1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3 * Copyright(c) 2015-2020 Intel Corporation.
4 * Copyright(c) 2021 Cornelis Networks.
5 */
6
7 #include <linux/spinlock.h>
8 #include <linux/pci.h>
9 #include <linux/io.h>
10 #include <linux/delay.h>
11 #include <linux/netdevice.h>
12 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/prefetch.h>
15 #include <rdma/ib_verbs.h>
16 #include <linux/etherdevice.h>
17
18 #include "hfi.h"
19 #include "trace.h"
20 #include "qp.h"
21 #include "sdma.h"
22 #include "debugfs.h"
23 #include "vnic.h"
24 #include "fault.h"
25
26 #include "ipoib.h"
27 #include "netdev.h"
28
29 #undef pr_fmt
30 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
31
32 /*
33 * The size has to be longer than this string, so we can append
34 * board/chip information to it in the initialization code.
35 */
36 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
37
38 DEFINE_MUTEX(hfi1_mutex); /* general driver use */
39
40 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
41 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
42 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
43 HFI1_DEFAULT_MAX_MTU));
44
45 unsigned int hfi1_cu = 1;
46 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
47 MODULE_PARM_DESC(cu, "Credit return units");
48
49 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
50 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
51 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
52 static const struct kernel_param_ops cap_ops = {
53 .set = hfi1_caps_set,
54 .get = hfi1_caps_get
55 };
56 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
57 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
58
59 MODULE_LICENSE("Dual BSD/GPL");
60 MODULE_DESCRIPTION("Cornelis Omni-Path Express driver");
61
62 /*
63 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
64 */
65 #define MAX_PKT_RECV 64
66 /*
67 * MAX_PKT_THREAD_RCV is the max # of packets processed before
68 * the qp_wait_list queue is flushed.
69 */
70 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
71 #define EGR_HEAD_UPDATE_THRESHOLD 16
72
73 struct hfi1_ib_stats hfi1_stats;
74
hfi1_caps_set(const char * val,const struct kernel_param * kp)75 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
76 {
77 int ret = 0;
78 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
79 cap_mask = *cap_mask_ptr, value, diff,
80 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
81 HFI1_CAP_WRITABLE_MASK);
82
83 ret = kstrtoul(val, 0, &value);
84 if (ret) {
85 pr_warn("Invalid module parameter value for 'cap_mask'\n");
86 goto done;
87 }
88 /* Get the changed bits (except the locked bit) */
89 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
90
91 /* Remove any bits that are not allowed to change after driver load */
92 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
93 pr_warn("Ignoring non-writable capability bits %#lx\n",
94 diff & ~write_mask);
95 diff &= write_mask;
96 }
97
98 /* Mask off any reserved bits */
99 diff &= ~HFI1_CAP_RESERVED_MASK;
100 /* Clear any previously set and changing bits */
101 cap_mask &= ~diff;
102 /* Update the bits with the new capability */
103 cap_mask |= (value & diff);
104 /* Check for any kernel/user restrictions */
105 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
106 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
107 cap_mask &= ~diff;
108 /* Set the bitmask to the final set */
109 *cap_mask_ptr = cap_mask;
110 done:
111 return ret;
112 }
113
hfi1_caps_get(char * buffer,const struct kernel_param * kp)114 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
115 {
116 unsigned long cap_mask = *(unsigned long *)kp->arg;
117
118 cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
119 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
120
121 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
122 }
123
get_pci_dev(struct rvt_dev_info * rdi)124 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
125 {
126 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
127 struct hfi1_devdata *dd = container_of(ibdev,
128 struct hfi1_devdata, verbs_dev);
129 return dd->pcidev;
130 }
131
132 /*
133 * Return count of units with at least one port ACTIVE.
134 */
hfi1_count_active_units(void)135 int hfi1_count_active_units(void)
136 {
137 struct hfi1_devdata *dd;
138 struct hfi1_pportdata *ppd;
139 unsigned long index, flags;
140 int pidx, nunits_active = 0;
141
142 xa_lock_irqsave(&hfi1_dev_table, flags);
143 xa_for_each(&hfi1_dev_table, index, dd) {
144 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
145 continue;
146 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
147 ppd = dd->pport + pidx;
148 if (ppd->lid && ppd->linkup) {
149 nunits_active++;
150 break;
151 }
152 }
153 }
154 xa_unlock_irqrestore(&hfi1_dev_table, flags);
155 return nunits_active;
156 }
157
158 /*
159 * Get address of eager buffer from it's index (allocated in chunks, not
160 * contiguous).
161 */
get_egrbuf(const struct hfi1_ctxtdata * rcd,u64 rhf,u8 * update)162 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
163 u8 *update)
164 {
165 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
166
167 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
168 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
169 (offset * RCV_BUF_BLOCK_SIZE));
170 }
171
hfi1_get_header(struct hfi1_ctxtdata * rcd,__le32 * rhf_addr)172 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
173 __le32 *rhf_addr)
174 {
175 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
176
177 return (void *)(rhf_addr - rcd->rhf_offset + offset);
178 }
179
hfi1_get_msgheader(struct hfi1_ctxtdata * rcd,__le32 * rhf_addr)180 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
181 __le32 *rhf_addr)
182 {
183 return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
184 }
185
186 static inline struct hfi1_16b_header
hfi1_get_16B_header(struct hfi1_ctxtdata * rcd,__le32 * rhf_addr)187 *hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
188 __le32 *rhf_addr)
189 {
190 return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
191 }
192
193 /*
194 * Validate and encode the a given RcvArray Buffer size.
195 * The function will check whether the given size falls within
196 * allowed size ranges for the respective type and, optionally,
197 * return the proper encoding.
