idx << 1) | 1;
1225 u32 mercy = chan->in_consumed_bytes + (2 << sh) - 1;
1226
1227 return xillyusb_send_opcode(xdev, chan_num, opcode, mercy >> sh);
1228 }
1229
xillyusb_open(struct inode * inode,struct file * filp)1230 static int xillyusb_open(struct inode *inode, struct file *filp)
1231 {
1232 struct xillyusb_dev *xdev;
1233 struct xillyusb_channel *chan;
1234 struct xillyfifo *in_fifo = NULL;
1235 struct xillyusb_endpoint *out_ep = NULL;
1236 int rc;
1237 int index;
1238
1239 rc = xillybus_find_inode(inode, (void **)&xdev, &index);
1240 if (rc)
1241 return rc;
1242
1243 chan = &xdev->channels[index];
1244 filp->private_data = chan;
1245
1246 mutex_lock(&chan->lock);
1247
1248 rc = -ENODEV;
1249
1250 if (xdev->error)
1251 goto unmutex_fail;
1252
1253 if (((filp->f_mode & FMODE_READ) && !chan->readable) ||
1254 ((filp->f_mode & FMODE_WRITE) && !chan->writable))
1255 goto unmutex_fail;
1256
1257 if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_READ) &&
1258 chan->in_synchronous) {
1259 dev_err(xdev->dev,
1260 "open() failed: O_NONBLOCK not allowed for read on this device\n");
1261 goto unmutex_fail;
1262 }
1263
1264 if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_WRITE) &&
1265 chan->out_synchronous) {
1266 dev_err(xdev->dev,
1267 "open() failed: O_NONBLOCK not allowed for write on this device\n");
1268 goto unmutex_fail;
1269 }
1270
1271 rc = -EBUSY;
1272
1273 if (((filp->f_mode & FMODE_READ) && chan->open_for_read) ||
1274 ((filp->f_mode & FMODE_WRITE) && chan->open_for_write))
1275 goto unmutex_fail;
1276
1277 kref_get(&xdev->kref);
1278
1279 if (filp->f_mode & FMODE_READ)
1280 chan->open_for_read = 1;
1281
1282 if (filp->f_mode & FMODE_WRITE)
1283 chan->open_for_write = 1;
1284
1285 mutex_unlock(&chan->lock);
1286
1287 if (filp->f_mode & FMODE_WRITE) {
1288 out_ep = endpoint_alloc(xdev,
1289 (chan->chan_idx + 2) | USB_DIR_OUT,
1290 bulk_out_work, BUF_SIZE_ORDER, BUFNUM);
1291
1292 if (!out_ep) {
1293 rc = -ENOMEM;
1294 goto unopen;
1295 }
1296
1297 rc = fifo_init(&out_ep->fifo, chan->out_log2_fifo_size);
1298
1299 if (rc)
1300 goto late_unopen;
1301
1302 out_ep->fill_mask = -(1 << chan->out_log2_element_size);
1303 chan->out_bytes = 0;
1304 chan->flushed = 0;
1305
1306 /*
1307 * Sending a flush request to a previously closed stream
1308 * effectively opens it, and also waits until the command is
1309 * confirmed by the FPGA. The latter is necessary because the
1310 * data is sent through a separate BULK OUT endpoint, and the
1311 * xHCI controller is free to reorder transmissions.
1312 *
1313 * This can't go wrong unless there's a serious hardware error
1314 * (or the computer is stuck for 500 ms?)
1315 */
1316 rc = flush_downstream(chan, XILLY_RESPONSE_TIMEOUT, false);
1317
1318 if (rc == -ETIMEDOUT) {
1319 rc = -EIO;
1320 report_io_error(xdev, rc);
1321 }
1322
1323 if (rc)
1324 goto late_unopen;
1325 }
1326
1327 if (filp->f_mode & FMODE_READ) {
1328 in_fifo = kzalloc(sizeof(*in_fifo), GFP_KERNEL);
1329
1330 if (!in_fifo) {
1331 rc = -ENOMEM;
1332 goto late_unopen;
1333 }
1334
1335 rc = fifo_init(in_fifo, chan->in_log2_fifo_size);
1336
1337 if (rc) {
1338 kfree(in_fifo);
1339 goto late_unopen;
1340 }
1341 }
1342
1343 mutex_lock(&chan->lock);
1344 if (in_fifo) {
1345 chan->in_fifo = in_fifo;
1346 chan->read_data_ok = 1;
1347 }
1348 if (out_ep)
1349 chan->out_ep = out_ep;
1350 mutex_unlock(&chan->lock);
1351
1352 if (in_fifo) {
1353 u32 in_checkpoint = 0;
1354
1355 if (!chan->in_synchronous)
1356 in_checkpoint = in_fifo->size >>
1357 chan->in_log2_element_size;
1358
1359 chan->in_consumed_bytes = 0;
1360 chan->poll_used = 0;
1361 chan->in_current_checkpoint = in_checkpoint;
1362 rc = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
1363 OPCODE_SET_CHECKPOINT,
1364 in_checkpoint);
1365
1366 if (rc) /* Failure guarantees that opcode wasn't sent */
1367 goto unfifo;
1368
1369 /*
1370 * In non-blocking mode, request the FPGA to send any data it
1371 * has right away. Otherwise, the first read() will always
1372 * return -EAGAIN, which is OK strictly speaking, but ugly.
