1 /*
2 * Copyright 2016-2018 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/printk.h>
25 #include <linux/slab.h>
26 #include <linux/uaccess.h>
27 #include "kfd_priv.h"
28 #include "kfd_mqd_manager.h"
29 #include "v9_structs.h"
30 #include "gc/gc_9_0_offset.h"
31 #include "gc/gc_9_0_sh_mask.h"
32 #include "sdma0/sdma0_4_0_sh_mask.h"
33 #include "amdgpu_amdkfd.h"
34
get_mqd(void * mqd)35 static inline struct v9_mqd *get_mqd(void *mqd)
36 {
37 return (struct v9_mqd *)mqd;
38 }
39
get_sdma_mqd(void * mqd)40 static inline struct v9_sdma_mqd *get_sdma_mqd(void *mqd)
41 {
42 return (struct v9_sdma_mqd *)mqd;
43 }
44
update_cu_mask(struct mqd_manager * mm,void * mqd,struct mqd_update_info * minfo)45 static void update_cu_mask(struct mqd_manager *mm, void *mqd,
46 struct mqd_update_info *minfo)
47 {
48 struct v9_mqd *m;
49 uint32_t se_mask[KFD_MAX_NUM_SE] = {0};
50
51 if (!minfo || (minfo->update_flag != UPDATE_FLAG_CU_MASK) ||
52 !minfo->cu_mask.ptr)
53 return;
54
55 mqd_symmetrically_map_cu_mask(mm,
56 minfo->cu_mask.ptr, minfo->cu_mask.count, se_mask);
57
58 m = get_mqd(mqd);
59 m->compute_static_thread_mgmt_se0 = se_mask[0];
60 m->compute_static_thread_mgmt_se1 = se_mask[1];
61 m->compute_static_thread_mgmt_se2 = se_mask[2];
62 m->compute_static_thread_mgmt_se3 = se_mask[3];
63 m->compute_static_thread_mgmt_se4 = se_mask[4];
64 m->compute_static_thread_mgmt_se5 = se_mask[5];
65 m->compute_static_thread_mgmt_se6 = se_mask[6];
66 m->compute_static_thread_mgmt_se7 = se_mask[7];
67
68 pr_debug("update cu mask to %#x %#x %#x %#x %#x %#x %#x %#x\n",
69 m->compute_static_thread_mgmt_se0,
70 m->compute_static_thread_mgmt_se1,
71 m->compute_static_thread_mgmt_se2,
72 m->compute_static_thread_mgmt_se3,
73 m->compute_static_thread_mgmt_se4,
74 m->compute_static_thread_mgmt_se5,
75 m->compute_static_thread_mgmt_se6,
76 m->compute_static_thread_mgmt_se7);
77 }
78
set_priority(struct v9_mqd * m,struct queue_properties * q)79 static void set_priority(struct v9_mqd *m, struct queue_properties *q)
80 {
81 m->cp_hqd_pipe_priority = pipe_priority_map[q->priority];
82 m->cp_hqd_queue_priority = q->priority;
83 }
84
allocate_mqd(struct kfd_dev * kfd,struct queue_properties * q)85 static struct kfd_mem_obj *allocate_mqd(struct kfd_dev *kfd,
86 struct queue_properties *q)
87 {
88 int retval;
89 struct kfd_mem_obj *mqd_mem_obj = NULL;
90
91 /* For V9 only, due to a HW bug, the control stack of a user mode
92 * compute queue needs to be allocated just behind the page boundary
93 * of its regular MQD buffer. So we allocate an enlarged MQD buffer:
94 * the first page of the buffer serves as the regular MQD buffer
95 * purpose and the remaining is for control stack. Although the two
96 * parts are in the same buffer object, they need different memory
97 * types: MQD part needs UC (uncached) as usual, while control stack
98 * needs NC (non coherent), which is different from the UC type which
99 * is used when control stack is allocated in user space.