198 */
hfi1_rcvbuf_validate(u32 size,u8 type,u16 * encoded)199 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
200 {
201 if (unlikely(!PAGE_ALIGNED(size)))
202 return 0;
203 if (unlikely(size < MIN_EAGER_BUFFER))
204 return 0;
205 if (size >
206 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
207 return 0;
208 if (encoded)
209 *encoded = ilog2(size / PAGE_SIZE) + 1;
210 return 1;
211 }
212
rcv_hdrerr(struct hfi1_ctxtdata * rcd,struct hfi1_pportdata * ppd,struct hfi1_packet * packet)213 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
214 struct hfi1_packet *packet)
215 {
216 struct ib_header *rhdr = packet->hdr;
217 u32 rte = rhf_rcv_type_err(packet->rhf);
218 u32 mlid_base;
219 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
220 struct hfi1_devdata *dd = ppd->dd;
221 struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
222 struct rvt_dev_info *rdi = &verbs_dev->rdi;
223
224 if ((packet->rhf & RHF_DC_ERR) &&
225 hfi1_dbg_fault_suppress_err(verbs_dev))
226 return;
227
228 if (packet->rhf & RHF_ICRC_ERR)
229 return;
230
231 if (packet->etype == RHF_RCV_TYPE_BYPASS) {
232 goto drop;
233 } else {
234 u8 lnh = ib_get_lnh(rhdr);
235
236 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
237 if (lnh == HFI1_LRH_BTH) {
238 packet->ohdr = &rhdr->u.oth;
239 } else if (lnh == HFI1_LRH_GRH) {
240 packet->ohdr = &rhdr->u.l.oth;
241 packet->grh = &rhdr->u.l.grh;
242 } else {
243 goto drop;
244 }
245 }
246
247 if (packet->rhf & RHF_TID_ERR) {
248 /* For TIDERR and RC QPs preemptively schedule a NAK */
249 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
250 u32 dlid = ib_get_dlid(rhdr);
251 u32 qp_num;
252
253 /* Sanity check packet */
254 if (tlen < 24)
255 goto drop;
256
257 /* Check for GRH */
258 if (packet->grh) {
259 u32 vtf;
260 struct ib_grh *grh = packet->grh;
261
262 if (grh->next_hdr != IB_GRH_NEXT_HDR)
263 goto drop;
264 vtf = be32_to_cpu(grh->version_tclass_flow);
265 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
266 goto drop;
267 }
268
269 /* Get the destination QP number. */
270 qp_num = ib_bth_get_qpn(packet->ohdr);
271 if (dlid < mlid_base) {
272 struct rvt_qp *qp;
273 unsigned long flags;
274
275 rcu_read_lock();
276 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
277 if (!qp) {
278 rcu_read_unlock();
279 goto drop;
280 }
281
282 /*
283 * Handle only RC QPs - for other QP types drop error
284 * packet.
285 */
286 spin_lock_irqsave(&qp->r_lock, flags);
287
288 /* Check for valid receive state. */
289 if (!(ib_rvt_state_ops[qp->state] &
290 RVT_PROCESS_RECV_OK)) {
291 ibp->rvp.n_pkt_drops++;
292 }
293
294 switch (qp->ibqp.qp_type) {
295 case IB_QPT_RC:
296 hfi1_rc_hdrerr(rcd, packet, qp);
297 break;
298 default:
299 /* For now don't handle any other QP types */
300 break;
301 }
302
303 spin_unlock_irqrestore(&qp->r_lock, flags);
304 rcu_read_unlock();
305 } /* Unicast QP */
306 } /* Valid packet with TIDErr */
307
308 /* handle "RcvTypeErr" flags */
309 switch (rte) {
310 case RHF_RTE_ERROR_OP_CODE_ERR:
311 {
312 void *ebuf = NULL;
313 u8 opcode;
314
315 if (rhf_use_egr_bfr(packet->rhf))
316 ebuf = packet->ebuf;
317
318 if (!ebuf)
319 goto drop; /* this should never happen */
320
321 opcode = ib_bth_get_opcode(packet->ohdr);
322 if (opcode == IB_OPCODE_CNP) {
323 /*
324 * Only in pre-B0 h/w is the CNP_OPCODE handled
325 * via this code path.
326 */
327 struct rvt_qp *qp = NULL;
328 u32 lqpn, rqpn;
329 u16 rlid;
330 u8 svc_type, sl, sc5;
331
332 sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
333 sl = ibp->sc_to_sl[sc5];
334
335 lqpn = ib_bth_get_qpn(packet->ohdr);
336 rcu_read_lock();
337 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
338 if (!qp) {
339 rcu_read_unlock();
340 goto drop;
341 }
342
343 switch (qp->ibqp.qp_type) {
344 case IB_QPT_UD:
345 rlid = 0;
346 rqpn = 0;
347 svc_type = IB_CC_SVCTYPE_UD;
348 break;
349 case IB_QPT_UC:
350 rlid = ib_get_slid(rhdr);
351 rqpn = qp->remote_qpn;
352 svc_type = IB_CC_SVCTYPE_UC;
353 break;
354 default:
355 rcu_read_unlock();
356 goto drop;
357 }
358
359 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
360 rcu_read_unlock();
361 }
362
363 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
364 break;
365 }
366 default:
367 break;
368 }
369
370 drop:
371 return;
372 }
373
init_packet(struct hfi1_ctxtdata * rcd,struct hfi1_packet * packet)374 static inline void init_packet(struct hfi1_ctxtdata *rcd,
375 struct hfi1_packet *packet)
376 {
377 packet->rsize = get_hdrqentsize(rcd); /* words */
378 packet->maxcnt = get_hdrq_cnt(rcd) * packet->rsize; /* words */
379 packet->rcd = rcd;
380 packet->updegr = 0;
381 packet->etail = -1;
382 packet->rhf_addr = get_rhf_addr(rcd);
383 packet->rhf = rhf_to_cpu(packet->rhf_addr);
384 packet->rhqoff = hfi1_rcd_head(rcd);
385 packet->numpkt = 0;
386 }
387
388 /* We support only two types - 9B and 16B for now */
389 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
390 [HFI1_PKT_TYPE_9B] = &return_cnp,
391 [HFI1_PKT_TYPE_16B] = &return_cnp_16B
392 };
393
394 /**
395 * hfi1_process_ecn_slowpath - Process FECN or BECN bits
396 * @qp: The packet's destination QP
397 * @pkt: The packet itself.
398 * @prescan: Is the caller the RXQ prescan
399 *
400 * Process the packet's FECN or BECN bits. By now, the packet
401 * has already been evaluated whether processing of those bit should
402 * be done.
403 * The significance of the @prescan argument is that if the caller
404 * is the RXQ prescan, a CNP will be send out instead of waiting for the
405 * normal packet processing to send an ACK with BECN set (or a CNP).