1373 * Checking and unrolling if this fails isn't worth the
1374 * effort -- the error is propagated to the first read()
1375 * anyhow.
1376 */
1377 if (filp->f_flags & O_NONBLOCK)
1378 request_read_anything(chan, OPCODE_SET_PUSH);
1379 }
1380
1381 return 0;
1382
1383 unfifo:
1384 chan->read_data_ok = 0;
1385 safely_assign_in_fifo(chan, NULL);
1386 fifo_mem_release(in_fifo);
1387 kfree(in_fifo);
1388
1389 if (out_ep) {
1390 mutex_lock(&chan->lock);
1391 chan->out_ep = NULL;
1392 mutex_unlock(&chan->lock);
1393 }
1394
1395 late_unopen:
1396 if (out_ep)
1397 endpoint_dealloc(out_ep);
1398
1399 unopen:
1400 mutex_lock(&chan->lock);
1401
1402 if (filp->f_mode & FMODE_READ)
1403 chan->open_for_read = 0;
1404
1405 if (filp->f_mode & FMODE_WRITE)
1406 chan->open_for_write = 0;
1407
1408 mutex_unlock(&chan->lock);
1409
1410 kref_put(&xdev->kref, cleanup_dev);
1411
1412 return rc;
1413
1414 unmutex_fail:
1415 mutex_unlock(&chan->lock);
1416 return rc;
1417 }
1418
xillyusb_read(struct file * filp,char __user * userbuf,size_t count,loff_t * f_pos)1419 static ssize_t xillyusb_read(struct file *filp, char __user *userbuf,
1420 size_t count, loff_t *f_pos)
1421 {
1422 struct xillyusb_channel *chan = filp->private_data;
1423 struct xillyusb_dev *xdev = chan->xdev;
1424 struct xillyfifo *fifo = chan->in_fifo;
1425 int chan_num = (chan->chan_idx << 1) | 1;
1426
1427 long deadline, left_to_sleep;
1428 int bytes_done = 0;
1429 bool sent_set_push = false;
1430 int rc;
1431
1432 deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
1433
1434 rc = mutex_lock_interruptible(&chan->in_mutex);
1435
1436 if (rc)
1437 return rc;
1438
1439 while (1) {
1440 u32 fifo_checkpoint_bytes, complete_checkpoint_bytes;
1441 u32 complete_checkpoint, fifo_checkpoint;
1442 u32 checkpoint;
1443 s32 diff, leap;
1444 unsigned int sh = chan->in_log2_element_size;
1445 bool checkpoint_for_complete;
1446
1447 rc = fifo_read(fifo, (__force void *)userbuf + bytes_done,
1448 count - bytes_done, xilly_copy_to_user);
1449
1450 if (rc < 0)
1451 break;
1452
1453 bytes_done += rc;
1454 chan->in_consumed_bytes += rc;
1455
1456 left_to_sleep = deadline - ((long)jiffies);
1457
1458 /*
1459 * Some 32-bit arithmetic that may wrap. Note that
1460 * complete_checkpoint is rounded up to the closest element
1461 * boundary, because the read() can't be completed otherwise.
1462 * fifo_checkpoint_bytes is rounded down, because it protects
1463 * in_fifo from overflowing.
1464 */
1465
1466 fifo_checkpoint_bytes = chan->in_consumed_bytes + fifo->size;
1467 complete_checkpoint_bytes =
1468 chan->in_consumed_bytes + count - bytes_done;
1469
1470 fifo_checkpoint = fifo_checkpoint_bytes >> sh;
1471 complete_checkpoint =
1472 (complete_checkpoint_bytes + (1 << sh) - 1) >> sh;
1473
1474 diff = (fifo_checkpoint - complete_checkpoint) << sh;
1475
1476 if (chan->in_synchronous && diff >= 0) {
1477 checkpoint = complete_checkpoint;
1478 checkpoint_for_complete = true;
1479 } else {
1480 checkpoint = fifo_checkpoint;
1481 checkpoint_for_complete = false;
1482 }
1483
1484 leap = (checkpoint - chan->in_current_checkpoint) << sh;
1485
1486 /*
1487 * To prevent flooding of OPCODE_SET_CHECKPOINT commands as
1488 * data is consumed, it's issued only if it moves the
1489 * checkpoint by at least an 8th of the FIFO's size, or if
1490 * it's necessary to complete the number of bytes requested by
1491 * the read() call.
