1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * acpi-cpufreq.c - ACPI Processor P-States Driver
4 *
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22
23 #include <linux/acpi.h>
24 #include <linux/io.h>
25 #include <linux/delay.h>
26 #include <linux/uaccess.h>
27
28 #include <acpi/processor.h>
29 #include <acpi/cppc_acpi.h>
30
31 #include <asm/msr.h>
32 #include <asm/processor.h>
33 #include <asm/cpufeature.h>
34 #include <asm/cpu_device_id.h>
35
36 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
37 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
38 MODULE_LICENSE("GPL");
39
40 enum {
41 UNDEFINED_CAPABLE = 0,
42 SYSTEM_INTEL_MSR_CAPABLE,
43 SYSTEM_AMD_MSR_CAPABLE,
44 SYSTEM_IO_CAPABLE,
45 };
46
47 #define INTEL_MSR_RANGE (0xffff)
48 #define AMD_MSR_RANGE (0x7)
49 #define HYGON_MSR_RANGE (0x7)
50
51 #define MSR_K7_HWCR_CPB_DIS (1ULL << 25)
52
53 struct acpi_cpufreq_data {
54 unsigned int resume;
55 unsigned int cpu_feature;
56 unsigned int acpi_perf_cpu;
57 cpumask_var_t freqdomain_cpus;
58 void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
59 u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
60 };
61
62 /* acpi_perf_data is a pointer to percpu data. */
63 static struct acpi_processor_performance __percpu *acpi_perf_data;
64
to_perf_data(struct acpi_cpufreq_data * data)65 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
66 {
67 return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
68 }
69
70 static struct cpufreq_driver acpi_cpufreq_driver;
71
72 static unsigned int acpi_pstate_strict;
73
boost_state(unsigned int cpu)74 static bool boost_state(unsigned int cpu)
75 {
76 u32 lo, hi;
77 u64 msr;
78
79 switch (boot_cpu_data.x86_vendor) {
80 case X86_VENDOR_INTEL:
81 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
82 msr = lo | ((u64)hi << 32);
83 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
84 case X86_VENDOR_HYGON:
85 case X86_VENDOR_AMD:
86 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
87 msr = lo | ((u64)hi << 32);
88 return !(msr & MSR_K7_HWCR_CPB_DIS);
89 }
90 return false;
91 }
92
boost_set_msr(bool enable)93 static int boost_set_msr(bool enable)
94 {
95 u32 msr_addr;
96 u64 msr_mask, val;
97
98 switch (boot_cpu_data.x86_vendor) {
99 case X86_VENDOR_INTEL:
100 msr_addr = MSR_IA32_MISC_ENABLE;
101 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
102 break;
103 case X86_VENDOR_HYGON:
104 case X86_VENDOR_AMD:
105 msr_addr = MSR_K7_HWCR;
106 msr_mask = MSR_K7_HWCR_CPB_DIS;
107 break;
108 default:
109 return -EINVAL;
110 }
111
112 rdmsrl(msr_addr, val);
113
114 if (enable)
115 val &= ~msr_mask;
116 else
117 val |= msr_mask;
118
119 wrmsrl(msr_addr, val);
120 return 0;
121 }
122
boost_set_msr_each(void * p_en)123 static void boost_set_msr_each(void *p_en)
124 {
125 bool enable = (bool) p_en;
126
127 boost_set_msr(enable);
128 }
129
set_boost(struct cpufreq_policy * policy,int val)130 static int set_boost(struct cpufreq_policy *policy, int val)
131 {
132 on_each_cpu_mask(policy->cpus, boost_set_msr_each,
133 (void *)(long)val, 1);
134 pr_debug("CPU %*pbl: Core Boosting %sabled.\n",
135 cpumask_pr_args(policy->cpus), val ? "en" : "dis");
136
137 return 0;
138 }
139
show_freqdomain_cpus(struct cpufreq_policy * policy,char * buf)140 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
141 {
142 struct acpi_cpufreq_data *data = policy->driver_data;
143
144 if (unlikely(!data))
145 return -ENODEV;
146
147 return cpufreq_show_cpus(data->freqdomain_cpus, buf);
148 }
149
150 cpufreq_freq_attr_ro(freqdomain_cpus);
151
152 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
store_cpb(struct cpufreq_policy * policy,const char * buf,size_t count)153 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
154 size_t count)
155 {
156 int ret;
157 unsigned int val = 0;
158
159 if (!acpi_cpufreq_driver.set_boost)
160 return -EINVAL;
161
162 ret = kstrtouint(buf, 10, &val);
163 if (ret || val > 1)
164 return -EINVAL;
165
166 cpus_read_lock();