406 */
hfi1_process_ecn_slowpath(struct rvt_qp * qp,struct hfi1_packet * pkt,bool prescan)407 bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
408 bool prescan)
409 {
410 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
411 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
412 struct ib_other_headers *ohdr = pkt->ohdr;
413 struct ib_grh *grh = pkt->grh;
414 u32 rqpn = 0;
415 u16 pkey;
416 u32 rlid, slid, dlid = 0;
417 u8 hdr_type, sc, svc_type, opcode;
418 bool is_mcast = false, ignore_fecn = false, do_cnp = false,
419 fecn, becn;
420
421 /* can be called from prescan */
422 if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
423 pkey = hfi1_16B_get_pkey(pkt->hdr);
424 sc = hfi1_16B_get_sc(pkt->hdr);
425 dlid = hfi1_16B_get_dlid(pkt->hdr);
426 slid = hfi1_16B_get_slid(pkt->hdr);
427 is_mcast = hfi1_is_16B_mcast(dlid);
428 opcode = ib_bth_get_opcode(ohdr);
429 hdr_type = HFI1_PKT_TYPE_16B;
430 fecn = hfi1_16B_get_fecn(pkt->hdr);
431 becn = hfi1_16B_get_becn(pkt->hdr);
432 } else {
433 pkey = ib_bth_get_pkey(ohdr);
434 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
435 dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) :
436 ppd->lid;
437 slid = ib_get_slid(pkt->hdr);
438 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
439 (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
440 opcode = ib_bth_get_opcode(ohdr);
441 hdr_type = HFI1_PKT_TYPE_9B;
442 fecn = ib_bth_get_fecn(ohdr);
443 becn = ib_bth_get_becn(ohdr);
444 }
445
446 switch (qp->ibqp.qp_type) {
447 case IB_QPT_UD:
448 rlid = slid;
449 rqpn = ib_get_sqpn(pkt->ohdr);
450 svc_type = IB_CC_SVCTYPE_UD;
451 break;
452 case IB_QPT_SMI:
453 case IB_QPT_GSI:
454 rlid = slid;
455 rqpn = ib_get_sqpn(pkt->ohdr);
456 svc_type = IB_CC_SVCTYPE_UD;
457 break;
458 case IB_QPT_UC:
459 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
460 rqpn = qp->remote_qpn;
461 svc_type = IB_CC_SVCTYPE_UC;
462 break;
463 case IB_QPT_RC:
464 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
465 rqpn = qp->remote_qpn;
466 svc_type = IB_CC_SVCTYPE_RC;
467 break;
468 default:
469 return false;
470 }
471
472 ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) ||
473 (opcode == IB_OPCODE_RC_ACKNOWLEDGE);
474 /*
475 * ACKNOWLEDGE packets do not get a CNP but this will be
476 * guarded by ignore_fecn above.
477 */
478 do_cnp = prescan ||
479 (opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST &&
480 opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) ||
481 opcode == TID_OP(READ_RESP) ||
482 opcode == TID_OP(ACK);
483
484 /* Call appropriate CNP handler */
485 if (!ignore_fecn && do_cnp && fecn)
486 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
487 dlid, rlid, sc, grh);
488
489 if (becn) {
490 u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK;
491 u8 sl = ibp->sc_to_sl[sc];
492
493 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
494 }
495 return !ignore_fecn && fecn;
496 }
497
498 struct ps_mdata {
499 struct hfi1_ctxtdata *rcd;
500 u32 rsize;
501 u32 maxcnt;
502 u32 ps_head;
503 u32 ps_tail;
504 u32 ps_seq;
505 };
506
init_ps_mdata(struct ps_mdata * mdata,struct hfi1_packet * packet)507 static inline void init_ps_mdata(struct ps_mdata *mdata,
508 struct hfi1_packet *packet)
509 {
510 struct hfi1_ctxtdata *rcd = packet->rcd;
511
512 mdata->rcd = rcd;
513 mdata->rsize = packet->rsize;
514 mdata->maxcnt = packet->maxcnt;
515 mdata->ps_head = packet->rhqoff;
516
517 if (get_dma_rtail_setting(rcd)) {
518 mdata->ps_tail = get_rcvhdrtail(rcd);
519 if (rcd->ctxt == HFI1_CTRL_CTXT)
520 mdata->ps_seq = hfi1_seq_cnt(rcd);
521 else
522 mdata->ps_seq = 0; /* not used with DMA_RTAIL */
523 } else {
524 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
525 mdata->ps_seq = hfi1_seq_cnt(rcd);
526 }
527 }
528
ps_done(struct ps_mdata * mdata,u64 rhf,struct hfi1_ctxtdata * rcd)529 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
530 struct hfi1_ctxtdata *rcd)
531 {
532 if (get_dma_rtail_setting(rcd))
533 return mdata->ps_head == mdata->ps_tail;
534 return mdata->ps_seq != rhf_rcv_seq(rhf);
535 }
536
ps_skip(struct ps_mdata * mdata,u64 rhf,struct hfi1_ctxtdata * rcd)537 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
538 struct hfi1_ctxtdata *rcd)
539 {
540 /*
541 * Control context can potentially receive an invalid rhf.
542 * Drop such packets.
543 */
544 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
545 return mdata->ps_seq != rhf_rcv_seq(rhf);
546
547 return 0;
548 }
549
update_ps_mdata(struct ps_mdata * mdata,struct hfi1_ctxtdata * rcd)550 static inline void update_ps_mdata(struct ps_mdata *mdata,
551 struct hfi1_ctxtdata *rcd)
552 {
553 mdata->ps_head += mdata->rsize;
554 if (mdata->ps_head >= mdata->maxcnt)
555 mdata->ps_head = 0;
556
557 /* Control context must do seq counting */
558 if (!get_dma_rtail_setting(rcd) ||
559 rcd->ctxt == HFI1_CTRL_CTXT)
560 mdata->ps_seq = hfi1_seq_incr_wrap(mdata->ps_seq);
561 }
562
563 /*
564 * prescan_rxq - search through the receive queue looking for packets
565 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
566 * When an ECN is found, process the Congestion Notification, and toggle
567 * it off.
568 * This is declared as a macro to allow quick checking of the port to avoid
569 * the overhead of a function call if not enabled.
570 */
571 #define prescan_rxq(rcd, packet) \
572 do { \
573 if (rcd->ppd->cc_prescan) \
574 __prescan_rxq(packet); \
575 } while (0)
__prescan_rxq(struct hfi1_packet * packet)576 static void __prescan_rxq(struct hfi1_packet *packet)
577 {
578 struct hfi1_ctxtdata *rcd = packet->rcd;
579 struct ps_mdata mdata;
580
581 init_ps_mdata(&mdata, packet);
582
583 while (1) {
584 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
585 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
586 packet->rcd->rhf_offset;
587 struct rvt_qp *qp;
588 struct ib_header *hdr;
589 struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
590 u64 rhf = rhf_to_cpu(rhf_addr);
591 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
592 u8 lnh;
593
594 if (ps_done(&mdata, rhf, rcd))
595 break;
596
597 if (ps_skip(&mdata, rhf, rcd))
598 goto next;
599
600 if (etype != RHF_RCV_TYPE_IB)
601 goto next;
602
603 packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
604 hdr = packet->hdr;
605 lnh = ib_get_lnh(hdr);
606
607 if (lnh == HFI1_LRH_BTH) {
608 packet->ohdr = &hdr->u.oth;
609 packet->grh = NULL;
610 } else if (lnh == HFI1_LRH_GRH) {
611 packet->ohdr = &hdr->u.l.oth;
612 packet->grh = &hdr->u.l.grh;
613 } else {
614 goto next; /* just in case */
615 }
616
617 if (!hfi1_may_ecn(packet))
618 goto next;
619
620 bth1 = be32_to_cpu(packet->ohdr->bth[1]);
621 qpn = bth1 & RVT_QPN_MASK;
622 rcu_read_lock();
623 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
624
625 if (!qp) {
626 rcu_read_unlock();
627 goto next;
628 }
629
630 hfi1_process_ecn_slowpath(qp, packet, true);
631 rcu_read_unlock();
632
633 /* turn off BECN, FECN */
634 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
635 packet->ohdr->bth[1] = cpu_to_be32(bth1);
636 next:
637 update_ps_mdata(&mdata, rcd);
638 }
639 }
640
process_rcv_qp_work(struct hfi1_packet * packet)641 static void process_rcv_qp_work(struct hfi1_packet *packet)
642 {
643 struct rvt_qp *qp, *nqp;
644 struct hfi1_ctxtdata *rcd = packet->rcd;
645
646 /*
647 * Iterate over all QPs waiting to respond.