1492 *
1493 * chan->read_data_ok is checked to spare an unnecessary
1494 * submission after receiving EOF, however it's harmless if
1495 * such slips away.
1496 */
1497
1498 if (chan->read_data_ok &&
1499 (leap > (fifo->size >> 3) ||
1500 (checkpoint_for_complete && leap > 0))) {
1501 chan->in_current_checkpoint = checkpoint;
1502 rc = xillyusb_send_opcode(xdev, chan_num,
1503 OPCODE_SET_CHECKPOINT,
1504 checkpoint);
1505
1506 if (rc)
1507 break;
1508 }
1509
1510 if (bytes_done == count ||
1511 (left_to_sleep <= 0 && bytes_done))
1512 break;
1513
1514 /*
1515 * Reaching here means that the FIFO was empty when
1516 * fifo_read() returned, but not necessarily right now. Error
1517 * and EOF are checked and reported only now, so that no data
1518 * that managed its way to the FIFO is lost.
1519 */
1520
1521 if (!READ_ONCE(chan->read_data_ok)) { /* FPGA has sent EOF */
1522 /* Has data slipped into the FIFO since fifo_read()? */
1523 smp_rmb();
1524 if (READ_ONCE(fifo->fill))
1525 continue;
1526
1527 rc = 0;
1528 break;
1529 }
1530
1531 if (xdev->error) {
1532 rc = xdev->error;
1533 break;
1534 }
1535
1536 if (filp->f_flags & O_NONBLOCK) {
1537 rc = -EAGAIN;
1538 break;
1539 }
1540
1541 if (!sent_set_push) {
1542 rc = xillyusb_send_opcode(xdev, chan_num,
1543 OPCODE_SET_PUSH,
1544 complete_checkpoint);
1545
1546 if (rc)
1547 break;
1548
1549 sent_set_push = true;
1550 }
1551
1552 if (left_to_sleep > 0) {
1553 /*
1554 * Note that when xdev->error is set (e.g. when the
1555 * device is unplugged), read_data_ok turns zero and
1556 * fifo->waitq is awaken.
1557 * Therefore no special attention to xdev->error.
1558 */
1559
1560 rc = wait_event_interruptible_timeout
1561 (fifo->waitq,
1562 fifo->fill || !chan->read_data_ok,
1563 left_to_sleep);
1564 } else { /* bytes_done == 0 */
1565 /* Tell FPGA to send anything it has */
1566 rc = request_read_anything(chan, OPCODE_UPDATE_PUSH);
1567
1568 if (rc)
1569 break;
1570
1571 rc = wait_event_interruptible
1572 (fifo->waitq,
1573 fifo->fill || !chan->read_data_ok);
1574 }
1575
1576 if (rc < 0) {
1577 rc = -EINTR;
1578 break;
1579 }
1580 }
1581
1582 if (((filp->f_flags & O_NONBLOCK) || chan->poll_used) &&
1583 !READ_ONCE(fifo->fill))
1584 request_read_anything(chan, OPCODE_SET_PUSH);
1585
1586 mutex_unlock(&chan->in_mutex);
1587
1588 if (bytes_done)
1589 return bytes_done;
1590
1591 return rc;
1592 }
1593
xillyusb_flush(struct file * filp,fl_owner_t id)1594 static int xillyusb_flush(struct file *filp, fl_owner_t id)
1595 {
1596 struct xillyusb_channel *chan = filp->private_data;
1597 int rc;
1598
1599 if (!(filp->f_mode & FMODE_WRITE))
1600 return 0;
1601
1602 rc = mutex_lock_interruptible(&chan->out_mutex);
1603
1604 if (rc)
1605 return rc;
1606
1607 /*
1608 * One second's timeout on flushing. Interrupts are ignored, because if
1609 * the user pressed CTRL-C, that interrupt will still be in flight by
1610 * the time we reach here, and the opportunity to flush is lost.
