1 // SPDX-License-Identifier: GPL-2.0
2 // (C) 2017-2018 Synopsys, Inc. (www.synopsys.com)
3
4 /*
5 * Synopsys DesignWare AXI DMA Controller driver.
6 *
7 * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
8 */
9
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-64-nonatomic-lo-hi.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/slab.h>
29 #include <linux/types.h>
30
31 #include "dw-axi-dmac.h"
32 #include "../dmaengine.h"
33 #include "../virt-dma.h"
34
35 /*
36 * The set of bus widths supported by the DMA controller. DW AXI DMAC supports
37 * master data bus width up to 512 bits (for both AXI master interfaces), but
38 * it depends on IP block configurarion.
39 */
40 #define AXI_DMA_BUSWIDTHS \
41 (DMA_SLAVE_BUSWIDTH_1_BYTE | \
42 DMA_SLAVE_BUSWIDTH_2_BYTES | \
43 DMA_SLAVE_BUSWIDTH_4_BYTES | \
44 DMA_SLAVE_BUSWIDTH_8_BYTES | \
45 DMA_SLAVE_BUSWIDTH_16_BYTES | \
46 DMA_SLAVE_BUSWIDTH_32_BYTES | \
47 DMA_SLAVE_BUSWIDTH_64_BYTES)
48
49 static inline void
axi_dma_iowrite32(struct axi_dma_chip * chip,u32 reg,u32 val)50 axi_dma_iowrite32(struct axi_dma_chip *chip, u32 reg, u32 val)
51 {
52 iowrite32(val, chip->regs + reg);
53 }
54
axi_dma_ioread32(struct axi_dma_chip * chip,u32 reg)55 static inline u32 axi_dma_ioread32(struct axi_dma_chip *chip, u32 reg)
56 {
57 return ioread32(chip->regs + reg);
58 }
59
60 static inline void
axi_chan_iowrite32(struct axi_dma_chan * chan,u32 reg,u32 val)61 axi_chan_iowrite32(struct axi_dma_chan *chan, u32 reg, u32 val)
62 {
63 iowrite32(val, chan->chan_regs + reg);
64 }
65
axi_chan_ioread32(struct axi_dma_chan * chan,u32 reg)66 static inline u32 axi_chan_ioread32(struct axi_dma_chan *chan, u32 reg)
67 {
68 return ioread32(chan->chan_regs + reg);
69 }
70
71 static inline void
axi_chan_iowrite64(struct axi_dma_chan * chan,u32 reg,u64 val)72 axi_chan_iowrite64(struct axi_dma_chan *chan, u32 reg, u64 val)
73 {
74 /*
75 * We split one 64 bit write for two 32 bit write as some HW doesn't
76 * support 64 bit access.
77 */
78 iowrite32(lower_32_bits(val), chan->chan_regs + reg);
79 iowrite32(upper_32_bits(val), chan->chan_regs + reg + 4);
80 }
81
axi_chan_config_write(struct axi_dma_chan * chan,struct axi_dma_chan_config * config)82 static inline void axi_chan_config_write(struct axi_dma_chan *chan,
83 struct axi_dma_chan_config *config)
84 {
85 u32 cfg_lo, cfg_hi;
86
87 cfg_lo = (config->dst_multblk_type << CH_CFG_L_DST_MULTBLK_TYPE_POS |
88 config->src_multblk_type << CH_CFG_L_SRC_MULTBLK_TYPE_POS);
89 if (chan->chip->dw->hdata->reg_map_8_channels) {
90 cfg_hi = config->tt_fc << CH_CFG_H_TT_FC_POS |
91 config->hs_sel_src << CH_CFG_H_HS_SEL_SRC_POS |
92 config->hs_sel_dst << CH_CFG_H_HS_SEL_DST_POS |
93 config->src_per << CH_CFG_H_SRC_PER_POS |
94 config->dst_per << CH_CFG_H_DST_PER_POS |
95 config->prior << CH_CFG_H_PRIORITY_POS;
96 } else {
97 cfg_lo |= config->src_per << CH_CFG2_L_SRC_PER_POS |
98 config->dst_per << CH_CFG2_L_DST_PER_POS;
99 cfg_hi = config->tt_fc << CH_CFG2_H_TT_FC_POS |
100 config->hs_sel_src << CH_CFG2_H_HS_SEL_SRC_POS |
101 config->hs_sel_dst << CH_CFG2_H_HS_SEL_DST_POS |
102 config->prior << CH_CFG2_H_PRIORITY_POS;
103 }
104 axi_chan_iowrite32(chan, CH_CFG_L, cfg_lo);
105 axi_chan_iowrite32(chan, CH_CFG_H, cfg_hi);
106 }
107
axi_dma_disable(struct axi_dma_chip * chip)108 static inline void axi_dma_disable(struct axi_dma_chip *chip)
109 {
110 u32 val;
111
112 val = axi_dma_ioread32(chip, DMAC_CFG);
113 val &= ~DMAC_EN_MASK;
114 axi_dma_iowrite32(chip, DMAC_CFG, val);
115 }
116
axi_dma_enable(struct axi_dma_chip * chip)117 static inline void axi_dma_enable(struct axi_dma_chip *chip)
118 {
119 u32 val;
120
121 val = axi_dma_ioread32(chip, DMAC_CFG);
122 val |= DMAC_EN_MASK;
123 axi_dma_iowrite32(chip, DMAC_CFG, val);
124 }
125
axi_dma_irq_disable(struct axi_dma_chip * chip)126 static inline void axi_dma_irq_disable(struct axi_dma_chip *chip)
127 {
128 u32 val;
129
130 val = axi_dma_ioread32(chip, DMAC_CFG);
131 val &= ~INT_EN_MASK;
132 axi_dma_iowrite32(chip, DMAC_CFG, val);
133 }
134
axi_dma_irq_enable(struct axi_dma_chip * chip)135 static inline void axi_dma_irq_enable(struct axi_dma_chip *chip)
136 {
137 u32 val;
138
139 val = axi_dma_ioread32(chip, DMAC_CFG);
140 val |= INT_EN_MASK;
141 axi_dma_iowrite32(chip, DMAC_CFG, val);
142 }
143
axi_chan_irq_disable(struct axi_dma_chan * chan,u32 irq_mask)144 static inline void axi_chan_irq_disable(struct axi_dma_chan *chan, u32 irq_mask)
145 {
146 u32 val;
147
148 if (likely(irq_mask == DWAXIDMAC_IRQ_ALL)) {
149 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, DWAXIDMAC_IRQ_NONE);
150 } else {
151 val = axi_chan_ioread32(chan, CH_INTSTATUS_ENA);
152 val &= ~irq_mask;
153 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, val);
154 }
155 }
156
axi_chan_irq_set(struct axi_dma_chan * chan,u32 irq_mask)157 static inline void axi_chan_irq_set(struct axi_dma_chan *chan, u32 irq_mask)
158 {
159 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, irq_mask);
160 }
161
axi_chan_irq_sig_set(struct axi_dma_chan * chan,u32 irq_mask)162 static inline void axi_chan_irq_sig_set(struct axi_dma_chan *chan, u32 irq_mask)
163 {
164 axi_chan_iowrite32(chan, CH_INTSIGNAL_ENA, irq_mask);
165 }
166
axi_chan_irq_clear(struct axi_dma_chan * chan,u32 irq_mask)167 static inline void axi_chan_irq_clear(struct axi_dma_chan *chan, u32 irq_mask)
168 {
169 axi_chan_iowrite32(chan, CH_INTCLEAR, irq_mask);
170 }
171
axi_chan_irq_read(struct axi_dma_chan * chan)172 static inline u32 axi_chan_irq_read(struct axi_dma_chan *chan)
173 {
174 return axi_chan_ioread32(chan, CH_INTSTATUS);
175 }
176
axi_chan_disable(struct axi_dma_chan * chan)177 static inline void axi_chan_disable(struct axi_dma_chan *chan)
178 {
179 u32 val;
180
181 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
182 val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT);
183 if (chan->chip->dw->hdata->reg_map_8_channels)
184 val |= BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
185 else
186 val |= BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
187 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
188 }
189
axi_chan_enable(struct axi_dma_chan * chan)190 static inline void axi_chan_enable(struct axi_dma_chan *chan)
191 {
192 u32 val;
193
194 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
195 if (chan->chip->dw->hdata->reg_map_8_channels)
196 val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