648 * The list won't change since the IRQ is only run on one CPU.
649 */
650 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
651 list_del_init(&qp->rspwait);
652 if (qp->r_flags & RVT_R_RSP_NAK) {
653 qp->r_flags &= ~RVT_R_RSP_NAK;
654 packet->qp = qp;
655 hfi1_send_rc_ack(packet, 0);
656 }
657 if (qp->r_flags & RVT_R_RSP_SEND) {
658 unsigned long flags;
659
660 qp->r_flags &= ~RVT_R_RSP_SEND;
661 spin_lock_irqsave(&qp->s_lock, flags);
662 if (ib_rvt_state_ops[qp->state] &
663 RVT_PROCESS_OR_FLUSH_SEND)
664 hfi1_schedule_send(qp);
665 spin_unlock_irqrestore(&qp->s_lock, flags);
666 }
667 rvt_put_qp(qp);
668 }
669 }
670
max_packet_exceeded(struct hfi1_packet * packet,int thread)671 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
672 {
673 if (thread) {
674 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
675 /* allow defered processing */
676 process_rcv_qp_work(packet);
677 cond_resched();
678 return RCV_PKT_OK;
679 } else {
680 this_cpu_inc(*packet->rcd->dd->rcv_limit);
681 return RCV_PKT_LIMIT;
682 }
683 }
684
check_max_packet(struct hfi1_packet * packet,int thread)685 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
686 {
687 int ret = RCV_PKT_OK;
688
689 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
690 ret = max_packet_exceeded(packet, thread);
691 return ret;
692 }
693
skip_rcv_packet(struct hfi1_packet * packet,int thread)694 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
695 {
696 int ret;
697
698 packet->rcd->dd->ctx0_seq_drop++;
699 /* Set up for the next packet */
700 packet->rhqoff += packet->rsize;
701 if (packet->rhqoff >= packet->maxcnt)
702 packet->rhqoff = 0;
703
704 packet->numpkt++;
705 ret = check_max_packet(packet, thread);
706
707 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
708 packet->rcd->rhf_offset;
709 packet->rhf = rhf_to_cpu(packet->rhf_addr);
710
711 return ret;
712 }
713
process_rcv_packet_napi(struct hfi1_packet * packet)714 static void process_rcv_packet_napi(struct hfi1_packet *packet)
715 {
716 packet->etype = rhf_rcv_type(packet->rhf);
717
718 /* total length */
719 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
720 /* retrieve eager buffer details */
721 packet->etail = rhf_egr_index(packet->rhf);
722 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
723 &packet->updegr);
724 /*
725 * Prefetch the contents of the eager buffer. It is
726 * OK to send a negative length to prefetch_range().
727 * The +2 is the size of the RHF.
728 */
729 prefetch_range(packet->ebuf,
730 packet->tlen - ((packet->rcd->rcvhdrqentsize -
731 (rhf_hdrq_offset(packet->rhf)
732 + 2)) * 4));
733
734 packet->rcd->rhf_rcv_function_map[packet->etype](packet);
735 packet->numpkt++;
736
737 /* Set up for the next packet */
738 packet->rhqoff += packet->rsize;
739 if (packet->rhqoff >= packet->maxcnt)
740 packet->rhqoff = 0;
741
742 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
743 packet->rcd->rhf_offset;
744 packet->rhf = rhf_to_cpu(packet->rhf_addr);
745 }
746
process_rcv_packet(struct hfi1_packet * packet,int thread)747 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
748 {
749 int ret;
750
751 packet->etype = rhf_rcv_type(packet->rhf);
752
753 /* total length */
754 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
755 /* retrieve eager buffer details */
756 packet->ebuf = NULL;
757 if (rhf_use_egr_bfr(packet->rhf)) {
758 packet->etail = rhf_egr_index(packet->rhf);
759 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
760 &packet->updegr);
761 /*
762 * Prefetch the contents of the eager buffer. It is
763 * OK to send a negative length to prefetch_range().
764 * The +2 is the size of the RHF.
765 */
766 prefetch_range(packet->ebuf,
767 packet->tlen - ((get_hdrqentsize(packet->rcd) -
768 (rhf_hdrq_offset(packet->rhf)
769 + 2)) * 4));
770 }
771
772 /*
773 * Call a type specific handler for the packet. We
774 * should be able to trust that etype won't be beyond
775 * the range of valid indexes. If so something is really
776 * wrong and we can probably just let things come
777 * crashing down. There is no need to eat another
778 * comparison in this performance critical code.
779 */
780 packet->rcd->rhf_rcv_function_map[packet->etype](packet);
781 packet->numpkt++;
782
783 /* Set up for the next packet */
784 packet->rhqoff += packet->rsize;
785 if (packet->rhqoff >= packet->maxcnt)
786 packet->rhqoff = 0;
787
788 ret = check_max_packet(packet, thread);
789
790 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
791 packet->rcd->rhf_offset;
792 packet->rhf = rhf_to_cpu(packet->rhf_addr);
793
794 return ret;
795 }
796
process_rcv_update(int last,struct hfi1_packet * packet)797 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
798 {
799 /*
800 * Update head regs etc., every 16 packets, if not last pkt,
801 * to help prevent rcvhdrq overflows, when many packets
802 * are processed and queue is nearly full.
803 * Don't request an interrupt for intermediate updates.
804 */
805 if (!last && !(packet->numpkt & 0xf)) {
806 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
807 packet->etail, 0, 0);
808 packet->updegr = 0;
809 }
810 packet->grh = NULL;
811 }
812
finish_packet(struct hfi1_packet * packet)813 static inline void finish_packet(struct hfi1_packet *packet)
814 {
815 /*
816 * Nothing we need to free for the packet.