1611 */
1612 rc = flush_downstream(chan, HZ, false);
1613
1614 mutex_unlock(&chan->out_mutex);
1615
1616 if (rc == -ETIMEDOUT) {
1617 /* The things you do to use dev_warn() and not pr_warn() */
1618 struct xillyusb_dev *xdev = chan->xdev;
1619
1620 mutex_lock(&chan->lock);
1621 if (!xdev->error)
1622 dev_warn(xdev->dev,
1623 "Timed out while flushing. Output data may be lost.\n");
1624 mutex_unlock(&chan->lock);
1625 }
1626
1627 return rc;
1628 }
1629
xillyusb_write(struct file * filp,const char __user * userbuf,size_t count,loff_t * f_pos)1630 static ssize_t xillyusb_write(struct file *filp, const char __user *userbuf,
1631 size_t count, loff_t *f_pos)
1632 {
1633 struct xillyusb_channel *chan = filp->private_data;
1634 struct xillyusb_dev *xdev = chan->xdev;
1635 struct xillyfifo *fifo = &chan->out_ep->fifo;
1636 int rc;
1637
1638 rc = mutex_lock_interruptible(&chan->out_mutex);
1639
1640 if (rc)
1641 return rc;
1642
1643 while (1) {
1644 if (xdev->error) {
1645 rc = xdev->error;
1646 break;
1647 }
1648
1649 if (count == 0)
1650 break;
1651
1652 rc = fifo_write(fifo, (__force void *)userbuf, count,
1653 xilly_copy_from_user);
1654
1655 if (rc != 0)
1656 break;
1657
1658 if (filp->f_flags & O_NONBLOCK) {
1659 rc = -EAGAIN;
1660 break;
1661 }
1662
1663 if (wait_event_interruptible
1664 (fifo->waitq,
1665 fifo->fill != fifo->size || xdev->error)) {
1666 rc = -EINTR;
1667 break;
1668 }
1669 }
1670
1671 if (rc < 0)
1672 goto done;
1673
1674 chan->out_bytes += rc;
1675
1676 if (rc) {
1677 try_queue_bulk_out(chan->out_ep);
1678 chan->flushed = 0;
1679 }
1680
1681 if (chan->out_synchronous) {
1682 int flush_rc = flush_downstream(chan, 0, true);
1683
1684 if (flush_rc && !rc)
1685 rc = flush_rc;
1686 }
1687
1688 done:
1689 mutex_unlock(&chan->out_mutex);
1690
1691 return rc;
1692 }
1693
xillyusb_release(struct inode * inode,struct file * filp)1694 static int xillyusb_release(struct inode *inode, struct file *filp)
1695 {
1696 struct xillyusb_channel *chan = filp->private_data;
1697 struct xillyusb_dev *xdev = chan->xdev;
1698 int rc_read = 0, rc_write = 0;
1699
1700 if (filp->f_mode & FMODE_READ) {
1701 struct xillyfifo *in_fifo = chan->in_fifo;
1702
1703 rc_read = xillyusb_send_opcode(xdev, (chan->chan_idx << 1) | 1,
1704 OPCODE_CLOSE, 0);
1705 /*
1706 * If rc_read is nonzero, xdev->error indicates a global
1707 * device error. The error is reported later, so that
1708 * resources are freed.
1709 *
1710 * Looping on wait_event_interruptible() kinda breaks the idea
1711 * of being interruptible, and this should have been
1712 * wait_event(). Only it's being waken with
1713 * wake_up_interruptible() for the sake of other uses. If
1714 * there's a global device error, chan->read_data_ok is
1715 * deasserted and the wait queue is awaken, so this is covered.
1716 */
1717
1718 while (wait_event_interruptible(in_fifo->waitq,
1719 !chan->read_data_ok))
1720 ; /* Empty loop */
1721
1722 safely_assign_in_fifo(chan, NULL);
1723 fifo_mem_release(in_fifo);
1724 kfree(in_fifo);
1725
1726 mutex_lock(&chan->lock);
1727 chan->open_for_read = 0;
1728 mutex_unlock(&chan->lock);
1729 }
1730
1731 if (filp->f_mode & FMODE_WRITE) {
1732 struct xillyusb_endpoint *ep = chan->out_ep;
1733 /*
1734 * chan->flushing isn't zeroed. If the pre-release flush timed
1735 * out, a cancel request will be sent before the next
1736 * OPCODE_SET_CHECKPOINT (i.e. when the file is opened again).
1737 * This is despite that the FPGA forgets about the checkpoint
1738 * request as the file closes. Still, in an exceptional race
1739 * condition, the FPGA could send an OPCODE_REACHED_CHECKPOINT
1740 * just before closing that would reach the host after the
1741 * file has re-opened.
1742 */
1743
1744 mutex_lock(&chan->lock);
1745 chan->out_ep = NULL;
1746 mutex_unlock(&chan->lock);
1747
1748 endpoint_quiesce(ep);
1749 endpoint_dealloc(ep);
1750
1751 /* See comments on rc_read above */
1752 rc_write = xillyusb_send_opcode(xdev, chan->chan_idx << 1,
1753 OPCODE_CLOSE, 0);
1754
1755 mutex_lock(&chan->lock);
1756 chan->open_for_write = 0;
1757 mutex_unlock(&chan->lock);
1758 }
1759
1760 kref_put(&xdev->kref, cleanup_dev);
1761
1762 return rc_read ? rc_read : rc_write;
1763 }
1764
1765 /*
1766 * Xillybus' API allows device nodes to be seekable, giving the user
1767 * application access to a RAM array on the FPGA (or logic emulating it).