100 *
101 * Because of all those, we use the gtt allocation function instead
102 * of sub-allocation function for this enlarged MQD buffer. Moreover,
103 * in order to achieve two memory types in a single buffer object, we
104 * pass a special bo flag AMDGPU_GEM_CREATE_CP_MQD_GFX9 to instruct
105 * amdgpu memory functions to do so.
106 */
107 if (kfd->cwsr_enabled && (q->type == KFD_QUEUE_TYPE_COMPUTE)) {
108 mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
109 if (!mqd_mem_obj)
110 return NULL;
111 retval = amdgpu_amdkfd_alloc_gtt_mem(kfd->kgd,
112 ALIGN(q->ctl_stack_size, PAGE_SIZE) +
113 ALIGN(sizeof(struct v9_mqd), PAGE_SIZE),
114 &(mqd_mem_obj->gtt_mem),
115 &(mqd_mem_obj->gpu_addr),
116 (void *)&(mqd_mem_obj->cpu_ptr), true);
117 } else {
118 retval = kfd_gtt_sa_allocate(kfd, sizeof(struct v9_mqd),
119 &mqd_mem_obj);
120 }
121
122 if (retval) {
123 kfree(mqd_mem_obj);
124 return NULL;
125 }
126
127 return mqd_mem_obj;
128
129 }
130
init_mqd(struct mqd_manager * mm,void ** mqd,struct kfd_mem_obj * mqd_mem_obj,uint64_t * gart_addr,struct queue_properties * q)131 static void init_mqd(struct mqd_manager *mm, void **mqd,
132 struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
133 struct queue_properties *q)
134 {
135 uint64_t addr;
136 struct v9_mqd *m;
137
138 m = (struct v9_mqd *) mqd_mem_obj->cpu_ptr;
139 addr = mqd_mem_obj->gpu_addr;
140
141 memset(m, 0, sizeof(struct v9_mqd));
142
143 m->header = 0xC0310800;
144 m->compute_pipelinestat_enable = 1;
145 m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
146 m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
147 m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
148 m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
149 m->compute_static_thread_mgmt_se4 = 0xFFFFFFFF;
150 m->compute_static_thread_mgmt_se5 = 0xFFFFFFFF;
151 m->compute_static_thread_mgmt_se6 = 0xFFFFFFFF;
152 m->compute_static_thread_mgmt_se7 = 0xFFFFFFFF;
153
154 m->cp_hqd_persistent_state = CP_HQD_PERSISTENT_STATE__PRELOAD_REQ_MASK |
155 0x53 << CP_HQD_PERSISTENT_STATE__PRELOAD_SIZE__SHIFT;
156
157 m->cp_mqd_control = 1 << CP_MQD_CONTROL__PRIV_STATE__SHIFT;
158
159 m->cp_mqd_base_addr_lo = lower_32_bits(addr);
160 m->cp_mqd_base_addr_hi = upper_32_bits(addr);
161
162 m->cp_hqd_quantum = 1 << CP_HQD_QUANTUM__QUANTUM_EN__SHIFT |
163 1 << CP_HQD_QUANTUM__QUANTUM_SCALE__SHIFT |
164 1 << CP_HQD_QUANTUM__QUANTUM_DURATION__SHIFT;
165
166 if (q->format == KFD_QUEUE_FORMAT_AQL) {
167 m->cp_hqd_aql_control =
168 1 << CP_HQD_AQL_CONTROL__CONTROL0__SHIFT;
169 }
170
171 if (q->tba_addr) {
172 m->compute_pgm_rsrc2 |=
173 (1 << COMPUTE_PGM_RSRC2__TRAP_PRESENT__SHIFT);
174 }
175
176 if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address) {
177 m->cp_hqd_persistent_state |=
178 (1 << CP_HQD_PERSISTENT_STATE__QSWITCH_MODE__SHIFT);
179 m->cp_hqd_ctx_save_base_addr_lo =
180 lower_32_bits(q->ctx_save_restore_area_address);
181 m->cp_hqd_ctx_save_base_addr_hi =