817 *
818 * The only thing we need to do is a final update and call for an
819 * interrupt
820 */
821 update_usrhead(packet->rcd, hfi1_rcd_head(packet->rcd), packet->updegr,
822 packet->etail, rcv_intr_dynamic, packet->numpkt);
823 }
824
825 /*
826 * handle_receive_interrupt_napi_fp - receive a packet
827 * @rcd: the context
828 * @budget: polling budget
829 *
830 * Called from interrupt handler for receive interrupt.
831 * This is the fast path interrupt handler
832 * when executing napi soft irq environment.
833 */
handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata * rcd,int budget)834 int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget)
835 {
836 struct hfi1_packet packet;
837
838 init_packet(rcd, &packet);
839 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
840 goto bail;
841
842 while (packet.numpkt < budget) {
843 process_rcv_packet_napi(&packet);
844 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
845 break;
846
847 process_rcv_update(0, &packet);
848 }
849 hfi1_set_rcd_head(rcd, packet.rhqoff);
850 bail:
851 finish_packet(&packet);
852 return packet.numpkt;
853 }
854
855 /*
856 * Handle receive interrupts when using the no dma rtail option.
857 */
handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata * rcd,int thread)858 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
859 {
860 int last = RCV_PKT_OK;
861 struct hfi1_packet packet;
862
863 init_packet(rcd, &packet);
864 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
865 last = RCV_PKT_DONE;
866 goto bail;
867 }
868
869 prescan_rxq(rcd, &packet);
870
871 while (last == RCV_PKT_OK) {
872 last = process_rcv_packet(&packet, thread);
873 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
874 last = RCV_PKT_DONE;
875 process_rcv_update(last, &packet);
876 }
877 process_rcv_qp_work(&packet);
878 hfi1_set_rcd_head(rcd, packet.rhqoff);
879 bail:
880 finish_packet(&packet);
881 return last;
882 }
883
handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata * rcd,int thread)884 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
885 {
886 u32 hdrqtail;
887 int last = RCV_PKT_OK;
888 struct hfi1_packet packet;
889
890 init_packet(rcd, &packet);
891 hdrqtail = get_rcvhdrtail(rcd);
892 if (packet.rhqoff == hdrqtail) {
893 last = RCV_PKT_DONE;
894 goto bail;
895 }
896 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
897
898 prescan_rxq(rcd, &packet);
899
900 while (last == RCV_PKT_OK) {
901 last = process_rcv_packet(&packet, thread);
902 if (packet.rhqoff == hdrqtail)
903 last = RCV_PKT_DONE;
904 process_rcv_update(last, &packet);
905 }
906 process_rcv_qp_work(&packet);
907 hfi1_set_rcd_head(rcd, packet.rhqoff);
908 bail:
909 finish_packet(&packet);
910 return last;
911 }
912
set_all_fastpath(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)913 static void set_all_fastpath(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
914 {
915 u16 i;
916
917 /*
918 * For dynamically allocated kernel contexts (like vnic) switch
919 * interrupt handler only for that context. Otherwise, switch
920 * interrupt handler for all statically allocated kernel contexts.
921 */
922 if (rcd->ctxt >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic) {
923 hfi1_rcd_get(rcd);
924 hfi1_set_fast(rcd);
925 hfi1_rcd_put(rcd);
926 return;
927 }
928
929 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
930 rcd = hfi1_rcd_get_by_index(dd, i);
931 if (rcd && (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic))
932 hfi1_set_fast(rcd);
933 hfi1_rcd_put(rcd);
934 }
935 }
936
set_all_slowpath(struct hfi1_devdata * dd)937 void set_all_slowpath(struct hfi1_devdata *dd)
938 {
939 struct hfi1_ctxtdata *rcd;
940 u16 i;
941
942 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
943 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
944 rcd = hfi1_rcd_get_by_index(dd, i);
945 if (!rcd)
946 continue;
947 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
948 rcd->do_interrupt = rcd->slow_handler;
949
950 hfi1_rcd_put(rcd);
951 }
952 }
953
__set_armed_to_active(struct hfi1_packet * packet)954 static bool __set_armed_to_active(struct hfi1_packet *packet)
955 {
956 u8 etype = rhf_rcv_type(packet->rhf);
957 u8 sc = SC15_PACKET;
958
959 if (etype == RHF_RCV_TYPE_IB) {
960 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
961 packet->rhf_addr);
962 sc = hfi1_9B_get_sc5(hdr, packet->rhf);
963 } else if (etype == RHF_RCV_TYPE_BYPASS) {
964 struct hfi1_16b_header *hdr = hfi1_get_16B_header(
965 packet->rcd,
966 packet->rhf_addr);
967 sc = hfi1_16B_get_sc(hdr);
968 }
969 if (sc != SC15_PACKET) {
970 int hwstate = driver_lstate(packet->rcd->ppd);
971 struct work_struct *lsaw =
972 &packet->rcd->ppd->linkstate_active_work;
973
974 if (hwstate != IB_PORT_ACTIVE) {
975 dd_dev_info(packet->rcd->dd,
976 "Unexpected link state %s\n",
977 opa_lstate_name(hwstate));
978 return false;
979 }
980
981 queue_work(packet->rcd->ppd->link_wq, lsaw);
982 return true;
983 }
984 return false;
985 }
986
987 /**
988 * set_armed_to_active - the fast path for armed to active
989 * @packet: the packet structure
990 *
991 * Return true if packet processing needs to bail.
992 */
set_armed_to_active(struct hfi1_packet * packet)993 static bool set_armed_to_active(struct hfi1_packet *packet)
994 {
995 if (likely(packet->rcd->ppd->host_link_state != HLS_UP_ARMED))
996 return false;
997 return __set_armed_to_active(packet);
998 }
999
1000 /*
1001 * handle_receive_interrupt - receive a packet
1002 * @rcd: the context
1003 *
1004 * Called from interrupt handler for errors or receive interrupt.
1005 * This is the slow path interrupt handler.
1006 */
handle_receive_interrupt(struct hfi1_ctxtdata * rcd,int thread)1007 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
1008 {
1009 struct hfi1_devdata *dd = rcd->dd;
1010 u32 hdrqtail;
1011 int needset, last = RCV_PKT_OK;
1012 struct hfi1_packet packet;
1013 int skip_pkt = 0;
1014
1015 if (!rcd->rcvhdrq)
1016 return RCV_PKT_OK;
1017 /* Control context will always use the slow path interrupt handler */
1018 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
1019
1020 init_packet(rcd, &packet);
1021
1022 if (!get_dma_rtail_setting(rcd)) {
1023 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf))) {
1024 last = RCV_PKT_DONE;
1025 goto bail;
1026 }
1027 hdrqtail = 0;
1028 } else {
1029 hdrqtail = get_rcvhdrtail(rcd);
1030 if (packet.rhqoff == hdrqtail) {
1031 last = RCV_PKT_DONE;
1032 goto bail;
1033 }
1034 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
1035
1036 /*
1037 * Control context can potentially receive an invalid
1038 * rhf. Drop such packets.