167 set_boost(policy, val);
168 cpus_read_unlock();
169
170 return count;
171 }
172
show_cpb(struct cpufreq_policy * policy,char * buf)173 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
174 {
175 return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
176 }
177
178 cpufreq_freq_attr_rw(cpb);
179 #endif
180
check_est_cpu(unsigned int cpuid)181 static int check_est_cpu(unsigned int cpuid)
182 {
183 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
184
185 return cpu_has(cpu, X86_FEATURE_EST);
186 }
187
check_amd_hwpstate_cpu(unsigned int cpuid)188 static int check_amd_hwpstate_cpu(unsigned int cpuid)
189 {
190 struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
191
192 return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
193 }
194
extract_io(struct cpufreq_policy * policy,u32 value)195 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
196 {
197 struct acpi_cpufreq_data *data = policy->driver_data;
198 struct acpi_processor_performance *perf;
199 int i;
200
201 perf = to_perf_data(data);
202
203 for (i = 0; i < perf->state_count; i++) {
204 if (value == perf->states[i].status)
205 return policy->freq_table[i].frequency;
206 }
207 return 0;
208 }
209
extract_msr(struct cpufreq_policy * policy,u32 msr)210 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
211 {
212 struct acpi_cpufreq_data *data = policy->driver_data;
213 struct cpufreq_frequency_table *pos;
214 struct acpi_processor_performance *perf;
215
216 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
217 msr &= AMD_MSR_RANGE;
218 else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
219 msr &= HYGON_MSR_RANGE;
220 else
221 msr &= INTEL_MSR_RANGE;
222
223 perf = to_perf_data(data);
224
225 cpufreq_for_each_entry(pos, policy->freq_table)
226 if (msr == perf->states[pos->driver_data].status)
227 return pos->frequency;
228 return policy->freq_table[0].frequency;
229 }
230
extract_freq(struct cpufreq_policy * policy,u32 val)231 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
232 {
233 struct acpi_cpufreq_data *data = policy->driver_data;
234
235 switch (data->cpu_feature) {
236 case SYSTEM_INTEL_MSR_CAPABLE:
237 case SYSTEM_AMD_MSR_CAPABLE:
238 return extract_msr(policy, val);
239 case SYSTEM_IO_CAPABLE:
240 return extract_io(policy, val);
241 default:
242 return 0;
243 }
244 }
245
cpu_freq_read_intel(struct acpi_pct_register * not_used)246 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
247 {
248 u32 val, dummy __always_unused;
249
250 rdmsr(MSR_IA32_PERF_CTL, val, dummy);
251 return val;
252 }
253
cpu_freq_write_intel(struct acpi_pct_register * not_used,u32 val)254 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
255 {
256 u32 lo, hi;
257
258 rdmsr(MSR_IA32_PERF_CTL, lo, hi);
259 lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
260 wrmsr(MSR_IA32_PERF_CTL, lo, hi);
261 }
262
cpu_freq_read_amd(struct acpi_pct_register * not_used)263 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
264 {
265 u32 val, dummy __always_unused;
266
267 rdmsr(MSR_AMD_PERF_CTL, val, dummy);
268 return val;
269 }
270
cpu_freq_write_amd(struct acpi_pct_register * not_used,u32 val)271 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
272 {
273 wrmsr(MSR_AMD_PERF_CTL, val, 0);
274 }
275
cpu_freq_read_io(struct acpi_pct_register * reg)276 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
277 {
278 u32 val;
279
280 acpi_os_read_port(reg->address, &val, reg->bit_width);
281 return val;
282 }
283
cpu_freq_write_io(struct acpi_pct_register * reg,u32 val)284 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
285 {
286 acpi_os_write_port(reg->address, val, reg->bit_width);
287 }
288
289 struct drv_cmd {
290 struct acpi_pct_register *reg;
291 u32 val;
292 union {
293 void (*write)(struct acpi_pct_register *reg, u32 val);
294 u32 (*read)(struct acpi_pct_register *reg);
295 } func;
296 };
297
298 /* Called via smp_call_function_single(), on the target CPU */
do_drv_read(void * _cmd)299 static void do_drv_read(void *_cmd)
300 {