1768 */
1769
xillyusb_llseek(struct file * filp,loff_t offset,int whence)1770 static loff_t xillyusb_llseek(struct file *filp, loff_t offset, int whence)
1771 {
1772 struct xillyusb_channel *chan = filp->private_data;
1773 struct xillyusb_dev *xdev = chan->xdev;
1774 loff_t pos = filp->f_pos;
1775 int rc = 0;
1776 unsigned int log2_element_size = chan->readable ?
1777 chan->in_log2_element_size : chan->out_log2_element_size;
1778
1779 /*
1780 * Take both mutexes not allowing interrupts, since it seems like
1781 * common applications don't expect an -EINTR here. Besides, multiple
1782 * access to a single file descriptor on seekable devices is a mess
1783 * anyhow.
1784 */
1785
1786 mutex_lock(&chan->out_mutex);
1787 mutex_lock(&chan->in_mutex);
1788
1789 switch (whence) {
1790 case SEEK_SET:
1791 pos = offset;
1792 break;
1793 case SEEK_CUR:
1794 pos += offset;
1795 break;
1796 case SEEK_END:
1797 pos = offset; /* Going to the end => to the beginning */
1798 break;
1799 default:
1800 rc = -EINVAL;
1801 goto end;
1802 }
1803
1804 /* In any case, we must finish on an element boundary */
1805 if (pos & ((1 << log2_element_size) - 1)) {
1806 rc = -EINVAL;
1807 goto end;
1808 }
1809
1810 rc = xillyusb_send_opcode(xdev, chan->chan_idx << 1,
1811 OPCODE_SET_ADDR,
1812 pos >> log2_element_size);
1813
1814 if (rc)
1815 goto end;
1816
1817 if (chan->writable) {
1818 chan->flushed = 0;
1819 rc = flush_downstream(chan, HZ, false);
1820 }
1821
1822 end:
1823 mutex_unlock(&chan->out_mutex);
1824 mutex_unlock(&chan->in_mutex);
1825
1826 if (rc) /* Return error after releasing mutexes */
1827 return rc;
1828
1829 filp->f_pos = pos;
1830
1831 return pos;
1832 }
1833
xillyusb_poll(struct file * filp,poll_table * wait)1834 static __poll_t xillyusb_poll(struct file *filp, poll_table *wait)
1835 {
1836 struct xillyusb_channel *chan = filp->private_data;
1837 __poll_t mask = 0;
1838
1839 if (chan->in_fifo)
1840 poll_wait(filp, &chan->in_fifo->waitq, wait);
1841
1842 if (chan->out_ep)
1843 poll_wait(filp, &chan->out_ep->fifo.waitq, wait);
1844
1845 /*
1846 * If this is the first time poll() is called, and the file is
1847 * readable, set the relevant flag. Also tell the FPGA to send all it
1848 * has, to kickstart the mechanism that ensures there's always some
1849 * data in in_fifo unless the stream is dry end-to-end. Note that the
1850 * first poll() may not return a EPOLLIN, even if there's data on the
1851 * FPGA. Rather, the data will arrive soon, and trigger the relevant
1852 * wait queue.
1853 */
1854
1855 if (!chan->poll_used && chan->in_fifo) {
1856 chan->poll_used = 1;
1857 request_read_anything(chan, OPCODE_SET_PUSH);
1858 }
1859
1860 /*
1861 * poll() won't play ball regarding read() channels which
1862 * are synchronous. Allowing that will create situations where data has
1863 * been delivered at the FPGA, and users expecting select() to wake up,
1864 * which it may not. So make it never work.