182 upper_32_bits(q->ctx_save_restore_area_address);
183 m->cp_hqd_ctx_save_size = q->ctx_save_restore_area_size;
184 m->cp_hqd_cntl_stack_size = q->ctl_stack_size;
185 m->cp_hqd_cntl_stack_offset = q->ctl_stack_size;
186 m->cp_hqd_wg_state_offset = q->ctl_stack_size;
187 }
188
189 *mqd = m;
190 if (gart_addr)
191 *gart_addr = addr;
192 mm->update_mqd(mm, m, q, NULL);
193 }
194
load_mqd(struct mqd_manager * mm,void * mqd,uint32_t pipe_id,uint32_t queue_id,struct queue_properties * p,struct mm_struct * mms)195 static int load_mqd(struct mqd_manager *mm, void *mqd,
196 uint32_t pipe_id, uint32_t queue_id,
197 struct queue_properties *p, struct mm_struct *mms)
198 {
199 /* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
200 uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
201
202 return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id,
203 (uint32_t __user *)p->write_ptr,
204 wptr_shift, 0, mms);
205 }
206
hiq_load_mqd_kiq(struct mqd_manager * mm,void * mqd,uint32_t pipe_id,uint32_t queue_id,struct queue_properties * p,struct mm_struct * mms)207 static int hiq_load_mqd_kiq(struct mqd_manager *mm, void *mqd,
208 uint32_t pipe_id, uint32_t queue_id,
209 struct queue_properties *p, struct mm_struct *mms)
210 {
211 return mm->dev->kfd2kgd->hiq_mqd_load(mm->dev->kgd, mqd, pipe_id,
212 queue_id, p->doorbell_off);
213 }
214
update_mqd(struct mqd_manager * mm,void * mqd,struct queue_properties * q,struct mqd_update_info * minfo)215 static void update_mqd(struct mqd_manager *mm, void *mqd,
216 struct queue_properties *q,
217 struct mqd_update_info *minfo)
218 {
219 struct v9_mqd *m;
220
221 m = get_mqd(mqd);
222
223 m->cp_hqd_pq_control = 5 << CP_HQD_PQ_CONTROL__RPTR_BLOCK_SIZE__SHIFT;
224 m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1;
225 pr_debug("cp_hqd_pq_control 0x%x\n", m->cp_hqd_pq_control);
226
227 m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
228 m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
229
230 m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
231 m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
232 m->cp_hqd_pq_wptr_poll_addr_lo = lower_32_bits((uint64_t)q->write_ptr);
233 m->cp_hqd_pq_wptr_poll_addr_hi = upper_32_bits((uint64_t)q->write_ptr);
234
235 m->cp_hqd_pq_doorbell_control =
236 q->doorbell_off <<
237 CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_OFFSET__SHIFT;
238 pr_debug("cp_hqd_pq_doorbell_control 0x%x\n",
239 m->cp_hqd_pq_doorbell_control);
240
241 m->cp_hqd_ib_control =
242 3 << CP_HQD_IB_CONTROL__MIN_IB_AVAIL_SIZE__SHIFT |
243 1 << CP_HQD_IB_CONTROL__IB_EXE_DISABLE__SHIFT;
244
245 /*
246 * HW does not clamp this field correctly. Maximum EOP queue size
247 * is constrained by per-SE EOP done signal count, which is 8-bit.
248 * Limit is 0xFF EOP entries (= 0x7F8 dwords). CP will not submit
249 * more than (EOP entry count - 1) so a queue size of 0x800 dwords
250 * is safe, giving a maximum field value of 0xA.