301 struct drv_cmd *cmd = _cmd;
302
303 cmd->val = cmd->func.read(cmd->reg);
304 }
305
drv_read(struct acpi_cpufreq_data * data,const struct cpumask * mask)306 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
307 {
308 struct acpi_processor_performance *perf = to_perf_data(data);
309 struct drv_cmd cmd = {
310 .reg = &perf->control_register,
311 .func.read = data->cpu_freq_read,
312 };
313 int err;
314
315 err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
316 WARN_ON_ONCE(err); /* smp_call_function_any() was buggy? */
317 return cmd.val;
318 }
319
320 /* Called via smp_call_function_many(), on the target CPUs */
do_drv_write(void * _cmd)321 static void do_drv_write(void *_cmd)
322 {
323 struct drv_cmd *cmd = _cmd;
324
325 cmd->func.write(cmd->reg, cmd->val);
326 }
327
drv_write(struct acpi_cpufreq_data * data,const struct cpumask * mask,u32 val)328 static void drv_write(struct acpi_cpufreq_data *data,
329 const struct cpumask *mask, u32 val)
330 {
331 struct acpi_processor_performance *perf = to_perf_data(data);
332 struct drv_cmd cmd = {
333 .reg = &perf->control_register,
334 .val = val,
335 .func.write = data->cpu_freq_write,
336 };
337 int this_cpu;
338
339 this_cpu = get_cpu();
340 if (cpumask_test_cpu(this_cpu, mask))
341 do_drv_write(&cmd);
342
343 smp_call_function_many(mask, do_drv_write, &cmd, 1);
344 put_cpu();
345 }
346
get_cur_val(const struct cpumask * mask,struct acpi_cpufreq_data * data)347 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
348 {
349 u32 val;
350
351 if (unlikely(cpumask_empty(mask)))
352 return 0;
353
354 val = drv_read(data, mask);
355
356 pr_debug("%s = %u\n", __func__, val);
357
358 return val;
359 }
360
get_cur_freq_on_cpu(unsigned int cpu)361 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
362 {
363 struct acpi_cpufreq_data *data;
364 struct cpufreq_policy *policy;
365 unsigned int freq;
366 unsigned int cached_freq;
367
368 pr_debug("%s (%d)\n", __func__, cpu);
369
370 policy = cpufreq_cpu_get_raw(cpu);
371 if (unlikely(!policy))
372 return 0;
373
374 data = policy->driver_data;
375 if (unlikely(!data || !policy->freq_table))
376 return 0;
377
378 cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
379 freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
380 if (freq != cached_freq) {
381 /*
382 * The dreaded BIOS frequency change behind our back.
383 * Force set the frequency on next target call.
384 */
385 data->resume = 1;
386 }
387
388 pr_debug("cur freq = %u\n", freq);
389
390 return freq;
391 }
392
check_freqs(struct cpufreq_policy * policy,const struct cpumask * mask,unsigned int freq)393 static unsigned int check_freqs(struct cpufreq_policy *policy,
394 const struct cpumask *mask, unsigned int freq)
395 {
396 struct acpi_cpufreq_data *data = policy->driver_data;
397 unsigned int cur_freq;
398 unsigned int i;
399
400 for (i = 0; i < 100; i++) {
401 cur_freq = extract_freq(policy, get_cur_val(mask, data));
402 if (cur_freq == freq)
403 return 1;
404 udelay(10);
405 }
406 return 0;
407 }
408
acpi_cpufreq_target(struct cpufreq_policy * policy,unsigned int index)409 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
410 unsigned int index)
411 {
412 struct acpi_cpufreq_data *data = policy->driver_data;
413 struct acpi_processor_performance *perf;
414 const struct cpumask *mask;
415 unsigned int next_perf_state = 0; /* Index into perf table */
416 int result = 0;
417
418 if (unlikely(!data)) {
419 return -ENODEV;
420 }
421
422 perf = to_perf_data(data);
423 next_perf_state = policy->freq_table[index].driver_data;
424 if (perf->state == next_perf_state) {
425 if (unlikely(data->resume)) {
426 pr_debug("Called after resume, resetting to P%d\n",
427 next_perf_state);
428 data->resume = 0;
429 } else {
430 pr_debug("Already at target state (P%d)\n",
431 next_perf_state);
432 return 0;
433 }
434 }
435
436 /*
437 * The core won't allow CPUs to go away until the governor has been
438 * stopped, so we can rely on the stability of policy->cpus.