1865 */
1866
1867 if (chan->in_fifo && !chan->in_synchronous &&
1868 (READ_ONCE(chan->in_fifo->fill) || !chan->read_data_ok))
1869 mask |= EPOLLIN | EPOLLRDNORM;
1870
1871 if (chan->out_ep &&
1872 (READ_ONCE(chan->out_ep->fifo.fill) != chan->out_ep->fifo.size))
1873 mask |= EPOLLOUT | EPOLLWRNORM;
1874
1875 if (chan->xdev->error)
1876 mask |= EPOLLERR;
1877
1878 return mask;
1879 }
1880
1881 static const struct file_operations xillyusb_fops = {
1882 .owner = THIS_MODULE,
1883 .read = xillyusb_read,
1884 .write = xillyusb_write,
1885 .open = xillyusb_open,
1886 .flush = xillyusb_flush,
1887 .release = xillyusb_release,
1888 .llseek = xillyusb_llseek,
1889 .poll = xillyusb_poll,
1890 };
1891
xillyusb_setup_base_eps(struct xillyusb_dev * xdev)1892 static int xillyusb_setup_base_eps(struct xillyusb_dev *xdev)
1893 {
1894 xdev->msg_ep = endpoint_alloc(xdev, MSG_EP_NUM | USB_DIR_OUT,
1895 bulk_out_work, 1, 2);
1896 if (!xdev->msg_ep)
1897 return -ENOMEM;
1898
1899 if (fifo_init(&xdev->msg_ep->fifo, 13)) /* 8 kiB */
1900 goto dealloc;
1901
1902 xdev->msg_ep->fill_mask = -8; /* 8 bytes granularity */
1903
1904 xdev->in_ep = endpoint_alloc(xdev, IN_EP_NUM | USB_DIR_IN,
1905 bulk_in_work, BUF_SIZE_ORDER, BUFNUM);
1906 if (!xdev->in_ep)
1907 goto dealloc;
1908
1909 try_queue_bulk_in(xdev->in_ep);
1910
1911 return 0;
1912
1913 dealloc:
1914 endpoint_dealloc(xdev->msg_ep); /* Also frees FIFO mem if allocated */
1915 xdev->msg_ep = NULL;
1916 return -ENOMEM;
1917 }
1918
setup_channels(struct xillyusb_dev * xdev,__le16 * chandesc,int num_channels)1919 static int setup_channels(struct xillyusb_dev *xdev,
1920 __le16 *chandesc,
1921 int num_channels)
1922 {
1923 struct xillyusb_channel *chan;
1924 int i;
1925
1926 chan = kcalloc(num_channels, sizeof(*chan), GFP_KERNEL);
1927 if (!chan)
1928 return -ENOMEM;
1929
1930 xdev->channels = chan;
1931
1932 for (i = 0; i < num_channels; i++, chan++) {
1933 unsigned int in_desc = le16_to_cpu(*chandesc++);
1934 unsigned int out_desc = le16_to_cpu(*chandesc++);
1935
1936 chan->xdev = xdev;
1937 mutex_init(&chan->in_mutex);
1938 mutex_init(&chan->out_mutex);
1939 mutex_init(&chan->lock);
1940 init_waitqueue_head(&chan->flushq);
1941
1942 chan->chan_idx = i;
1943
1944 if (in_desc & 0x80) { /* Entry is valid */
1945 chan->readable = 1;
1946 chan->in_synchronous = !!(in_desc & 0x40);
1947 chan->in_seekable = !!(in_desc & 0x20);
1948 chan->in_log2_element_size = in_desc & 0x0f;
1949 chan->in_log2_fifo_size = ((in_desc >> 8) & 0x1f) + 16;
1950 }
1951
1952 /*
1953 * A downstream channel should never exist above index 13,
1954 * as it would request a nonexistent BULK endpoint > 15.
1955 * In the peculiar case that it does, it's ignored silently.
1956 */
1957
1958 if ((out_desc & 0x80) && i < 14) { /* Entry is valid */
1959 chan->writable = 1;
1960 chan->out_synchronous = !!(out_desc & 0x40);
1961 chan->out_seekable = !!(out_desc & 0x20);
1962 chan->out_log2_element_size = out_desc & 0x0f;
1963 chan->out_log2_fifo_size =
1964 ((out_desc >> 8) & 0x1f) + 16;
1965 }
1966 }
1967
1968 return 0;
1969 }
1970
xillyusb_discovery(struct usb_interface * interface)1971 static int xillyusb_discovery(struct usb_interface *interface)
1972 {
1973 int rc;
1974 struct xillyusb_dev *xdev = usb_get_intfdata(interface);
1975 __le16 bogus_chandesc[2];
1976 struct xillyfifo idt_fifo;
1977 struct xillyusb_channel *chan;
1978 unsigned int idt_len, names_offset;
1979 unsigned char *idt;
1980 int num_channels;
1981
1982 rc = xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0);
1983
1984 if (rc) {
1985 dev_err(&interface->dev, "Failed to send quiesce request. Aborting.\n");
1986 return rc;
1987 }
1988