251 */
252 m->cp_hqd_eop_control = min(0xA,
253 order_base_2(q->eop_ring_buffer_size / 4) - 1);
254 m->cp_hqd_eop_base_addr_lo =
255 lower_32_bits(q->eop_ring_buffer_address >> 8);
256 m->cp_hqd_eop_base_addr_hi =
257 upper_32_bits(q->eop_ring_buffer_address >> 8);
258
259 m->cp_hqd_iq_timer = 0;
260
261 m->cp_hqd_vmid = q->vmid;
262
263 if (q->format == KFD_QUEUE_FORMAT_AQL) {
264 m->cp_hqd_pq_control |= CP_HQD_PQ_CONTROL__NO_UPDATE_RPTR_MASK |
265 2 << CP_HQD_PQ_CONTROL__SLOT_BASED_WPTR__SHIFT |
266 1 << CP_HQD_PQ_CONTROL__QUEUE_FULL_EN__SHIFT |
267 1 << CP_HQD_PQ_CONTROL__WPP_CLAMP_EN__SHIFT;
268 m->cp_hqd_pq_doorbell_control |= 1 <<
269 CP_HQD_PQ_DOORBELL_CONTROL__DOORBELL_BIF_DROP__SHIFT;
270 }
271 if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address)
272 m->cp_hqd_ctx_save_control = 0;
273
274 update_cu_mask(mm, mqd, minfo);
275 set_priority(m, q);
276
277 q->is_active = QUEUE_IS_ACTIVE(*q);
278 }
279
280
read_doorbell_id(void * mqd)281 static uint32_t read_doorbell_id(void *mqd)
282 {
283 struct v9_mqd *m = (struct v9_mqd *)mqd;
284
285 return m->queue_doorbell_id0;
286 }
287
destroy_mqd(struct mqd_manager * mm,void * mqd,enum kfd_preempt_type type,unsigned int timeout,uint32_t pipe_id,uint32_t queue_id)288 static int destroy_mqd(struct mqd_manager *mm, void *mqd,
289 enum kfd_preempt_type type,
290 unsigned int timeout, uint32_t pipe_id,
291 uint32_t queue_id)
292 {
293 return mm->dev->kfd2kgd->hqd_destroy
294 (mm->dev->kgd, mqd, type, timeout,
295 pipe_id, queue_id);
296 }
297
free_mqd(struct mqd_manager * mm,void * mqd,struct kfd_mem_obj * mqd_mem_obj)298 static void free_mqd(struct mqd_manager *mm, void *mqd,
299 struct kfd_mem_obj *mqd_mem_obj)
300 {
301 struct kfd_dev *kfd = mm->dev;
302
303 if (mqd_mem_obj->gtt_mem) {
304 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, mqd_mem_obj->gtt_mem);
305 kfree(mqd_mem_obj);
306 } else {
307 kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
308 }
309 }
310
is_occupied(struct mqd_manager * mm,void * mqd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)311 static bool is_occupied(struct mqd_manager *mm, void *mqd,
312 uint64_t queue_address, uint32_t pipe_id,
313 uint32_t queue_id)
314 {
315 return mm->dev->kfd2kgd->hqd_is_occupied(
316 mm->dev->kgd, queue_address,
317 pipe_id, queue_id);
318 }
319
get_wave_state(struct mqd_manager * mm,void * mqd,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)320 static int get_wave_state(struct mqd_manager *mm, void *mqd,
321 void __user *ctl_stack,
322 u32 *ctl_stack_used_size,
323 u32 *save_area_used_size)
324 {
325 struct v9_mqd *m;
326
327 /* Control stack is located one page after MQD. */
328 void *mqd_ctl_stack = (void *)((uintptr_t)mqd + PAGE_SIZE);
329
330 m = get_mqd(mqd);
331
332 *ctl_stack_used_size = m->cp_hqd_cntl_stack_size -
333 m->cp_hqd_cntl_stack_offset;
334 *save_area_used_size = m->cp_hqd_wg_state_offset -
335 m->cp_hqd_cntl_stack_size;
336
337 if (copy_to_user(ctl_stack, mqd_ctl_stack, m->cp_hqd_cntl_stack_size))
338 return -EFAULT;
339
340 return 0;
341 }
342