439 */
440 mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
441 cpumask_of(policy->cpu) : policy->cpus;
442
443 drv_write(data, mask, perf->states[next_perf_state].control);
444
445 if (acpi_pstate_strict) {
446 if (!check_freqs(policy, mask,
447 policy->freq_table[index].frequency)) {
448 pr_debug("%s (%d)\n", __func__, policy->cpu);
449 result = -EAGAIN;
450 }
451 }
452
453 if (!result)
454 perf->state = next_perf_state;
455
456 return result;
457 }
458
acpi_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)459 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
460 unsigned int target_freq)
461 {
462 struct acpi_cpufreq_data *data = policy->driver_data;
463 struct acpi_processor_performance *perf;
464 struct cpufreq_frequency_table *entry;
465 unsigned int next_perf_state, next_freq, index;
466
467 /*
468 * Find the closest frequency above target_freq.
469 */
470 if (policy->cached_target_freq == target_freq)
471 index = policy->cached_resolved_idx;
472 else
473 index = cpufreq_table_find_index_dl(policy, target_freq,
474 false);
475
476 entry = &policy->freq_table[index];
477 next_freq = entry->frequency;
478 next_perf_state = entry->driver_data;
479
480 perf = to_perf_data(data);
481 if (perf->state == next_perf_state) {
482 if (unlikely(data->resume))
483 data->resume = 0;
484 else
485 return next_freq;
486 }
487
488 data->cpu_freq_write(&perf->control_register,
489 perf->states[next_perf_state].control);
490 perf->state = next_perf_state;
491 return next_freq;
492 }
493
494 static unsigned long
acpi_cpufreq_guess_freq(struct acpi_cpufreq_data * data,unsigned int cpu)495 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
496 {
497 struct acpi_processor_performance *perf;
498
499 perf = to_perf_data(data);
500 if (cpu_khz) {
501 /* search the closest match to cpu_khz */
502 unsigned int i;
503 unsigned long freq;
504 unsigned long freqn = perf->states[0].core_frequency * 1000;
505
506 for (i = 0; i < (perf->state_count-1); i++) {
507 freq = freqn;
508 freqn = perf->states[i+1].core_frequency * 1000;
509 if ((2 * cpu_khz) > (freqn + freq)) {
510 perf->state = i;
511 return freq;
512 }
513 }
514 perf->state = perf->state_count-1;
515 return freqn;
516 } else {
517 /* assume CPU is at P0... */
518 perf->state = 0;
519 return perf->states[0].core_frequency * 1000;
520 }
521 }
522
free_acpi_perf_data(void)523 static void free_acpi_perf_data(void)
524 {
525 unsigned int i;
526
527 /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
528 for_each_possible_cpu(i)
529 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
530 ->shared_cpu_map);
531 free_percpu(acpi_perf_data);
532 }
533
cpufreq_boost_online(unsigned int cpu)534 static int cpufreq_boost_online(unsigned int cpu)
535 {
536 /*
537 * On the CPU_UP path we simply keep the boost-disable flag
538 * in sync with the current global state.
539 */
540 return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
541 }
542
cpufreq_boost_down_prep(unsigned int cpu)543 static int cpufreq_boost_down_prep(unsigned int cpu)
544 {
545 /*
546 * Clear the boost-disable bit on the CPU_DOWN path so that
547 * this cpu cannot block the remaining ones from boosting.