1039 */
1040 if (rcd->ctxt == HFI1_CTRL_CTXT)
1041 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1042 skip_pkt = 1;
1043 }
1044
1045 prescan_rxq(rcd, &packet);
1046
1047 while (last == RCV_PKT_OK) {
1048 if (hfi1_need_drop(dd)) {
1049 /* On to the next packet */
1050 packet.rhqoff += packet.rsize;
1051 packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1052 packet.rhqoff +
1053 rcd->rhf_offset;
1054 packet.rhf = rhf_to_cpu(packet.rhf_addr);
1055
1056 } else if (skip_pkt) {
1057 last = skip_rcv_packet(&packet, thread);
1058 skip_pkt = 0;
1059 } else {
1060 if (set_armed_to_active(&packet))
1061 goto bail;
1062 last = process_rcv_packet(&packet, thread);
1063 }
1064
1065 if (!get_dma_rtail_setting(rcd)) {
1066 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1067 last = RCV_PKT_DONE;
1068 } else {
1069 if (packet.rhqoff == hdrqtail)
1070 last = RCV_PKT_DONE;
1071 /*
1072 * Control context can potentially receive an invalid
1073 * rhf. Drop such packets.
1074 */
1075 if (rcd->ctxt == HFI1_CTRL_CTXT) {
1076 bool lseq;
1077
1078 lseq = hfi1_seq_incr(rcd,
1079 rhf_rcv_seq(packet.rhf));
1080 if (!last && lseq)
1081 skip_pkt = 1;
1082 }
1083 }
1084
1085 if (needset) {
1086 needset = false;
1087 set_all_fastpath(dd, rcd);
1088 }
1089 process_rcv_update(last, &packet);
1090 }
1091
1092 process_rcv_qp_work(&packet);
1093 hfi1_set_rcd_head(rcd, packet.rhqoff);
1094
1095 bail:
1096 /*
1097 * Always write head at end, and setup rcv interrupt, even
1098 * if no packets were processed.
1099 */
1100 finish_packet(&packet);
1101 return last;
1102 }
1103
1104 /*
1105 * handle_receive_interrupt_napi_sp - receive a packet
1106 * @rcd: the context
1107 * @budget: polling budget
1108 *
1109 * Called from interrupt handler for errors or receive interrupt.
1110 * This is the slow path interrupt handler
1111 * when executing napi soft irq environment.
1112 */
handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata * rcd,int budget)1113 int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget)
1114 {
1115 struct hfi1_devdata *dd = rcd->dd;
1116 int last = RCV_PKT_OK;
1117 bool needset = true;
1118 struct hfi1_packet packet;
1119
1120 init_packet(rcd, &packet);
1121 if (last_rcv_seq(rcd, rhf_rcv_seq(packet.rhf)))
1122 goto bail;
1123
1124 while (last != RCV_PKT_DONE && packet.numpkt < budget) {
1125 if (hfi1_need_drop(dd)) {
1126 /* On to the next packet */
1127 packet.rhqoff += packet.rsize;
1128 packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1129 packet.rhqoff +
1130 rcd->rhf_offset;
1131 packet.rhf = rhf_to_cpu(packet.rhf_addr);
1132
1133 } else {
1134 if (set_armed_to_active(&packet))
1135 goto bail;
1136 process_rcv_packet_napi(&packet);
1137 }
1138
1139 if (hfi1_seq_incr(rcd, rhf_rcv_seq(packet.rhf)))
1140 last = RCV_PKT_DONE;
1141
1142 if (needset) {
1143 needset = false;
1144 set_all_fastpath(dd, rcd);
1145 }
1146
1147 process_rcv_update(last, &packet);
1148 }
1149
1150 hfi1_set_rcd_head(rcd, packet.rhqoff);
1151
1152 bail:
1153 /*
1154 * Always write head at end, and setup rcv interrupt, even
1155 * if no packets were processed.
1156 */
1157 finish_packet(&packet);
1158 return packet.numpkt;
1159 }
1160
1161 /*
1162 * We may discover in the interrupt that the hardware link state has
1163 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1164 * and we need to update the driver's notion of the link state. We cannot
1165 * run set_link_state from interrupt context, so we queue this function on
1166 * a workqueue.
1167 *
1168 * We delay the regular interrupt processing until after the state changes
1169 * so that the link will be in the correct state by the time any application
1170 * we wake up attempts to send a reply to any message it received.
1171 * (Subsequent receive interrupts may possibly force the wakeup before we
1172 * update the link state.)
1173 *
1174 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1175 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1176 * so we're safe from use-after-free of the rcd.
1177 */
receive_interrupt_work(struct work_struct * work)1178 void receive_interrupt_work(struct work_struct *work)
1179 {
1180 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1181 linkstate_active_work);
1182 struct hfi1_devdata *dd = ppd->dd;
1183 struct hfi1_ctxtdata *rcd;
1184 u16 i;
1185
1186 /* Received non-SC15 packet implies neighbor_normal */
1187 ppd->neighbor_normal = 1;
1188 set_link_state(ppd, HLS_UP_ACTIVE);
1189
1190 /*
1191 * Interrupt all statically allocated kernel contexts that could
1192 * have had an interrupt during auto activation.
1193 */
1194 for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1195 rcd = hfi1_rcd_get_by_index(dd, i);
1196 if (rcd)
1197 force_recv_intr(rcd);
1198 hfi1_rcd_put(rcd);
1199 }
1200 }
1201
1202 /*
1203 * Convert a given MTU size to the on-wire MAD packet enumeration.
1204 * Return -1 if the size is invalid.