init_mqd_hiq(struct mqd_manager * mm,void ** mqd,struct kfd_mem_obj * mqd_mem_obj,uint64_t * gart_addr,struct queue_properties * q)343 static void init_mqd_hiq(struct mqd_manager *mm, void **mqd,
344 struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
345 struct queue_properties *q)
346 {
347 struct v9_mqd *m;
348
349 init_mqd(mm, mqd, mqd_mem_obj, gart_addr, q);
350
351 m = get_mqd(*mqd);
352
353 m->cp_hqd_pq_control |= 1 << CP_HQD_PQ_CONTROL__PRIV_STATE__SHIFT |
354 1 << CP_HQD_PQ_CONTROL__KMD_QUEUE__SHIFT;
355 }
356
init_mqd_sdma(struct mqd_manager * mm,void ** mqd,struct kfd_mem_obj * mqd_mem_obj,uint64_t * gart_addr,struct queue_properties * q)357 static void init_mqd_sdma(struct mqd_manager *mm, void **mqd,
358 struct kfd_mem_obj *mqd_mem_obj, uint64_t *gart_addr,
359 struct queue_properties *q)
360 {
361 struct v9_sdma_mqd *m;
362
363 m = (struct v9_sdma_mqd *) mqd_mem_obj->cpu_ptr;
364
365 memset(m, 0, sizeof(struct v9_sdma_mqd));
366
367 *mqd = m;
368 if (gart_addr)
369 *gart_addr = mqd_mem_obj->gpu_addr;
370
371 mm->update_mqd(mm, m, q, NULL);
372 }
373
load_mqd_sdma(struct mqd_manager * mm,void * mqd,uint32_t pipe_id,uint32_t queue_id,struct queue_properties * p,struct mm_struct * mms)374 static int load_mqd_sdma(struct mqd_manager *mm, void *mqd,
375 uint32_t pipe_id, uint32_t queue_id,
376 struct queue_properties *p, struct mm_struct *mms)
377 {
378 return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd,
379 (uint32_t __user *)p->write_ptr,
380 mms);
381 }
382
383 #define SDMA_RLC_DUMMY_DEFAULT 0xf
384
update_mqd_sdma(struct mqd_manager * mm,void * mqd,struct queue_properties * q,struct mqd_update_info * minfo)385 static void update_mqd_sdma(struct mqd_manager *mm, void *mqd,
386 struct queue_properties *q,
387 struct mqd_update_info *minfo)
388 {
389 struct v9_sdma_mqd *m;
390
391 m = get_sdma_mqd(mqd);
392 m->sdmax_rlcx_rb_cntl = order_base_2(q->queue_size / 4)
393 << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
394 q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
395 1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
396 6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT;
397
398 m->sdmax_rlcx_rb_base = lower_32_bits(q->queue_address >> 8);
399 m->sdmax_rlcx_rb_base_hi = upper_32_bits(q->queue_address >> 8);
400 m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
401 m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
402 m->sdmax_rlcx_doorbell_offset =
403 q->doorbell_off << SDMA0_RLC0_DOORBELL_OFFSET__OFFSET__SHIFT;
404
405 m->sdma_engine_id = q->sdma_engine_id;
406 m->sdma_queue_id = q->sdma_queue_id;
407 m->sdmax_rlcx_dummy_reg = SDMA_RLC_DUMMY_DEFAULT;
408
409 q->is_active = QUEUE_IS_ACTIVE(*q);
410 }
411
412 /*
413 * * preempt type here is ignored because there is only one way
414 * * to preempt sdma queue
415 */
destroy_mqd_sdma(struct mqd_manager * mm,void * mqd,enum kfd_preempt_type type,unsigned int timeout,uint32_t pipe_id,uint32_t queue_id)416 static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
417 enum kfd_preempt_type type,
418 unsigned int timeout, uint32_t pipe_id,
419 uint32_t queue_id)
420 {
421 return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout);
422 }
423