548 */
549 return boost_set_msr(1);
550 }
551
552 /*
553 * acpi_cpufreq_early_init - initialize ACPI P-States library
554 *
555 * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
556 * in order to determine correct frequency and voltage pairings. We can
557 * do _PDC and _PSD and find out the processor dependency for the
558 * actual init that will happen later...
559 */
acpi_cpufreq_early_init(void)560 static int __init acpi_cpufreq_early_init(void)
561 {
562 unsigned int i;
563 pr_debug("%s\n", __func__);
564
565 acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
566 if (!acpi_perf_data) {
567 pr_debug("Memory allocation error for acpi_perf_data.\n");
568 return -ENOMEM;
569 }
570 for_each_possible_cpu(i) {
571 if (!zalloc_cpumask_var_node(
572 &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
573 GFP_KERNEL, cpu_to_node(i))) {
574
575 /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
576 free_acpi_perf_data();
577 return -ENOMEM;
578 }
579 }
580
581 /* Do initialization in ACPI core */
582 acpi_processor_preregister_performance(acpi_perf_data);
583 return 0;
584 }
585
586 #ifdef CONFIG_SMP
587 /*
588 * Some BIOSes do SW_ANY coordination internally, either set it up in hw
589 * or do it in BIOS firmware and won't inform about it to OS. If not
590 * detected, this has a side effect of making CPU run at a different speed
591 * than OS intended it to run at. Detect it and handle it cleanly.
592 */
593 static int bios_with_sw_any_bug;
594
sw_any_bug_found(const struct dmi_system_id * d)595 static int sw_any_bug_found(const struct dmi_system_id *d)
596 {
597 bios_with_sw_any_bug = 1;
598 return 0;
599 }
600
601 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
602 {
603 .callback = sw_any_bug_found,
604 .ident = "Supermicro Server X6DLP",
605 .matches = {
606 DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
607 DMI_MATCH(DMI_BIOS_VERSION, "080010"),
608 DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
609 },
610 },
611 { }
612 };
613
acpi_cpufreq_blacklist(struct cpuinfo_x86 * c)614 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
615 {
616 /* Intel Xeon Processor 7100 Series Specification Update
617 * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
618 * AL30: A Machine Check Exception (MCE) Occurring during an
619 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
620 * Both Processor Cores to Lock Up. */
621 if (c->x86_vendor == X86_VENDOR_INTEL) {
622 if ((c->x86 == 15) &&
623 (c->x86_model == 6) &&
624 (c->x86_stepping == 8)) {
625 pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
626 return -ENODEV;
627 }
628 }
629 return 0;
630 }
631 #endif
632
633 #ifdef CONFIG_ACPI_CPPC_LIB
get_max_boost_ratio(unsigned int cpu)634 static u64 get_max_boost_ratio(unsigned int cpu)
635 {
636 struct cppc_perf_caps perf_caps;
637 u64 highest_perf, nominal_perf;
638 int ret;
639
640 if (acpi_pstate_strict)
641 return 0;
642
643 ret = cppc_get_perf_caps(cpu, &perf_caps);
644 if (ret) {
645 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
646 cpu, ret);
647 return 0;
648 }
649
650 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
651 highest_perf = amd_get_highest_perf();
652 else
653 highest_perf = perf_caps.highest_perf;
654
655 nominal_perf = perf_caps.nominal_perf;
656
657 if (!highest_perf || !nominal_perf) {
658 pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
659 return 0;
660 }
661
662 if (highest_perf < nominal_perf) {
663 pr_debug("CPU%d: nominal performance above highest\n", cpu);
664 return 0;
665 }
666
667 return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
668 }
669 #else
get_max_boost_ratio(unsigned int cpu)670 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; }
671 #endif
672
acpi_cpufreq_cpu_init(struct cpufreq_policy * policy)673 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
674 {
675 struct cpufreq_frequency_table *freq_table;
676 struct acpi_processor_performance *perf;
677 struct acpi_cpufreq_data *data;
678 unsigned int cpu = policy->cpu;
679 struct cpuinfo_x86 *c = &cpu_data(cpu);
680 unsigned int valid_states = 0;
681 unsigned int result = 0;
682 u64 max_boost_ratio;
683 unsigned int i;
684 #ifdef CONFIG_SMP
685 static int blacklisted;
686 #endif
687
688 pr_debug("%s\n", __func__);
689
690 #ifdef CONFIG_SMP
691 if (blacklisted)
692 return blacklisted;
693 blacklisted = acpi_cpufreq_blacklist(c);
694 if (blacklisted)
695 return blacklisted;
696 #endif
697
698 data = kzalloc(sizeof(*data), GFP_KERNEL);
699 if (!data)
700 return -ENOMEM;
701
702 if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
703 result = -ENOMEM;
704 goto err_free;
705 }
706
707 perf = per_cpu_ptr(acpi_perf_data, cpu);
708 data->acpi_perf_cpu = cpu;
709 policy->driver_data = data;
710
711 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
712 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
713
714 result = acpi_processor_register_performance(perf, cpu);
715 if (result)
716 goto err_free_mask;
717
718 policy->shared_type = perf->shared_type;
719
720 /*
721 * Will let policy->cpus know about dependency only when software
722 * coordination is required.