197 BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
198 else
199 val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
200 BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
201 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
202 }
203
axi_chan_is_hw_enable(struct axi_dma_chan * chan)204 static inline bool axi_chan_is_hw_enable(struct axi_dma_chan *chan)
205 {
206 u32 val;
207
208 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
209
210 return !!(val & (BIT(chan->id) << DMAC_CHAN_EN_SHIFT));
211 }
212
axi_dma_hw_init(struct axi_dma_chip * chip)213 static void axi_dma_hw_init(struct axi_dma_chip *chip)
214 {
215 int ret;
216 u32 i;
217
218 for (i = 0; i < chip->dw->hdata->nr_channels; i++) {
219 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
220 axi_chan_disable(&chip->dw->chan[i]);
221 }
222 ret = dma_set_mask_and_coherent(chip->dev, DMA_BIT_MASK(64));
223 if (ret)
224 dev_warn(chip->dev, "Unable to set coherent mask\n");
225 }
226
axi_chan_get_xfer_width(struct axi_dma_chan * chan,dma_addr_t src,dma_addr_t dst,size_t len)227 static u32 axi_chan_get_xfer_width(struct axi_dma_chan *chan, dma_addr_t src,
228 dma_addr_t dst, size_t len)
229 {
230 u32 max_width = chan->chip->dw->hdata->m_data_width;
231
232 return __ffs(src | dst | len | BIT(max_width));
233 }
234
axi_chan_name(struct axi_dma_chan * chan)235 static inline const char *axi_chan_name(struct axi_dma_chan *chan)
236 {
237 return dma_chan_name(&chan->vc.chan);
238 }
239
axi_desc_alloc(u32 num)240 static struct axi_dma_desc *axi_desc_alloc(u32 num)
241 {
242 struct axi_dma_desc *desc;
243
244 desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
245 if (!desc)
246 return NULL;
247
248 desc->hw_desc = kcalloc(num, sizeof(*desc->hw_desc), GFP_NOWAIT);
249 if (!desc->hw_desc) {
250 kfree(desc);
251 return NULL;
252 }
253
254 return desc;
255 }
256
axi_desc_get(struct axi_dma_chan * chan,dma_addr_t * addr)257 static struct axi_dma_lli *axi_desc_get(struct axi_dma_chan *chan,
258 dma_addr_t *addr)
259 {
260 struct axi_dma_lli *lli;
261 dma_addr_t phys;
262
263 lli = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
264 if (unlikely(!lli)) {
265 dev_err(chan2dev(chan), "%s: not enough descriptors available\n",
266 axi_chan_name(chan));
267 return NULL;
268 }
269
270 atomic_inc(&chan->descs_allocated);
271 *addr = phys;
272
273 return lli;
274 }
275
axi_desc_put(struct axi_dma_desc * desc)276 static void axi_desc_put(struct axi_dma_desc *desc)
277 {
278 struct axi_dma_chan *chan = desc->chan;
279 int count = atomic_read(&chan->descs_allocated);
280 struct axi_dma_hw_desc *hw_desc;
281 int descs_put;
282
283 for (descs_put = 0; descs_put < count; descs_put++) {
284 hw_desc = &desc->hw_desc[descs_put];
285 dma_pool_free(chan->desc_pool, hw_desc->lli, hw_desc->llp);
286 }
287
288 kfree(desc->hw_desc);
289 kfree(desc);
290 atomic_sub(descs_put, &chan->descs_allocated);
291 dev_vdbg(chan2dev(chan), "%s: %d descs put, %d still allocated\n",
292 axi_chan_name(chan), descs_put,
293 atomic_read(&chan->descs_allocated));
294 }
295
vchan_desc_put(struct virt_dma_desc * vdesc)296 static void vchan_desc_put(struct virt_dma_desc *vdesc)
297 {
298 axi_desc_put(vd_to_axi_desc(vdesc));
299 }
300
301 static enum dma_status
dma_chan_tx_status(struct dma_chan * dchan,dma_cookie_t cookie,struct dma_tx_state * txstate)302 dma_chan_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
303 struct dma_tx_state *txstate)
304 {
305 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
306 struct virt_dma_desc *vdesc;
307 enum dma_status status;
308 u32 completed_length;
309 unsigned long flags;
310 u32 completed_blocks;
311 size_t bytes = 0;
312 u32 length;
313 u32 len;
314
315 status = dma_cookie_status(dchan, cookie, txstate);
316 if (status == DMA_COMPLETE || !txstate)
317 return status;
318
319 spin_lock_irqsave(&chan->vc.lock, flags);
320
321 vdesc = vchan_find_desc(&chan->vc, cookie);
322 if (vdesc) {
323 length = vd_to_axi_desc(vdesc)->length;
324 completed_blocks = vd_to_axi_desc(vdesc)->completed_blocks;
325 len = vd_to_axi_desc(vdesc)->hw_desc[0].len;
326 completed_length = completed_blocks * len;
327 bytes = length - completed_length;
328 } else {
329 bytes = vd_to_axi_desc(vdesc)->length;
330 }
331
332 spin_unlock_irqrestore(&chan->vc.lock, flags);
333 dma_set_residue(txstate, bytes);
334
335 return status;
336 }
337
write_desc_llp(struct axi_dma_hw_desc * desc,dma_addr_t adr)338 static void write_desc_llp(struct axi_dma_hw_desc *desc, dma_addr_t adr)
339 {
340 desc->lli->llp = cpu_to_le64(adr);
341 }
342
write_chan_llp(struct axi_dma_chan * chan,dma_addr_t adr)343 static void write_chan_llp(struct axi_dma_chan *chan, dma_addr_t adr)
344 {
345 axi_chan_iowrite64(chan, CH_LLP, adr);
346 }
347
dw_axi_dma_set_byte_halfword(struct axi_dma_chan * chan,bool set)348 static void dw_axi_dma_set_byte_halfword(struct axi_dma_chan *chan, bool set)
349 {
350 u32 offset = DMAC_APB_BYTE_WR_CH_EN;
351 u32 reg_width, val;
352
353 if (!chan->chip->apb_regs) {
354 dev_dbg(chan->chip->dev, "apb_regs not initialized\n");
355 return;
356 }
357
358 reg_width = __ffs(chan->config.dst_addr_width);
359 if (reg_width == DWAXIDMAC_TRANS_WIDTH_16)
360 offset = DMAC_APB_HALFWORD_WR_CH_EN;
361
362 val = ioread32(chan->chip->apb_regs + offset);
363
364 if (set)
365 val |= BIT(chan->id);
366 else
367 val &= ~BIT(chan->id);
368
369 iowrite32(val, chan->chip->apb_regs + offset);
370 }
371 /* Called in chan locked context */
axi_chan_block_xfer_start(struct axi_dma_chan * chan,struct axi_dma_desc * first)372 static void axi_chan_block_xfer_start(struct axi_dma_chan *chan,
373 struct axi_dma_desc *first)
374 {
375 u32 priority = chan->chip->dw->hdata->priority[chan->id];
376 struct axi_dma_chan_config config = {};
377 u32 irq_mask;
378 u8 lms = 0; /* Select AXI0 master for LLI fetching */
379
380 if (unlikely(axi_chan_is_hw_enable(chan))) {
381 dev_err(chan2dev(chan), "%s is non-idle!\n",
382 axi_chan_name(chan));
383
384 return;
385 }
386
387 axi_dma_enable(chan->chip);
388
389 config.dst_multblk_type = DWAXIDMAC_MBLK_TYPE_LL;
390 config.src_multblk_type = DWAXIDMAC_MBLK_TYPE_LL;
391 config.tt_fc = DWAXIDMAC_TT_FC_MEM_TO_MEM_DMAC;
392 config.prior = priority;
393 config.hs_sel_dst = DWAXIDMAC_HS_SEL_HW;
394 config.hs_sel_src = DWAXIDMAC_HS_SEL_HW;
395 switch (chan->direction) {
396 case DMA_MEM_TO_DEV:
397 dw_axi_dma_set_byte_halfword(chan, true);
398 config.tt_fc = chan->config.device_fc ?