is_occupied_sdma(struct mqd_manager * mm,void * mqd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)424 static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd,
425 uint64_t queue_address, uint32_t pipe_id,
426 uint32_t queue_id)
427 {
428 return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd);
429 }
430
431 #if defined(CONFIG_DEBUG_FS)
432
debugfs_show_mqd(struct seq_file * m,void * data)433 static int debugfs_show_mqd(struct seq_file *m, void *data)
434 {
435 seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4,
436 data, sizeof(struct v9_mqd), false);
437 return 0;
438 }
439
debugfs_show_mqd_sdma(struct seq_file * m,void * data)440 static int debugfs_show_mqd_sdma(struct seq_file *m, void *data)
441 {
442 seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4,
443 data, sizeof(struct v9_sdma_mqd), false);
444 return 0;
445 }
446
447 #endif
448
mqd_manager_init_v9(enum KFD_MQD_TYPE type,struct kfd_dev * dev)449 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
450 struct kfd_dev *dev)
451 {
452 struct mqd_manager *mqd;
453
454 if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
455 return NULL;
456
457 mqd = kzalloc(sizeof(*mqd), GFP_KERNEL);
458 if (!mqd)
459 return NULL;
460
461 mqd->dev = dev;
462
463 switch (type) {
464 case KFD_MQD_TYPE_CP:
465 mqd->allocate_mqd = allocate_mqd;
466 mqd->init_mqd = init_mqd;
467 mqd->free_mqd = free_mqd;
468 mqd->load_mqd = load_mqd;
469 mqd->update_mqd = update_mqd;
470 mqd->destroy_mqd = destroy_mqd;
471 mqd->is_occupied = is_occupied;
472 mqd->get_wave_state = get_wave_state;
473 mqd->mqd_size = sizeof(struct v9_mqd);
474 #if defined(CONFIG_DEBUG_FS)
475 mqd->debugfs_show_mqd = debugfs_show_mqd;
476 #endif
477 break;
478 case KFD_MQD_TYPE_HIQ:
479 mqd->allocate_mqd = allocate_hiq_mqd;
480 mqd->init_mqd = init_mqd_hiq;
481 mqd->free_mqd = free_mqd_hiq_sdma;
482 mqd->load_mqd = hiq_load_mqd_kiq;
483 mqd->update_mqd = update_mqd;
484 mqd->destroy_mqd = destroy_mqd;
485 mqd->is_occupied = is_occupied;
486 mqd->mqd_size = sizeof(struct v9_mqd);
487 #if defined(CONFIG_DEBUG_FS)
488 mqd->debugfs_show_mqd = debugfs_show_mqd;
489 #endif
490 mqd->read_doorbell_id = read_doorbell_id;
491 break;
492 case KFD_MQD_TYPE_DIQ:
493 mqd->allocate_mqd = allocate_mqd;
494 mqd->init_mqd = init_mqd_hiq;
495 mqd->free_mqd = free_mqd;
496 mqd->load_mqd = load_mqd;
497 mqd->update_mqd = update_mqd;
498 mqd->destroy_mqd = destroy_mqd;
499 mqd->is_occupied = is_occupied;
500 mqd->mqd_size = sizeof(struct v9_mqd);
501 #if defined(CONFIG_DEBUG_FS)
502 mqd->debugfs_show_mqd = debugfs_show_mqd;
503 #endif
504 break;
505 case KFD_MQD_TYPE_SDMA:
506 mqd->allocate_mqd = allocate_sdma_mqd;
507 mqd->init_mqd = init_mqd_sdma;
508 mqd->free_mqd = free_mqd_hiq_sdma;
509 mqd->load_mqd = load_mqd_sdma;
510 mqd->update_mqd = update_mqd_sdma;
511 mqd->destroy_mqd = destroy_mqd_sdma;
512 mqd->is_occupied = is_occupied_sdma;
513 mqd->mqd_size = sizeof(struct v9_sdma_mqd);
514 #if defined(CONFIG_DEBUG_FS)
515 mqd->debugfs_show_mqd = debugfs_show_mqd_sdma;
516 #endif
517 break;
518 default:
519 kfree(mqd);
520 return NULL;
521 }
522
523 return mqd;
524 }
525