723 */
724 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
725 policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
726 cpumask_copy(policy->cpus, perf->shared_cpu_map);
727 }
728 cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
729
730 #ifdef CONFIG_SMP
731 dmi_check_system(sw_any_bug_dmi_table);
732 if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
733 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
734 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
735 }
736
737 if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
738 !acpi_pstate_strict) {
739 cpumask_clear(policy->cpus);
740 cpumask_set_cpu(cpu, policy->cpus);
741 cpumask_copy(data->freqdomain_cpus,
742 topology_sibling_cpumask(cpu));
743 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
744 pr_info_once("overriding BIOS provided _PSD data\n");
745 }
746 #endif
747
748 /* capability check */
749 if (perf->state_count <= 1) {
750 pr_debug("No P-States\n");
751 result = -ENODEV;
752 goto err_unreg;
753 }
754
755 if (perf->control_register.space_id != perf->status_register.space_id) {
756 result = -ENODEV;
757 goto err_unreg;
758 }
759
760 switch (perf->control_register.space_id) {
761 case ACPI_ADR_SPACE_SYSTEM_IO:
762 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
763 boot_cpu_data.x86 == 0xf) {
764 pr_debug("AMD K8 systems must use native drivers.\n");
765 result = -ENODEV;
766 goto err_unreg;
767 }
768 pr_debug("SYSTEM IO addr space\n");
769 data->cpu_feature = SYSTEM_IO_CAPABLE;
770 data->cpu_freq_read = cpu_freq_read_io;
771 data->cpu_freq_write = cpu_freq_write_io;
772 break;
773 case ACPI_ADR_SPACE_FIXED_HARDWARE:
774 pr_debug("HARDWARE addr space\n");
775 if (check_est_cpu(cpu)) {
776 data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
777 data->cpu_freq_read = cpu_freq_read_intel;
778 data->cpu_freq_write = cpu_freq_write_intel;
779 break;
780 }
781 if (check_amd_hwpstate_cpu(cpu)) {
782 data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
783 data->cpu_freq_read = cpu_freq_read_amd;
784 data->cpu_freq_write = cpu_freq_write_amd;
785 break;
786 }
787 result = -ENODEV;
788 goto err_unreg;
789 default:
790 pr_debug("Unknown addr space %d\n",
791 (u32) (perf->control_register.space_id));
792 result = -ENODEV;
793 goto err_unreg;
794 }
795
796 freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
797 GFP_KERNEL);
798 if (!freq_table) {
799 result = -ENOMEM;
800 goto err_unreg;
801 }
802
803 /* detect transition latency */
804 policy->cpuinfo.transition_latency = 0;
805 for (i = 0; i < perf->state_count; i++) {
806 if ((perf->states[i].transition_latency * 1000) >
807 policy->cpuinfo.transition_latency)
808 policy->cpuinfo.transition_latency =
809 perf->states[i].transition_latency * 1000;
810 }
811
812 /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
813 if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
814 policy->cpuinfo.transition_latency > 20 * 1000) {
815 policy->cpuinfo.transition_latency = 20 * 1000;
816 pr_info_once("P-state transition latency capped at 20 uS\n");
817 }
818
819 /* table init */
820 for (i = 0; i < perf->state_count; i++) {
821 if (i > 0 && perf->states[i].core_frequency >=
822 freq_table[valid_states-1].frequency / 1000)
823 continue;
824
825 freq_table[valid_states].driver_data = i;
826 freq_table[valid_states].frequency =
827 perf->states[i].core_frequency * 1000;
828 valid_states++;
829 }
830 freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
831
832 max_boost_ratio = get_max_boost_ratio(cpu);
833 if (max_boost_ratio) {
834 unsigned int freq = freq_table[0].frequency;
835
836 /*
837 * Because the loop above sorts the freq_table entries in the
838 * descending order, freq is the maximum frequency in the table.