1989 /* Phase I: Set up one fake upstream channel and obtain IDT */
1990
1991 /* Set up a fake IDT with one async IN stream */
1992 bogus_chandesc[0] = cpu_to_le16(0x80);
1993 bogus_chandesc[1] = cpu_to_le16(0);
1994
1995 rc = setup_channels(xdev, bogus_chandesc, 1);
1996
1997 if (rc)
1998 return rc;
1999
2000 rc = fifo_init(&idt_fifo, LOG2_IDT_FIFO_SIZE);
2001
2002 if (rc)
2003 return rc;
2004
2005 chan = xdev->channels;
2006
2007 chan->in_fifo = &idt_fifo;
2008 chan->read_data_ok = 1;
2009
2010 xdev->num_channels = 1;
2011
2012 rc = xillyusb_send_opcode(xdev, ~0, OPCODE_REQ_IDT, 0);
2013
2014 if (rc) {
2015 dev_err(&interface->dev, "Failed to send IDT request. Aborting.\n");
2016 goto unfifo;
2017 }
2018
2019 rc = wait_event_interruptible_timeout(idt_fifo.waitq,
2020 !chan->read_data_ok,
2021 XILLY_RESPONSE_TIMEOUT);
2022
2023 if (xdev->error) {
2024 rc = xdev->error;
2025 goto unfifo;
2026 }
2027
2028 if (rc < 0) {
2029 rc = -EINTR; /* Interrupt on probe method? Interesting. */
2030 goto unfifo;
2031 }
2032
2033 if (chan->read_data_ok) {
2034 rc = -ETIMEDOUT;
2035 dev_err(&interface->dev, "No response from FPGA. Aborting.\n");
2036 goto unfifo;
2037 }
2038
2039 idt_len = READ_ONCE(idt_fifo.fill);
2040 idt = kmalloc(idt_len, GFP_KERNEL);
2041
2042 if (!idt) {
2043 rc = -ENOMEM;
2044 goto unfifo;
2045 }
2046
2047 fifo_read(&idt_fifo, idt, idt_len, xilly_memcpy);
2048
2049 if (crc32_le(~0, idt, idt_len) != 0) {
2050 dev_err(&interface->dev, "IDT failed CRC check. Aborting.\n");
2051 rc = -ENODEV;
2052 goto unidt;
2053 }
2054
2055 if (*idt > 0x90) {
2056 dev_err(&interface->dev, "No support for IDT version 0x%02x. Maybe the xillyusb driver needs an upgrade. Aborting.\n",
2057 (int)*idt);
2058 rc = -ENODEV;
2059 goto unidt;
2060 }
2061
2062 /* Phase II: Set up the streams as defined in IDT */
2063
2064 num_channels = le16_to_cpu(*((__le16 *)(idt + 1)));
2065 names_offset = 3 + num_channels * 4;
2066 idt_len -= 4; /* Exclude CRC */
2067
2068 if (idt_len < names_offset) {
2069 dev_err(&interface->dev, "IDT too short. This is exceptionally weird, because its CRC is OK\n");
2070 rc = -ENODEV;
2071 goto unidt;
2072 }
2073
2074 rc = setup_channels(xdev, (void *)idt + 3, num_channels);
2075
2076 if (rc)
2077 goto unidt;
2078
2079 /*
2080 * Except for wildly misbehaving hardware, or if it was disconnected
2081 * just after responding with the IDT, there is no reason for any
2082 * work item to be running now. To be sure that xdev->channels
2083 * is updated on anything that might run in parallel, flush the
2084 * workqueue, which rarely does anything.
2085 */
2086 flush_workqueue(xdev->workq);
2087
2088 xdev->num_channels = num_channels;
2089
2090 fifo_mem_release(&idt_fifo);
2091 kfree(chan);
2092
2093 rc = xillybus_init_chrdev(&interface->dev, &xillyusb_fops,
2094 THIS_MODULE, xdev,
2095 idt + names_offset,
2096 idt_len - names_offset,
2097 num_channels,
2098 xillyname, true);
2099
2100 kfree(idt);
2101
2102 return rc;
2103
2104 unidt:
2105 kfree(idt);
2106
2107 unfifo:
2108 safely_assign_in_fifo(chan, NULL);
2109 fifo_mem_release(&idt_fifo);
2110
2111 return rc;
2112 }
2113
xillyusb_probe(struct usb_interface * interface,const struct usb_device_id * id)2114 static int xillyusb_probe(struct usb_interface *interface,
2115 const struct usb_device_id *id)
2116 {
2117 struct xillyusb_dev *xdev;
2118 int rc;
2119
2120 xdev = kzalloc(sizeof(*xdev), GFP_KERNEL);
2121 if (!xdev)
2122 return -ENOMEM;
2123
2124 kref_init(&xdev->kref);
2125 mutex_init(&xdev->process_in_mutex);
2126 mutex_init(&xdev->msg_mutex);
2127
2128 xdev->udev = usb_get_dev(interface_to_usbdev(interface));
2129 xdev->dev = &interface->dev;
2130 xdev->error = 0;