399 DWAXIDMAC_TT_FC_MEM_TO_PER_DST :
400 DWAXIDMAC_TT_FC_MEM_TO_PER_DMAC;
401 if (chan->chip->apb_regs)
402 config.dst_per = chan->id;
403 else
404 config.dst_per = chan->hw_handshake_num;
405 break;
406 case DMA_DEV_TO_MEM:
407 config.tt_fc = chan->config.device_fc ?
408 DWAXIDMAC_TT_FC_PER_TO_MEM_SRC :
409 DWAXIDMAC_TT_FC_PER_TO_MEM_DMAC;
410 if (chan->chip->apb_regs)
411 config.src_per = chan->id;
412 else
413 config.src_per = chan->hw_handshake_num;
414 break;
415 default:
416 break;
417 }
418 axi_chan_config_write(chan, &config);
419
420 write_chan_llp(chan, first->hw_desc[0].llp | lms);
421
422 irq_mask = DWAXIDMAC_IRQ_DMA_TRF | DWAXIDMAC_IRQ_ALL_ERR;
423 axi_chan_irq_sig_set(chan, irq_mask);
424
425 /* Generate 'suspend' status but don't generate interrupt */
426 irq_mask |= DWAXIDMAC_IRQ_SUSPENDED;
427 axi_chan_irq_set(chan, irq_mask);
428
429 axi_chan_enable(chan);
430 }
431
axi_chan_start_first_queued(struct axi_dma_chan * chan)432 static void axi_chan_start_first_queued(struct axi_dma_chan *chan)
433 {
434 struct axi_dma_desc *desc;
435 struct virt_dma_desc *vd;
436
437 vd = vchan_next_desc(&chan->vc);
438 if (!vd)
439 return;
440
441 desc = vd_to_axi_desc(vd);
442 dev_vdbg(chan2dev(chan), "%s: started %u\n", axi_chan_name(chan),
443 vd->tx.cookie);
444 axi_chan_block_xfer_start(chan, desc);
445 }
446
dma_chan_issue_pending(struct dma_chan * dchan)447 static void dma_chan_issue_pending(struct dma_chan *dchan)
448 {
449 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
450 unsigned long flags;
451
452 spin_lock_irqsave(&chan->vc.lock, flags);
453 if (vchan_issue_pending(&chan->vc))
454 axi_chan_start_first_queued(chan);
455 spin_unlock_irqrestore(&chan->vc.lock, flags);
456 }
457
dw_axi_dma_synchronize(struct dma_chan * dchan)458 static void dw_axi_dma_synchronize(struct dma_chan *dchan)
459 {
460 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
461
462 vchan_synchronize(&chan->vc);
463 }
464
dma_chan_alloc_chan_resources(struct dma_chan * dchan)465 static int dma_chan_alloc_chan_resources(struct dma_chan *dchan)
466 {
467 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
468
469 /* ASSERT: channel is idle */
470 if (axi_chan_is_hw_enable(chan)) {
471 dev_err(chan2dev(chan), "%s is non-idle!\n",
472 axi_chan_name(chan));
473 return -EBUSY;
474 }
475
476 /* LLI address must be aligned to a 64-byte boundary */
477 chan->desc_pool = dma_pool_create(dev_name(chan2dev(chan)),
478 chan->chip->dev,
479 sizeof(struct axi_dma_lli),
480 64, 0);
481 if (!chan->desc_pool) {
482 dev_err(chan2dev(chan), "No memory for descriptors\n");
483 return -ENOMEM;
484 }
485 dev_vdbg(dchan2dev(dchan), "%s: allocating\n", axi_chan_name(chan));
486
487 pm_runtime_get(chan->chip->dev);
488
489 return 0;
490 }
491
dma_chan_free_chan_resources(struct dma_chan * dchan)492 static void dma_chan_free_chan_resources(struct dma_chan *dchan)
493 {
494 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
495
496 /* ASSERT: channel is idle */
497 if (axi_chan_is_hw_enable(chan))
498 dev_err(dchan2dev(dchan), "%s is non-idle!\n",
499 axi_chan_name(chan));
500
501 axi_chan_disable(chan);
502 axi_chan_irq_disable(chan, DWAXIDMAC_IRQ_ALL);
503
504 vchan_free_chan_resources(&chan->vc);
505
506 dma_pool_destroy(chan->desc_pool);
507 chan->desc_pool = NULL;
508 dev_vdbg(dchan2dev(dchan),
509 "%s: free resources, descriptor still allocated: %u\n",
510 axi_chan_name(chan), atomic_read(&chan->descs_allocated));
511
512 pm_runtime_put(chan->chip->dev);
513 }
514
dw_axi_dma_set_hw_channel(struct axi_dma_chan * chan,bool set)515 static void dw_axi_dma_set_hw_channel(struct axi_dma_chan *chan, bool set)
516 {
517 struct axi_dma_chip *chip = chan->chip;
518 unsigned long reg_value, val;
519
520 if (!chip->apb_regs) {
521 dev_err(chip->dev, "apb_regs not initialized\n");
522 return;
523 }
524
525 /*
526 * An unused DMA channel has a default value of 0x3F.
527 * Lock the DMA channel by assign a handshake number to the channel.
528 * Unlock the DMA channel by assign 0x3F to the channel.
529 */
530 if (set)
531 val = chan->hw_handshake_num;
532 else
533 val = UNUSED_CHANNEL;
534
535 reg_value = lo_hi_readq(chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
536
537 /* Channel is already allocated, set handshake as per channel ID */
538 /* 64 bit write should handle for 8 channels */
539
540 reg_value &= ~(DMA_APB_HS_SEL_MASK <<
541 (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
542 reg_value |= (val << (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
543 lo_hi_writeq(reg_value, chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
544
545 return;
546 }
547
548 /*
549 * If DW_axi_dmac sees CHx_CTL.ShadowReg_Or_LLI_Last bit of the fetched LLI
550 * as 1, it understands that the current block is the final block in the
551 * transfer and completes the DMA transfer operation at the end of current
552 * block transfer.