839 * Assume that it corresponds to the CPPC nominal frequency and
840 * use it to set cpuinfo.max_freq.
841 */
842 policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
843 } else {
844 /*
845 * If the maximum "boost" frequency is unknown, ask the arch
846 * scale-invariance code to use the "nominal" performance for
847 * CPU utilization scaling so as to prevent the schedutil
848 * governor from selecting inadequate CPU frequencies.
849 */
850 arch_set_max_freq_ratio(true);
851 }
852
853 policy->freq_table = freq_table;
854 perf->state = 0;
855
856 switch (perf->control_register.space_id) {
857 case ACPI_ADR_SPACE_SYSTEM_IO:
858 /*
859 * The core will not set policy->cur, because
860 * cpufreq_driver->get is NULL, so we need to set it here.
861 * However, we have to guess it, because the current speed is
862 * unknown and not detectable via IO ports.
863 */
864 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
865 break;
866 case ACPI_ADR_SPACE_FIXED_HARDWARE:
867 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
868 break;
869 default:
870 break;
871 }
872
873 /* notify BIOS that we exist */
874 acpi_processor_notify_smm(THIS_MODULE);
875
876 pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
877 for (i = 0; i < perf->state_count; i++)
878 pr_debug(" %cP%d: %d MHz, %d mW, %d uS\n",
879 (i == perf->state ? '*' : ' '), i,
880 (u32) perf->states[i].core_frequency,
881 (u32) perf->states[i].power,
882 (u32) perf->states[i].transition_latency);
883
884 /*
885 * the first call to ->target() should result in us actually
886 * writing something to the appropriate registers.
887 */
888 data->resume = 1;
889
890 policy->fast_switch_possible = !acpi_pstate_strict &&
891 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
892
893 if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
894 pr_warn(FW_WARN "P-state 0 is not max freq\n");
895
896 return result;
897
898 err_unreg:
899 acpi_processor_unregister_performance(cpu);
900 err_free_mask:
901 free_cpumask_var(data->freqdomain_cpus);
902 err_free:
903 kfree(data);
904 policy->driver_data = NULL;
905
906 return result;
907 }
908
acpi_cpufreq_cpu_exit(struct cpufreq_policy * policy)909 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
910 {
911 struct acpi_cpufreq_data *data = policy->driver_data;
912
913 pr_debug("%s\n", __func__);
914
915 policy->fast_switch_possible = false;
916 policy->driver_data = NULL;
917 acpi_processor_unregister_performance(data->acpi_perf_cpu);
918 free_cpumask_var(data->freqdomain_cpus);
919 kfree(policy->freq_table);
920 kfree(data);
921
922 return 0;
923 }
924
acpi_cpufreq_resume(struct cpufreq_policy * policy)925 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
926 {
927 struct acpi_cpufreq_data *data = policy->driver_data;
928
929 pr_debug("%s\n", __func__);
930
931 data->resume = 1;
932
933 return 0;
934 }
935
936 static struct freq_attr *acpi_cpufreq_attr[] = {
937 &cpufreq_freq_attr_scaling_available_freqs,
938 &freqdomain_cpus,
939 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
940 &cpb,
941 #endif
942 NULL,
943 };
944
945 static struct cpufreq_driver acpi_cpufreq_driver = {
946 .verify = cpufreq_generic_frequency_table_verify,
947 .target_index = acpi_cpufreq_target,
948 .fast_switch = acpi_cpufreq_fast_switch,
949 .bios_limit = acpi_processor_get_bios_limit,
950 .init = acpi_cpufreq_cpu_init,
951 .exit = acpi_cpufreq_cpu_exit,
952 .resume = acpi_cpufreq_resume,
953 .name = "acpi-cpufreq",
954 .attr = acpi_cpufreq_attr,
955 };
956
957 static enum cpuhp_state acpi_cpufreq_online;
958
acpi_cpufreq_boost_init(void)959 static void __init acpi_cpufreq_boost_init(void)
960 {
961 int ret;
962
963 if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
964 pr_debug("Boost capabilities not present in the processor\n");
965 return;
966 }
967
968 acpi_cpufreq_driver.set_boost = set_boost;
969 acpi_cpufreq_driver.boost_enabled = boost_state(0);
970
971 /*
972 * This calls the online callback on all online cpu and forces all
973 * MSRs to the same value.