1205 */
mtu_to_enum(u32 mtu,int default_if_bad)1206 int mtu_to_enum(u32 mtu, int default_if_bad)
1207 {
1208 switch (mtu) {
1209 case 0: return OPA_MTU_0;
1210 case 256: return OPA_MTU_256;
1211 case 512: return OPA_MTU_512;
1212 case 1024: return OPA_MTU_1024;
1213 case 2048: return OPA_MTU_2048;
1214 case 4096: return OPA_MTU_4096;
1215 case 8192: return OPA_MTU_8192;
1216 case 10240: return OPA_MTU_10240;
1217 }
1218 return default_if_bad;
1219 }
1220
enum_to_mtu(int mtu)1221 u16 enum_to_mtu(int mtu)
1222 {
1223 switch (mtu) {
1224 case OPA_MTU_0: return 0;
1225 case OPA_MTU_256: return 256;
1226 case OPA_MTU_512: return 512;
1227 case OPA_MTU_1024: return 1024;
1228 case OPA_MTU_2048: return 2048;
1229 case OPA_MTU_4096: return 4096;
1230 case OPA_MTU_8192: return 8192;
1231 case OPA_MTU_10240: return 10240;
1232 default: return 0xffff;
1233 }
1234 }
1235
1236 /*
1237 * set_mtu - set the MTU
1238 * @ppd: the per port data
1239 *
1240 * We can handle "any" incoming size, the issue here is whether we
1241 * need to restrict our outgoing size. We do not deal with what happens
1242 * to programs that are already running when the size changes.
1243 */
set_mtu(struct hfi1_pportdata * ppd)1244 int set_mtu(struct hfi1_pportdata *ppd)
1245 {
1246 struct hfi1_devdata *dd = ppd->dd;
1247 int i, drain, ret = 0, is_up = 0;
1248
1249 ppd->ibmtu = 0;
1250 for (i = 0; i < ppd->vls_supported; i++)
1251 if (ppd->ibmtu < dd->vld[i].mtu)
1252 ppd->ibmtu = dd->vld[i].mtu;
1253 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1254
1255 mutex_lock(&ppd->hls_lock);
1256 if (ppd->host_link_state == HLS_UP_INIT ||
1257 ppd->host_link_state == HLS_UP_ARMED ||
1258 ppd->host_link_state == HLS_UP_ACTIVE)
1259 is_up = 1;
1260
1261 drain = !is_ax(dd) && is_up;
1262
1263 if (drain)
1264 /*
1265 * MTU is specified per-VL. To ensure that no packet gets
1266 * stuck (due, e.g., to the MTU for the packet's VL being
1267 * reduced), empty the per-VL FIFOs before adjusting MTU.
1268 */
1269 ret = stop_drain_data_vls(dd);
1270
1271 if (ret) {
1272 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1273 __func__);
1274 goto err;
1275 }
1276
1277 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1278
1279 if (drain)
1280 open_fill_data_vls(dd); /* reopen all VLs */
1281
1282 err:
1283 mutex_unlock(&ppd->hls_lock);
1284
1285 return ret;
1286 }
1287
hfi1_set_lid(struct hfi1_pportdata * ppd,u32 lid,u8 lmc)1288 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1289 {
1290 struct hfi1_devdata *dd = ppd->dd;
1291
1292 ppd->lid = lid;
1293 ppd->lmc = lmc;
1294 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1295
1296 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1297
1298 return 0;
1299 }
1300
shutdown_led_override(struct hfi1_pportdata * ppd)1301 void shutdown_led_override(struct hfi1_pportdata *ppd)
1302 {
1303 struct hfi1_devdata *dd = ppd->dd;
1304
1305 /*
1306 * This pairs with the memory barrier in hfi1_start_led_override to
1307 * ensure that we read the correct state of LED beaconing represented
1308 * by led_override_timer_active
1309 */
1310 smp_rmb();
1311 if (atomic_read(&ppd->led_override_timer_active)) {
1312 del_timer_sync(&ppd->led_override_timer);
1313 atomic_set(&ppd->led_override_timer_active, 0);
1314 /* Ensure the atomic_set is visible to all CPUs */
1315 smp_wmb();
1316 }
1317
1318 /* Hand control of the LED to the DC for normal operation */
1319 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1320 }
1321
run_led_override(struct timer_list * t)1322 static void run_led_override(struct timer_list *t)
1323 {
1324 struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1325 struct hfi1_devdata *dd = ppd->dd;
1326 unsigned long timeout;
1327 int phase_idx;
1328
1329 if (!(dd->flags & HFI1_INITTED))
1330 return;
1331
1332 phase_idx = ppd->led_override_phase & 1;
1333
1334 setextled(dd, phase_idx);
1335
1336 timeout = ppd->led_override_vals[phase_idx];
1337
1338 /* Set up for next phase */
1339 ppd->led_override_phase = !ppd->led_override_phase;
1340
1341 mod_timer(&ppd->led_override_timer, jiffies + timeout);
1342 }
1343
1344 /*
1345 * To have the LED blink in a particular pattern, provide timeon and timeoff
1346 * in milliseconds.
1347 * To turn off custom blinking and return to normal operation, use
1348 * shutdown_led_override()
1349 */
hfi1_start_led_override(struct hfi1_pportdata * ppd,unsigned int timeon,unsigned int timeoff)1350 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1351 unsigned int timeoff)
1352 {
1353 if (!(ppd->dd->flags & HFI1_INITTED))
1354 return;
1355
1356 /* Convert to jiffies for direct use in timer */
1357 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1358 ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1359
1360 /* Arbitrarily start from LED on phase */
1361 ppd->led_override_phase = 1;
1362
1363 /*
1364 * If the timer has not already been started, do so. Use a "quick"
1365 * timeout so the handler will be called soon to look at our request.