553 */
set_desc_last(struct axi_dma_hw_desc * desc)554 static void set_desc_last(struct axi_dma_hw_desc *desc)
555 {
556 u32 val;
557
558 val = le32_to_cpu(desc->lli->ctl_hi);
559 val |= CH_CTL_H_LLI_LAST;
560 desc->lli->ctl_hi = cpu_to_le32(val);
561 }
562
write_desc_sar(struct axi_dma_hw_desc * desc,dma_addr_t adr)563 static void write_desc_sar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
564 {
565 desc->lli->sar = cpu_to_le64(adr);
566 }
567
write_desc_dar(struct axi_dma_hw_desc * desc,dma_addr_t adr)568 static void write_desc_dar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
569 {
570 desc->lli->dar = cpu_to_le64(adr);
571 }
572
set_desc_src_master(struct axi_dma_hw_desc * desc)573 static void set_desc_src_master(struct axi_dma_hw_desc *desc)
574 {
575 u32 val;
576
577 /* Select AXI0 for source master */
578 val = le32_to_cpu(desc->lli->ctl_lo);
579 val &= ~CH_CTL_L_SRC_MAST;
580 desc->lli->ctl_lo = cpu_to_le32(val);
581 }
582
set_desc_dest_master(struct axi_dma_hw_desc * hw_desc,struct axi_dma_desc * desc)583 static void set_desc_dest_master(struct axi_dma_hw_desc *hw_desc,
584 struct axi_dma_desc *desc)
585 {
586 u32 val;
587
588 /* Select AXI1 for source master if available */
589 val = le32_to_cpu(hw_desc->lli->ctl_lo);
590 if (desc->chan->chip->dw->hdata->nr_masters > 1)
591 val |= CH_CTL_L_DST_MAST;
592 else
593 val &= ~CH_CTL_L_DST_MAST;
594
595 hw_desc->lli->ctl_lo = cpu_to_le32(val);
596 }
597
dw_axi_dma_set_hw_desc(struct axi_dma_chan * chan,struct axi_dma_hw_desc * hw_desc,dma_addr_t mem_addr,size_t len)598 static int dw_axi_dma_set_hw_desc(struct axi_dma_chan *chan,
599 struct axi_dma_hw_desc *hw_desc,
600 dma_addr_t mem_addr, size_t len)
601 {
602 unsigned int data_width = BIT(chan->chip->dw->hdata->m_data_width);
603 unsigned int reg_width;
604 unsigned int mem_width;
605 dma_addr_t device_addr;
606 size_t axi_block_ts;
607 size_t block_ts;
608 u32 ctllo, ctlhi;
609 u32 burst_len;
610
611 axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
612
613 mem_width = __ffs(data_width | mem_addr | len);
614 if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
615 mem_width = DWAXIDMAC_TRANS_WIDTH_32;
616
617 if (!IS_ALIGNED(mem_addr, 4)) {
618 dev_err(chan->chip->dev, "invalid buffer alignment\n");
619 return -EINVAL;
620 }
621
622 switch (chan->direction) {
623 case DMA_MEM_TO_DEV:
624 reg_width = __ffs(chan->config.dst_addr_width);
625 device_addr = chan->config.dst_addr;
626 ctllo = reg_width << CH_CTL_L_DST_WIDTH_POS |
627 mem_width << CH_CTL_L_SRC_WIDTH_POS |
628 DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_DST_INC_POS |
629 DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS;
630 block_ts = len >> mem_width;
631 break;
632 case DMA_DEV_TO_MEM:
633 reg_width = __ffs(chan->config.src_addr_width);
634 device_addr = chan->config.src_addr;
635 ctllo = reg_width << CH_CTL_L_SRC_WIDTH_POS |
636 mem_width << CH_CTL_L_DST_WIDTH_POS |
637 DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
638 DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_SRC_INC_POS;
639 block_ts = len >> reg_width;
640 break;
641 default:
642 return -EINVAL;
643 }
644
645 if (block_ts > axi_block_ts)
646 return -EINVAL;
647
648 hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
649 if (unlikely(!hw_desc->lli))
650 return -ENOMEM;
651
652 ctlhi = CH_CTL_H_LLI_VALID;
653
654 if (chan->chip->dw->hdata->restrict_axi_burst_len) {
655 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
656 ctlhi |= CH_CTL_H_ARLEN_EN | CH_CTL_H_AWLEN_EN |
657 burst_len << CH_CTL_H_ARLEN_POS |
658 burst_len << CH_CTL_H_AWLEN_POS;
659 }
660
661 hw_desc->lli->ctl_hi = cpu_to_le32(ctlhi);
662
663 if (chan->direction == DMA_MEM_TO_DEV) {
664 write_desc_sar(hw_desc, mem_addr);
665 write_desc_dar(hw_desc, device_addr);
666 } else {
667 write_desc_sar(hw_desc, device_addr);
668 write_desc_dar(hw_desc, mem_addr);
669 }
670
671 hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
672
673 ctllo |= DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
674 DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS;
675 hw_desc->lli->ctl_lo = cpu_to_le32(ctllo);
676
677 set_desc_src_master(hw_desc);
678
679 hw_desc->len = len;
680 return 0;
681 }
682
calculate_block_len(struct axi_dma_chan * chan,dma_addr_t dma_addr,size_t buf_len,enum dma_transfer_direction direction)683 static size_t calculate_block_len(struct axi_dma_chan *chan,
684 dma_addr_t dma_addr, size_t buf_len,
685 enum dma_transfer_direction direction)
686 {
687 u32 data_width, reg_width, mem_width;
688 size_t axi_block_ts, block_len;
689
690 axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
691
692 switch (direction) {
693 case DMA_MEM_TO_DEV:
694 data_width = BIT(chan->chip->dw->hdata->m_data_width);
695 mem_width = __ffs(data_width | dma_addr | buf_len);
696 if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
697 mem_width = DWAXIDMAC_TRANS_WIDTH_32;
698
699 block_len = axi_block_ts << mem_width;
700 break;
701 case DMA_DEV_TO_MEM:
702 reg_width = __ffs(chan->config.src_addr_width);
703 block_len = axi_block_ts << reg_width;
704 break;
705 default:
706 block_len = 0;
707 }
708
709 return block_len;
710 }
711
712 static struct dma_async_tx_descriptor *
dw_axi_dma_chan_prep_cyclic(struct dma_chan * dchan,dma_addr_t dma_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)713 dw_axi_dma_chan_prep_cyclic(struct dma_chan *dchan, dma_addr_t dma_addr,
714 size_t buf_len, size_t period_len,
715 enum dma_transfer_direction direction,
716 unsigned long flags)
717 {
718 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
719 struct axi_dma_hw_desc *hw_desc = NULL;
720 struct axi_dma_desc *desc = NULL;
721 dma_addr_t src_addr = dma_addr;
722 u32 num_periods, num_segments;
723 size_t axi_block_len;
724 u32 total_segments;
725 u32 segment_len;
726 unsigned int i;
727 int status;
728 u64 llp = 0;
729 u8 lms = 0; /* Select AXI0 master for LLI fetching */
730
731 num_periods = buf_len / period_len;
732
733 axi_block_len = calculate_block_len(chan, dma_addr, buf_len, direction);
734 if (axi_block_len == 0)
735 return NULL;
736
737 num_segments = DIV_ROUND_UP(period_len, axi_block_len);
738 segment_len = DIV_ROUND_UP(period_len, num_segments);
739
740 total_segments = num_periods * num_segments;
741
742 desc = axi_desc_alloc(total_segments);
743 if (unlikely(!desc))
744 goto err_desc_get;
745
746 chan->direction = direction;
747 desc->chan = chan;
748 chan->cyclic = true;
749 desc->length = 0;
750 desc->period_len = period_len;
751
752 for (i = 0; i < total_segments; i++) {
753 hw_desc = &desc->hw_desc[i];
754
755 status = dw_axi_dma_set_hw_desc(chan, hw_desc, src_addr,
756 segment_len);
757 if (status < 0)
758 goto err_desc_get;
759
760 desc->length += hw_desc->len;
761 /* Set end-of-link to the linked descriptor, so that cyclic
762 * callback function can be triggered during interrupt.