2131 spin_lock_init(&xdev->error_lock);
2132 xdev->in_counter = 0;
2133 xdev->in_bytes_left = 0;
2134 xdev->workq = alloc_workqueue(xillyname, WQ_HIGHPRI, 0);
2135
2136 if (!xdev->workq) {
2137 dev_err(&interface->dev, "Failed to allocate work queue\n");
2138 rc = -ENOMEM;
2139 goto fail;
2140 }
2141
2142 INIT_WORK(&xdev->wakeup_workitem, wakeup_all);
2143
2144 usb_set_intfdata(interface, xdev);
2145
2146 rc = xillyusb_setup_base_eps(xdev);
2147 if (rc)
2148 goto fail;
2149
2150 rc = xillyusb_discovery(interface);
2151 if (rc)
2152 goto latefail;
2153
2154 return 0;
2155
2156 latefail:
2157 endpoint_quiesce(xdev->in_ep);
2158 endpoint_quiesce(xdev->msg_ep);
2159
2160 fail:
2161 usb_set_intfdata(interface, NULL);
2162 kref_put(&xdev->kref, cleanup_dev);
2163 return rc;
2164 }
2165
xillyusb_disconnect(struct usb_interface * interface)2166 static void xillyusb_disconnect(struct usb_interface *interface)
2167 {
2168 struct xillyusb_dev *xdev = usb_get_intfdata(interface);
2169 struct xillyusb_endpoint *msg_ep = xdev->msg_ep;
2170 struct xillyfifo *fifo = &msg_ep->fifo;
2171 int rc;
2172 int i;
2173
2174 xillybus_cleanup_chrdev(xdev, &interface->dev);
2175
2176 /*
2177 * Try to send OPCODE_QUIESCE, which will fail silently if the device
2178 * was disconnected, but makes sense on module unload.
2179 */
2180
2181 msg_ep->wake_on_drain = true;
2182 xillyusb_send_opcode(xdev, ~0, OPCODE_QUIESCE, 0);
2183
2184 /*
2185 * If the device has been disconnected, sending the opcode causes
2186 * a global device error with xdev->error, if such error didn't
2187 * occur earlier. Hence timing out means that the USB link is fine,
2188 * but somehow the message wasn't sent. Should never happen.
2189 */
2190
2191 rc = wait_event_interruptible_timeout(fifo->waitq,
2192 msg_ep->drained || xdev->error,
2193 XILLY_RESPONSE_TIMEOUT);
2194
2195 if (!rc)
2196 dev_err(&interface->dev,
2197 "Weird timeout condition on sending quiesce request.\n");
2198
2199 report_io_error(xdev, -ENODEV); /* Discourage further activity */
2200
2201 /*
2202 * This device driver is declared with soft_unbind set, or else
2203 * sending OPCODE_QUIESCE above would always fail. The price is
2204 * that the USB framework didn't kill outstanding URBs, so it has
2205 * to be done explicitly before returning from this call.
2206 */
2207
2208 for (i = 0; i < xdev->num_channels; i++) {
2209 struct xillyusb_channel *chan = &xdev->channels[i];
2210
2211 /*
2212 * Lock taken to prevent chan->out_ep from changing. It also
2213 * ensures xillyusb_open() and xillyusb_flush() don't access
2214 * xdev->dev after being nullified below.
2215 */
2216 mutex_lock(&chan->lock);
2217 if (chan->out_ep)
2218 endpoint_quiesce(chan->out_ep);
2219 mutex_unlock(&chan->lock);
2220 }
2221
2222 endpoint_quiesce(xdev->in_ep);
2223 endpoint_quiesce(xdev->msg_ep);
2224
2225 usb_set_intfdata(interface, NULL);
2226
2227 xdev->dev = NULL;
2228
2229 kref_put(&xdev->kref, cleanup_dev);
2230 }
2231
2232 static struct usb_driver xillyusb_driver = {
2233 .name = xillyname,
2234 .id_table = xillyusb_table,
2235 .probe = xillyusb_probe,
2236 .disconnect = xillyusb_disconnect,
2237 .soft_unbind = 1,
2238 };
2239
xillyusb_init(void)2240 static int __init xillyusb_init(void)
2241 {
2242 int rc = 0;
2243
2244 if (LOG2_INITIAL_FIFO_BUF_SIZE > PAGE_SHIFT)
2245 fifo_buf_order = LOG2_INITIAL_FIFO_BUF_SIZE - PAGE_SHIFT;
2246 else
2247 fifo_buf_order = 0;
2248
2249 rc = usb_register(&xillyusb_driver);
2250
2251 return rc;
2252 }
2253
xillyusb_exit(void)2254 static void __exit xillyusb_exit(void)
2255 {
2256 usb_deregister(&xillyusb_driver);
2257 }
2258
2259 module_init(xillyusb_init);
2260 module_exit(xillyusb_exit);
2261