974 */
975 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
976 cpufreq_boost_online, cpufreq_boost_down_prep);
977 if (ret < 0) {
978 pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
979 return;
980 }
981 acpi_cpufreq_online = ret;
982 }
983
acpi_cpufreq_boost_exit(void)984 static void acpi_cpufreq_boost_exit(void)
985 {
986 if (acpi_cpufreq_online > 0)
987 cpuhp_remove_state_nocalls(acpi_cpufreq_online);
988 }
989
acpi_cpufreq_init(void)990 static int __init acpi_cpufreq_init(void)
991 {
992 int ret;
993
994 if (acpi_disabled)
995 return -ENODEV;
996
997 /* don't keep reloading if cpufreq_driver exists */
998 if (cpufreq_get_current_driver())
999 return -EEXIST;
1000
1001 pr_debug("%s\n", __func__);
1002
1003 ret = acpi_cpufreq_early_init();
1004 if (ret)
1005 return ret;
1006
1007 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
1008 /* this is a sysfs file with a strange name and an even stranger
1009 * semantic - per CPU instantiation, but system global effect.
1010 * Lets enable it only on AMD CPUs for compatibility reasons and
1011 * only if configured. This is considered legacy code, which
1012 * will probably be removed at some point in the future.
1013 */
1014 if (!check_amd_hwpstate_cpu(0)) {
1015 struct freq_attr **attr;
1016
1017 pr_debug("CPB unsupported, do not expose it\n");
1018
1019 for (attr = acpi_cpufreq_attr; *attr; attr++)
1020 if (*attr == &cpb) {
1021 *attr = NULL;
1022 break;
1023 }
1024 }
1025 #endif
1026 acpi_cpufreq_boost_init();
1027
1028 ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1029 if (ret) {
1030 free_acpi_perf_data();
1031 acpi_cpufreq_boost_exit();
1032 }
1033 return ret;
1034 }
1035
acpi_cpufreq_exit(void)1036 static void __exit acpi_cpufreq_exit(void)
1037 {
1038 pr_debug("%s\n", __func__);
1039
1040 acpi_cpufreq_boost_exit();
1041
1042 cpufreq_unregister_driver(&acpi_cpufreq_driver);
1043
1044 free_acpi_perf_data();
1045 }
1046
1047 module_param(acpi_pstate_strict, uint, 0644);
1048 MODULE_PARM_DESC(acpi_pstate_strict,
1049 "value 0 or non-zero. non-zero -> strict ACPI checks are "
1050 "performed during frequency changes.");
1051
1052 late_initcall(acpi_cpufreq_init);
1053 module_exit(acpi_cpufreq_exit);
1054
1055 static const struct x86_cpu_id __maybe_unused acpi_cpufreq_ids[] = {
1056 X86_MATCH_FEATURE(X86_FEATURE_ACPI, NULL),
1057 X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE, NULL),
1058 {}
1059 };
1060 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1061
1062 static const struct acpi_device_id __maybe_unused processor_device_ids[] = {
1063 {ACPI_PROCESSOR_OBJECT_HID, },
1064 {ACPI_PROCESSOR_DEVICE_HID, },
1065 {},
1066 };
1067 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1068
1069 MODULE_ALIAS("acpi");
1070