763 */
764 set_desc_last(hw_desc);
765
766 src_addr += segment_len;
767 }
768
769 llp = desc->hw_desc[0].llp;
770
771 /* Managed transfer list */
772 do {
773 hw_desc = &desc->hw_desc[--total_segments];
774 write_desc_llp(hw_desc, llp | lms);
775 llp = hw_desc->llp;
776 } while (total_segments);
777
778 dw_axi_dma_set_hw_channel(chan, true);
779
780 return vchan_tx_prep(&chan->vc, &desc->vd, flags);
781
782 err_desc_get:
783 if (desc)
784 axi_desc_put(desc);
785
786 return NULL;
787 }
788
789 static struct dma_async_tx_descriptor *
dw_axi_dma_chan_prep_slave_sg(struct dma_chan * dchan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)790 dw_axi_dma_chan_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
791 unsigned int sg_len,
792 enum dma_transfer_direction direction,
793 unsigned long flags, void *context)
794 {
795 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
796 struct axi_dma_hw_desc *hw_desc = NULL;
797 struct axi_dma_desc *desc = NULL;
798 u32 num_segments, segment_len;
799 unsigned int loop = 0;
800 struct scatterlist *sg;
801 size_t axi_block_len;
802 u32 len, num_sgs = 0;
803 unsigned int i;
804 dma_addr_t mem;
805 int status;
806 u64 llp = 0;
807 u8 lms = 0; /* Select AXI0 master for LLI fetching */
808
809 if (unlikely(!is_slave_direction(direction) || !sg_len))
810 return NULL;
811
812 mem = sg_dma_address(sgl);
813 len = sg_dma_len(sgl);
814
815 axi_block_len = calculate_block_len(chan, mem, len, direction);
816 if (axi_block_len == 0)
817 return NULL;
818
819 for_each_sg(sgl, sg, sg_len, i)
820 num_sgs += DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
821
822 desc = axi_desc_alloc(num_sgs);
823 if (unlikely(!desc))
824 goto err_desc_get;
825
826 desc->chan = chan;
827 desc->length = 0;
828 chan->direction = direction;
829
830 for_each_sg(sgl, sg, sg_len, i) {
831 mem = sg_dma_address(sg);
832 len = sg_dma_len(sg);
833 num_segments = DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
834 segment_len = DIV_ROUND_UP(sg_dma_len(sg), num_segments);
835
836 do {
837 hw_desc = &desc->hw_desc[loop++];
838 status = dw_axi_dma_set_hw_desc(chan, hw_desc, mem, segment_len);
839 if (status < 0)
840 goto err_desc_get;
841
842 desc->length += hw_desc->len;
843 len -= segment_len;
844 mem += segment_len;
845 } while (len >= segment_len);
846 }
847
848 /* Set end-of-link to the last link descriptor of list */
849 set_desc_last(&desc->hw_desc[num_sgs - 1]);
850
851 /* Managed transfer list */
852 do {
853 hw_desc = &desc->hw_desc[--num_sgs];
854 write_desc_llp(hw_desc, llp | lms);
855 llp = hw_desc->llp;
856 } while (num_sgs);
857
858 dw_axi_dma_set_hw_channel(chan, true);
859
860 return vchan_tx_prep(&chan->vc, &desc->vd, flags);
861
862 err_desc_get:
863 if (desc)
864 axi_desc_put(desc);
865
866 return NULL;
867 }
868
869 static struct dma_async_tx_descriptor *
dma_chan_prep_dma_memcpy(struct dma_chan * dchan,dma_addr_t dst_adr,dma_addr_t src_adr,size_t len,unsigned long flags)870 dma_chan_prep_dma_memcpy(struct dma_chan *dchan, dma_addr_t dst_adr,
871 dma_addr_t src_adr, size_t len, unsigned long flags)
872 {
873 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
874 size_t block_ts, max_block_ts, xfer_len;
875 struct axi_dma_hw_desc *hw_desc = NULL;
876 struct axi_dma_desc *desc = NULL;
877 u32 xfer_width, reg, num;
878 u64 llp = 0;
879 u8 lms = 0; /* Select AXI0 master for LLI fetching */
880
881 dev_dbg(chan2dev(chan), "%s: memcpy: src: %pad dst: %pad length: %zd flags: %#lx",
882 axi_chan_name(chan), &src_adr, &dst_adr, len, flags);
883
884 max_block_ts = chan->chip->dw->hdata->block_size[chan->id];
885 xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, len);
886 num = DIV_ROUND_UP(len, max_block_ts << xfer_width);
887 desc = axi_desc_alloc(num);
888 if (unlikely(!desc))
889 goto err_desc_get;
890
891 desc->chan = chan;
892 num = 0;
893 desc->length = 0;
894 while (len) {
895 xfer_len = len;
896
897 hw_desc = &desc->hw_desc[num];
898 /*
899 * Take care for the alignment.
900 * Actually source and destination widths can be different, but
901 * make them same to be simpler.
902 */
903 xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, xfer_len);
904
905 /*
906 * block_ts indicates the total number of data of width
907 * to be transferred in a DMA block transfer.
908 * BLOCK_TS register should be set to block_ts - 1
909 */
910 block_ts = xfer_len >> xfer_width;
911 if (block_ts > max_block_ts) {
912 block_ts = max_block_ts;
913 xfer_len = max_block_ts << xfer_width;
914 }
915
916 hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
917 if (unlikely(!hw_desc->lli))
918 goto err_desc_get;
919
920 write_desc_sar(hw_desc, src_adr);
921 write_desc_dar(hw_desc, dst_adr);
922 hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
923
924 reg = CH_CTL_H_LLI_VALID;
925 if (chan->chip->dw->hdata->restrict_axi_burst_len) {
926 u32 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
927
928 reg |= (CH_CTL_H_ARLEN_EN |
929 burst_len << CH_CTL_H_ARLEN_POS |
930 CH_CTL_H_AWLEN_EN |
931 burst_len << CH_CTL_H_AWLEN_POS);
932 }
933 hw_desc->lli->ctl_hi = cpu_to_le32(reg);
934
935 reg = (DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
936 DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS |
937 xfer_width << CH_CTL_L_DST_WIDTH_POS |
938 xfer_width << CH_CTL_L_SRC_WIDTH_POS |
939 DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
940 DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS);
941 hw_desc->lli->ctl_lo = cpu_to_le32(reg);
942
943 set_desc_src_master(hw_desc);
944 set_desc_dest_master(hw_desc, desc);
945
946 hw_desc->len = xfer_len;
947 desc->length += hw_desc->len;
948 /* update the length and addresses for the next loop cycle */
949 len -= xfer_len;
950 dst_adr += xfer_len;
951 src_adr += xfer_len;
952 num++;
953 }
954
955 /* Set end-of-link to the last link descriptor of list */
956 set_desc_last(&desc->hw_desc[num - 1]);
957 /* Managed transfer list */
958 do {
959 hw_desc = &desc->hw_desc[--num];
960 write_desc_llp(hw_desc, llp | lms);
961 llp = hw_desc->llp;
962 } while (num);
963
964 return vchan_tx_prep(&chan->vc, &desc->vd, flags);
965
966 err_desc_get:
967 if (desc)
968 axi_desc_put(desc);
969 return NULL;
970 }
971
dw_axi_dma_chan_slave_config(struct dma_chan * dchan,struct dma_slave_config * config)972 static int dw_axi_dma_chan_slave_config(struct dma_chan *dchan,
973 struct dma_slave_config *config)
974 {
975 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
976
977 memcpy(&chan->config, config, sizeof(*config));
978
979 return 0;
980 }
981
axi_chan_dump_lli(struct axi_dma_chan * chan,struct axi_dma_hw_desc * desc)982 static void axi_chan_dump_lli(struct axi_dma_chan *chan,
983 struct axi_dma_hw_desc *desc)
984 {
985 dev_err(dchan2dev(&chan->vc.chan),
986 "SAR: 0x%llx DAR: 0x%llx LLP: 0x%llx BTS 0x%x CTL: 0x%x:%08x",
987 le64_to_cpu(desc->lli->sar),
988 le64_to_cpu(desc->lli->dar),
989 le64_to_cpu(desc->lli->llp),
990 le32_to_cpu(desc->lli->block_ts_lo),
991 le32_to_cpu(desc->lli->ctl_hi),
992 le32_to_cpu(desc->lli->ctl_lo));
993 }
994
axi_chan_list_dump_lli(struct axi_dma_chan * chan,struct axi_dma_desc * desc_head)995 static void axi_chan_list_dump_lli(struct axi_dma_chan *chan,
996 struct axi_dma_desc *desc_head)
997 {
998 int count = atomic_read(&chan->descs_allocated);
999 int i;
1000
1001 for (i = 0; i < count; i++)
1002 axi_chan_dump_lli(chan, &desc_head->hw_desc[i]);
1003 }
1004
axi_chan_handle_err(struct axi_dma_chan * chan,u32 status)1005 static noinline void axi_chan_handle_err(struct axi_dma_chan *chan, u32 status)
1006 {
1007 struct virt_dma_desc *vd;
1008 unsigned long flags;
1009
1010 spin_lock_irqsave(&chan->vc.lock, flags);
1011
1012 axi_chan_disable(chan);
1013
1014 /* The bad descriptor currently is in the head of vc list */
1015 vd = vchan_next_desc(&chan->vc);
1016 /* Remove the completed descriptor from issued list */
1017 list_del(&vd->node);
1018
1019 /* WARN about bad descriptor */
1020 dev_err(chan2dev(chan),
1021 "Bad descriptor submitted for %s, cookie: %d, irq: 0x%08x\n",
1022 axi_chan_name(chan), vd->tx.cookie, status);
1023 axi_chan_list_dump_lli(chan, vd_to_axi_desc(vd));
1024
1025 vchan_cookie_complete(vd);
1026
1027 /* Try to restart the controller */
1028 axi_chan_start_first_queued(chan);
1029
1030 spin_unlock_irqrestore(&chan->vc.lock, flags);
1031 }
1032
axi_chan_block_xfer_complete(struct axi_dma_chan * chan)1033 static void axi_chan_block_xfer_complete(struct axi_dma_chan *chan)
1034 {
1035 int count = atomic_read(&chan->descs_allocated);
1036 struct axi_dma_hw_desc *hw_desc;
1037 struct axi_dma_desc *desc;
1038 struct virt_dma_desc *vd;
1039 unsigned long flags;
1040 u64 llp;
1041 int i;
1042
1043 spin_lock_irqsave(&chan->vc.lock, flags);
1044 if (unlikely(axi_chan_is_hw_enable(chan))) {
1045 dev_err(chan2dev(chan), "BUG: %s caught DWAXIDMAC_IRQ_DMA_TRF, but channel not idle!\n",
1046 axi_chan_name(chan));
1047 axi_chan_disable(chan);
1048 }
1049
1050 /* The completed descriptor currently is in the head of vc list */
1051 vd = vchan_next_desc(&chan->vc);
1052
1053 if (chan->cyclic) {
1054 desc = vd_to_axi_desc(vd);
1055 if (desc) {
1056 llp = lo_hi_readq(chan->chan_regs + CH_LLP);
1057 for (i = 0; i < count; i++) {
1058 hw_desc = &desc->hw_desc[i];
1059 if (hw_desc->llp == llp) {
1060 axi_chan_irq_clear(chan, hw_desc->lli->status_lo);
1061 hw_desc->lli->ctl_hi |= CH_CTL_H_LLI_VALID;
1062 desc->completed_blocks = i;
1063
1064 if (((hw_desc->len * (i + 1)) % desc->period_len) == 0)
1065 vchan_cyclic_callback(vd);
1066 break;
1067 }
1068 }
1069
1070 axi_chan_enable(chan);
1071 }
1072 } else {
1073 /* Remove the completed descriptor from issued list before completing */
1074 list_del(&vd->node);
1075 vchan_cookie_complete(vd);
1076
1077 /* Submit queued descriptors after processing the completed ones */
1078 axi_chan_start_first_queued(chan);
1079 }
1080
1081 spin_unlock_irqrestore(&chan->vc.lock, flags);
1082 }
1083
dw_axi_dma_interrupt(int irq,void * dev_id)1084 static irqreturn_t dw_axi_dma_interrupt(int irq, void *dev_id)
1085 {
1086 struct axi_dma_chip *chip = dev_id;
1087 struct dw_axi_dma *dw = chip->dw;
1088 struct axi_dma_chan *chan;
1089
1090 u32 status, i;
1091
1092 /* Disable DMAC inerrupts. We'll enable them after processing chanels */
1093 axi_dma_irq_disable(chip);
1094
1095 /* Poll, clear and process every chanel interrupt status */
1096 for (i = 0; i < dw->hdata->nr_channels; i++) {
1097 chan = &dw->chan[i];
1098 status = axi_chan_irq_read(chan);
1099 axi_chan_irq_clear(chan, status);
1100
1101 dev_vdbg(chip->dev, "%s %u IRQ status: 0x%08x\n",
1102 axi_chan_name(chan), i, status);
1103
1104 if (status & DWAXIDMAC_IRQ_ALL_ERR)
1105 axi_chan_handle_err(chan, status);
1106 else if (status & DWAXIDMAC_IRQ_DMA_TRF)
1107 axi_chan_block_xfer_complete(chan);
1108 }
1109
1110 /* Re-enable interrupts */
1111 axi_dma_irq_enable(chip);
1112
1113 return IRQ_HANDLED;
1114 }
1115
dma_chan_terminate_all(struct dma_chan * dchan)1116 static int dma_chan_terminate_all(struct dma_chan *dchan)
1117 {
1118 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1119 u32 chan_active = BIT(chan->id) << DMAC_CHAN_EN_SHIFT;
1120 unsigned long flags;
1121 u32 val;
1122 int ret;
1123 LIST_HEAD(head);
1124
1125 axi_chan_disable(chan);
1126
1127 ret = readl_poll_timeout_atomic(chan->chip->regs + DMAC_CHEN, val,
1128 !(val & chan_active), 1000, 10000);
1129 if (ret == -ETIMEDOUT)
1130 dev_warn(dchan2dev(dchan),
1131 "%s failed to stop\n", axi_chan_name(chan));
1132
1133 if (chan->direction != DMA_MEM_TO_MEM)
1134 dw_axi_dma_set_hw_channel(chan, false);
1135 if (chan->direction == DMA_MEM_TO_DEV)
1136 dw_axi_dma_set_byte_halfword(chan, false);
1137
1138 spin_lock_irqsave(&chan->vc.lock, flags);
1139
1140 vchan_get_all_descriptors(&chan->vc, &head);
1141
1142 chan->cyclic = false;
1143 spin_unlock_irqrestore(&chan->vc.lock, flags);
1144
1145 vchan_dma_desc_free_list(&chan->vc, &head);
1146
1147 dev_vdbg(dchan2dev(dchan), "terminated: %s\n", axi_chan_name(chan));
1148
1149 return 0;
1150 }
1151
dma_chan_pause(struct dma_chan * dchan)1152 static int dma_chan_pause(struct dma_chan *dchan)
1153 {
1154 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1155 unsigned long flags;
1156 unsigned int timeout = 20; /* timeout iterations */
1157 u32 val;
1158
1159 spin_lock_irqsave(&chan->vc.lock, flags);
1160
1161 if (chan->chip->dw->hdata->reg_map_8_channels) {
1162 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1163 val |= BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT |
1164 BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT;
1165 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1166 } else {
1167 val = BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT |
1168 BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT;
1169 axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, val);
1170 }
1171
1172 do {
1173 if (axi_chan_irq_read(chan) & DWAXIDMAC_IRQ_SUSPENDED)
1174 break;
1175
1176 udelay(2);
1177 } while (--timeout);
1178
1179 axi_chan_irq_clear(chan, DWAXIDMAC_IRQ_SUSPENDED);
1180
1181 chan->is_paused = true;
1182
1183 spin_unlock_irqrestore(&chan->vc.lock, flags);
1184
1185 return timeout ? 0 : -EAGAIN;
1186 }
1187
1188 /* Called in chan locked context */
axi_chan_resume(struct axi_dma_chan * chan)1189 static inline void axi_chan_resume(struct axi_dma_chan *chan)
1190 {
1191 u32 val;
1192
1193 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1194 if (chan->chip->dw->hdata->reg_map_8_channels) {
1195 val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT);
1196 val |= (BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT);
1197 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1198 } else {
1199 val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT);
1200 val |= (BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT);
1201 axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, val);
1202 }
1203
1204 chan->is_paused = false;
1205 }
1206
dma_chan_resume(struct dma_chan * dchan)1207 static int dma_chan_resume(struct dma_chan *dchan)
1208 {
1209 struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1210 unsigned long flags;
1211
1212 spin_lock_irqsave(&chan->vc.lock, flags);
1213
1214 if (chan->is_paused)
1215 axi_chan_resume(chan);
1216
1217 spin_unlock_irqrestore(&chan->vc.lock, flags);
1218
1219 return 0;
1220 }
1221
axi_dma_suspend(struct axi_dma_chip * chip)1222 static int axi_dma_suspend(struct axi_dma_chip *chip)
1223 {
1224 axi_dma_irq_disable(chip);
1225 axi_dma_disable(chip);
1226
1227 clk_disable_unprepare(chip->core_clk);
1228 clk_disable_unprepare(chip->cfgr_clk);
1229
1230 return 0;
1231 }
1232
axi_dma_resume(struct axi_dma_chip * chip)1233 static int axi_dma_resume(struct axi_dma_chip *chip)
1234 {
1235 int ret;
1236
1237 ret = clk_prepare_enable(chip->cfgr_clk);
1238 if (ret < 0)
1239 return ret;
1240
1241 ret = clk_prepare_enable(chip->core_clk);
1242 if (ret < 0)
1243 return ret;
1244
1245 axi_dma_enable(chip);
1246 axi_dma_irq_enable(chip);
1247
1248 return 0;
1249 }
1250
axi_dma_runtime_suspend(struct device * dev)1251 static int __maybe_unused axi_dma_runtime_suspend(struct device *dev)
1252 {
1253 struct axi_dma_chip *chip = dev_get_drvdata(dev);
1254
1255 return axi_dma_suspend(chip);
1256 }
1257
axi_dma_runtime_resume(struct device * dev)1258 static int __maybe_unused axi_dma_runtime_resume(struct device *dev)
1259 {
1260 struct axi_dma_chip *chip = dev_get_drvdata(dev);
1261
1262 return axi_dma_resume(chip);
1263 }
1264
dw_axi_dma_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1265 static struct dma_chan *dw_axi_dma_of_xlate(struct of_phandle_args *dma_spec,
1266 struct of_dma *ofdma)
1267 {
1268 struct dw_axi_dma *dw = ofdma->of_dma_data;
1269 struct axi_dma_chan *chan;
1270 struct dma_chan *dchan;
1271
1272 dchan = dma_get_any_slave_channel(&dw->dma);
1273 if (!dchan)
1274 return NULL;
1275
1276 chan = dchan_to_axi_dma_chan(dchan);
1277 chan->hw_handshake_num = dma_spec->args[0];
1278 return dchan;
1279 }
1280
parse_device_properties(struct axi_dma_chip * chip)1281 static int parse_device_properties(struct axi_dma_chip *chip)
1282 {
1283 struct device *dev = chip->dev;
1284 u32 tmp, carr[DMAC_MAX_CHANNELS];
1285 int ret;
1286
1287 ret = device_property_read_u32(dev, "dma-channels", &tmp);
1288 if (ret)
1289 return ret;
1290 if (tmp == 0 || tmp > DMAC_MAX_CHANNELS)
1291 return -EINVAL;
1292
1293 chip->dw->hdata->nr_channels = tmp;
1294 if (tmp <= DMA_REG_MAP_CH_REF)
1295 chip->dw->hdata->reg_map_8_channels = true;
1296
1297 ret = device_property_read_u32(dev, "snps,dma-masters", &tmp);
1298 if (ret)
1299 return ret;
1300 if (tmp == 0 || tmp > DMAC_MAX_MASTERS)
1301 return -EINVAL;
1302
1303 chip->dw->hdata->nr_masters = tmp;
1304
1305 ret = device_property_read_u32(dev, "snps,data-width", &tmp);
1306 if (ret)
1307 return ret;
1308 if (tmp > DWAXIDMAC_TRANS_WIDTH_MAX)
1309 return -EINVAL;
1310
1311 chip->dw->hdata->m_data_width = tmp;
1312
1313 ret = device_property_read_u32_array(dev, "snps,block-size", carr,
1314 chip->dw->hdata->nr_channels);
1315 if (ret)
1316 return ret;
1317 for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1318 if (carr[tmp] == 0 || carr[tmp] > DMAC_MAX_BLK_SIZE)
1319 return -EINVAL;
1320
1321 chip->dw->hdata->block_size[tmp] = carr[tmp];
1322 }
1323
1324 ret = device_property_read_u32_array(dev, "snps,priority", carr,
1325 chip->dw->hdata->nr_channels);
1326 if (ret)
1327 return ret;
1328 /* Priority value must be programmed within [0:nr_channels-1] range */
1329 for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1330 if (carr[tmp] >= chip->dw->hdata->nr_channels)
1331 return -EINVAL;
1332
1333 chip->dw->hdata->priority[tmp] = carr[tmp];
1334 }
1335
1336 /* axi-max-burst-len is optional property */
1337 ret = device_property_read_u32(dev, "snps,axi-max-burst-len", &tmp);
1338 if (!ret) {
1339 if (tmp > DWAXIDMAC_ARWLEN_MAX + 1)
1340 return -EINVAL;
1341 if (tmp < DWAXIDMAC_ARWLEN_MIN + 1)
1342 return -EINVAL;
1343
1344 chip->dw->hdata->restrict_axi_burst_len = true;
1345 chip->dw->hdata->axi_rw_burst_len = tmp;
1346 }
1347
1348 return 0;
1349 }
1350
dw_probe(struct platform_device * pdev)1351 static int dw_probe(struct platform_device *pdev)
1352 {
1353 struct device_node *node = pdev->dev.of_node;
1354 struct axi_dma_chip *chip;
1355 struct resource *mem;
1356 struct dw_axi_dma *dw;
1357 struct dw_axi_dma_hcfg *hdata;
1358 u32 i;
1359 int ret;
1360
1361 chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
1362 if (!chip)
1363 return -ENOMEM;
1364
1365 dw = devm_kzalloc(&pdev->dev, sizeof(*dw), GFP_KERNEL);
1366 if (!dw)
1367 return -ENOMEM;
1368
1369 hdata = devm_kzalloc(&pdev->dev, sizeof(*hdata), GFP_KERNEL);
1370 if (!hdata)
1371 return -ENOMEM;
1372
1373 chip->dw = dw;
1374 chip->dev = &pdev->dev;
1375 chip->dw->hdata = hdata;
1376
1377 chip->irq = platform_get_irq(pdev, 0);
1378 if (chip->irq < 0)
1379 return chip->irq;
1380
1381 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1382 chip->regs = devm_ioremap_resource(chip->dev, mem);
1383 if (IS_ERR(chip->regs))
1384 return PTR_ERR(chip->regs);
1385
1386 if (of_device_is_compatible(node, "intel,kmb-axi-dma")) {
1387 chip->apb_regs = devm_platform_ioremap_resource(pdev, 1);
1388 if (IS_ERR(chip->apb_regs))
1389 return PTR_ERR(chip->apb_regs);
1390 }
1391
1392 chip->core_clk = devm_clk_get(chip->dev, "core-clk");
1393 if (IS_ERR(chip->core_clk))
1394 return PTR_ERR(chip->core_clk);
1395
1396 chip->cfgr_clk = devm_clk_get(chip->dev, "cfgr-clk");
1397 if (IS_ERR(chip->cfgr_clk))
1398 return PTR_ERR(chip->cfgr_clk);
1399
1400 ret = parse_device_properties(chip);
1401 if (ret)
1402 return ret;
1403
1404 dw->chan = devm_kcalloc(chip->dev, hdata->nr_channels,
1405 sizeof(*dw->chan), GFP_KERNEL);
1406 if (!dw->chan)
1407 return -ENOMEM;
1408
1409 ret = devm_request_irq(chip->dev, chip->irq, dw_axi_dma_interrupt,
1410 IRQF_SHARED, KBUILD_MODNAME, chip);
1411 if (ret)
1412 return ret;
1413
1414 INIT_LIST_HEAD(&dw->dma.channels);
1415 for (i = 0; i < hdata->nr_channels; i++) {
1416 struct axi_dma_chan *chan = &dw->chan[i];
1417
1418 chan->chip = chip;
1419 chan->id = i;
1420 chan->chan_regs = chip->regs + COMMON_REG_LEN + i * CHAN_REG_LEN;
1421 atomic_set(&chan->descs_allocated, 0);
1422
1423 chan->vc.desc_free = vchan_desc_put;
1424 vchan_init(&chan->vc, &dw->dma);
1425 }
1426
1427 /* Set capabilities */
1428 dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
1429 dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
1430 dma_cap_set(DMA_CYCLIC, dw->dma.cap_mask);
1431
1432 /* DMA capabilities */
1433 dw->dma.chancnt = hdata->nr_channels;
1434 dw->dma.max_burst = hdata->axi_rw_burst_len;
1435 dw->dma.src_addr_widths = AXI_DMA_BUSWIDTHS;
1436 dw->dma.dst_addr_widths = AXI_DMA_BUSWIDTHS;
1437 dw->dma.directions = BIT(DMA_MEM_TO_MEM);
1438 dw->dma.directions |= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1439 dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1440
1441 dw->dma.dev = chip->dev;
1442 dw->dma.device_tx_status = dma_chan_tx_status;
1443 dw->dma.device_issue_pending = dma_chan_issue_pending;
1444 dw->dma.device_terminate_all = dma_chan_terminate_all;
1445 dw->dma.device_pause = dma_chan_pause;
1446 dw->dma.device_resume = dma_chan_resume;
1447
1448 dw->dma.device_alloc_chan_resources = dma_chan_alloc_chan_resources;
1449 dw->dma.device_free_chan_resources = dma_chan_free_chan_resources;
1450
1451 dw->dma.device_prep_dma_memcpy = dma_chan_prep_dma_memcpy;
1452 dw->dma.device_synchronize = dw_axi_dma_synchronize;
1453 dw->dma.device_config = dw_axi_dma_chan_slave_config;
1454 dw->dma.device_prep_slave_sg = dw_axi_dma_chan_prep_slave_sg;
1455 dw->dma.device_prep_dma_cyclic = dw_axi_dma_chan_prep_cyclic;
1456
1457 /*
1458 * Synopsis DesignWare AxiDMA datasheet mentioned Maximum
1459 * supported blocks is 1024. Device register width is 4 bytes.
1460 * Therefore, set constraint to 1024 * 4.
1461 */
1462 dw->dma.dev->dma_parms = &dw->dma_parms;
1463 dma_set_max_seg_size(&pdev->dev, MAX_BLOCK_SIZE);
1464 platform_set_drvdata(pdev, chip);
1465
1466 pm_runtime_enable(chip->dev);
1467
1468 /*
1469 * We can't just call pm_runtime_get here instead of
1470 * pm_runtime_get_noresume + axi_dma_resume because we need
1471 * driver to work also without Runtime PM.
1472 */
1473 pm_runtime_get_noresume(chip->dev);
1474 ret = axi_dma_resume(chip);
1475 if (ret < 0)
1476 goto err_pm_disable;
1477
1478 axi_dma_hw_init(chip);
1479
1480 pm_runtime_put(chip->dev);
1481
1482 ret = dmaenginem_async_device_register(&dw->dma);
1483 if (ret)
1484 goto err_pm_disable;
1485
1486 /* Register with OF helpers for DMA lookups */
1487 ret = of_dma_controller_register(pdev->dev.of_node,
1488 dw_axi_dma_of_xlate, dw);
1489 if (ret < 0)
1490 dev_warn(&pdev->dev,
1491 "Failed to register OF DMA controller, fallback to MEM_TO_MEM mode\n");
1492
1493 dev_info(chip->dev, "DesignWare AXI DMA Controller, %d channels\n",
1494 dw->hdata->nr_channels);
1495
1496 return 0;
1497
1498 err_pm_disable:
1499 pm_runtime_disable(chip->dev);
1500
1501 return ret;
1502 }
1503
dw_remove(struct platform_device * pdev)1504 static int dw_remove(struct platform_device *pdev)
1505 {
1506 struct axi_dma_chip *chip = platform_get_drvdata(pdev);
1507 struct dw_axi_dma *dw = chip->dw;
1508 struct axi_dma_chan *chan, *_chan;
1509 u32 i;
1510
1511 /* Enable clk before accessing to registers */
1512 clk_prepare_enable(chip->cfgr_clk);
1513 clk_prepare_enable(chip->core_clk);
1514 axi_dma_irq_disable(chip);
1515 for (i = 0; i < dw->hdata->nr_channels; i++) {
1516 axi_chan_disable(&chip->dw->chan[i]);
1517 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
1518 }
1519 axi_dma_disable(chip);
1520
1521 pm_runtime_disable(chip->dev);
1522 axi_dma_suspend(chip);
1523
1524 devm_free_irq(chip->dev, chip->irq, chip);
1525
1526 of_dma_controller_free(chip->dev->of_node);
1527
1528 list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
1529 vc.chan.device_node) {
1530 list_del(&chan->vc.chan.device_node);
1531 tasklet_kill(&chan->vc.task);
1532 }
1533
1534 return 0;
1535 }
1536
1537 static const struct dev_pm_ops dw_axi_dma_pm_ops = {
1538 SET_RUNTIME_PM_OPS(axi_dma_runtime_suspend, axi_dma_runtime_resume, NULL)
1539 };
1540
1541 static const struct of_device_id dw_dma_of_id_table[] = {
1542 { .compatible = "snps,axi-dma-1.01a" },
1543 { .compatible = "intel,kmb-axi-dma" },
1544 {}
1545 };
1546 MODULE_DEVICE_TABLE(of, dw_dma_of_id_table);
1547
1548 static struct platform_driver dw_driver = {
1549 .probe = dw_probe,
1550 .remove = dw_remove,
1551 .driver = {
1552 .name = KBUILD_MODNAME,
1553 .of_match_table = dw_dma_of_id_table,
1554 .pm = &dw_axi_dma_pm_ops,
1555 },
1556 };
1557 module_platform_driver(dw_driver);
1558
1559 MODULE_LICENSE("GPL v2");
1560 MODULE_DESCRIPTION("Synopsys DesignWare AXI DMA Controller platform driver");
1561 MODULE_AUTHOR("Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>");
1562