1366 */
1367 if (!timer_pending(&ppd->led_override_timer)) {
1368 timer_setup(&ppd->led_override_timer, run_led_override, 0);
1369 ppd->led_override_timer.expires = jiffies + 1;
1370 add_timer(&ppd->led_override_timer);
1371 atomic_set(&ppd->led_override_timer_active, 1);
1372 /* Ensure the atomic_set is visible to all CPUs */
1373 smp_wmb();
1374 }
1375 }
1376
1377 /**
1378 * hfi1_reset_device - reset the chip if possible
1379 * @unit: the device to reset
1380 *
1381 * Whether or not reset is successful, we attempt to re-initialize the chip
1382 * (that is, much like a driver unload/reload). We clear the INITTED flag
1383 * so that the various entry points will fail until we reinitialize. For
1384 * now, we only allow this if no user contexts are open that use chip resources
1385 */
hfi1_reset_device(int unit)1386 int hfi1_reset_device(int unit)
1387 {
1388 int ret;
1389 struct hfi1_devdata *dd = hfi1_lookup(unit);
1390 struct hfi1_pportdata *ppd;
1391 int pidx;
1392
1393 if (!dd) {
1394 ret = -ENODEV;
1395 goto bail;
1396 }
1397
1398 dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1399
1400 if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1401 dd_dev_info(dd,
1402 "Invalid unit number %u or not initialized or not present\n",
1403 unit);
1404 ret = -ENXIO;
1405 goto bail;
1406 }
1407
1408 /* If there are any user/vnic contexts, we cannot reset */
1409 mutex_lock(&hfi1_mutex);
1410 if (dd->rcd)
1411 if (hfi1_stats.sps_ctxts) {
1412 mutex_unlock(&hfi1_mutex);
1413 ret = -EBUSY;
1414 goto bail;
1415 }
1416 mutex_unlock(&hfi1_mutex);
1417
1418 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1419 ppd = dd->pport + pidx;
1420
1421 shutdown_led_override(ppd);
1422 }
1423 if (dd->flags & HFI1_HAS_SEND_DMA)
1424 sdma_exit(dd);
1425
1426 hfi1_reset_cpu_counters(dd);
1427
1428 ret = hfi1_init(dd, 1);
1429
1430 if (ret)
1431 dd_dev_err(dd,
1432 "Reinitialize unit %u after reset failed with %d\n",
1433 unit, ret);
1434 else
1435 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1436 unit);
1437
1438 bail:
1439 return ret;
1440 }
1441
hfi1_setup_ib_header(struct hfi1_packet * packet)1442 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1443 {
1444 packet->hdr = (struct hfi1_ib_message_header *)
1445 hfi1_get_msgheader(packet->rcd,
1446 packet->rhf_addr);
1447 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1448 }
1449
hfi1_bypass_ingress_pkt_check(struct hfi1_packet * packet)1450 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1451 {
1452 struct hfi1_pportdata *ppd = packet->rcd->ppd;
1453
1454 /* slid and dlid cannot be 0 */
1455 if ((!packet->slid) || (!packet->dlid))
1456 return -EINVAL;
1457
1458 /* Compare port lid with incoming packet dlid */
1459 if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1460 (packet->dlid !=
1461 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1462 if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid)
1463 return -EINVAL;
1464 }
1465
1466 /* No multicast packets with SC15 */
1467 if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1468 return -EINVAL;
1469
1470 /* Packets with permissive DLID always on SC15 */
1471 if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1472 16B)) &&
1473 (packet->sc != 0xF))
1474 return -EINVAL;
1475
1476 return 0;
1477 }
1478
hfi1_setup_9B_packet(struct hfi1_packet * packet)1479 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1480 {
1481 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1482 struct ib_header *hdr;
1483 u8 lnh;
1484
1485 hfi1_setup_ib_header(packet);
1486 hdr = packet->hdr;
1487
1488 lnh = ib_get_lnh(hdr);
1489 if (lnh == HFI1_LRH_BTH) {
1490 packet->ohdr = &hdr->u.oth;
1491 packet->grh = NULL;
1492 } else if (lnh == HFI1_LRH_GRH) {
1493 u32 vtf;
1494
1495 packet->ohdr = &hdr->u.l.oth;
1496 packet->grh = &hdr->u.l.grh;
1497 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1498 goto drop;
1499 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1500 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1501 goto drop;
1502 } else {
1503 goto drop;
1504 }
1505
1506 /* Query commonly used fields from packet header */
1507 packet->payload = packet->ebuf;
1508 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1509 packet->slid = ib_get_slid(hdr);
1510 packet->dlid = ib_get_dlid(hdr);
1511 if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1512 (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1513 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1514 be16_to_cpu(IB_MULTICAST_LID_BASE);
1515 packet->sl = ib_get_sl(hdr);
1516 packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1517 packet->pad = ib_bth_get_pad(packet->ohdr);
1518 packet->extra_byte = 0;
1519 packet->pkey = ib_bth_get_pkey(packet->ohdr);
1520 packet->migrated = ib_bth_is_migration(packet->ohdr);
1521
1522 return 0;
1523 drop:
1524 ibp->rvp.n_pkt_drops++;
1525 return -EINVAL;
1526 }
1527
hfi1_setup_bypass_packet(struct hfi1_packet * packet)1528 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1529 {
1530 /*
1531 * Bypass packets have a different header/payload split
1532 * compared to an IB packet.
1533 * Current split is set such that 16 bytes of the actual
1534 * header is in the header buffer and the remining is in
1535 * the eager buffer. We chose 16 since hfi1 driver only
1536 * supports 16B bypass packets and we will be able to
1537 * receive the entire LRH with such a split.
1538 */
1539
1540 struct hfi1_ctxtdata *rcd = packet->rcd;
1541 struct hfi1_pportdata *ppd = rcd->ppd;
1542 struct hfi1_ibport *ibp = &ppd->ibport_data;
1543 u8 l4;
1544
1545 packet->hdr = (struct hfi1_16b_header *)
1546 hfi1_get_16B_header(packet->rcd,
1547 packet->rhf_addr);
1548 l4 = hfi1_16B_get_l4(packet->hdr);
1549 if (l4 == OPA_16B_L4_IB_LOCAL) {
1550 packet->ohdr = packet->ebuf;
1551 packet->grh = NULL;
1552 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1553 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1554 /* hdr_len_by_opcode already has an IB LRH factored in */
1555 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1556 (LRH_16B_BYTES - LRH_9B_BYTES);
1557 packet->migrated = opa_bth_is_migration(packet->ohdr);
1558 } else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1559 u32 vtf;
1560 u8 grh_len = sizeof(struct ib_grh);
1561
1562 packet->ohdr = packet->ebuf + grh_len;
1563 packet->grh = packet->ebuf;
1564 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1565 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1566 /* hdr_len_by_opcode already has an IB LRH factored in */
1567 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1568 (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1569 packet->migrated = opa_bth_is_migration(packet->ohdr);
1570
1571 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1572 goto drop;
1573 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1574 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1575 goto drop;
1576 } else if (l4 == OPA_16B_L4_FM) {
1577 packet->mgmt = packet->ebuf;
1578 packet->ohdr = NULL;
1579 packet->grh = NULL;
1580 packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1581 packet->pad = OPA_16B_L4_FM_PAD;
1582 packet->hlen = OPA_16B_L4_FM_HLEN;
1583 packet->migrated = false;
1584 } else {
1585 goto drop;
1586 }
1587
1588 /* Query commonly used fields from packet header */
1589 packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1590 packet->slid = hfi1_16B_get_slid(packet->hdr);
1591 packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1592 if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1593 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1594 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1595 16B);
1596 packet->sc = hfi1_16B_get_sc(packet->hdr);
1597 packet->sl = ibp->sc_to_sl[packet->sc];
1598 packet->extra_byte = SIZE_OF_LT;
1599 packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1600
1601 if (hfi1_bypass_ingress_pkt_check(packet))
1602 goto drop;
1603
1604 return 0;
1605 drop:
1606 hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1607 ibp->rvp.n_pkt_drops++;
1608 return -EINVAL;
1609 }
1610
show_eflags_errs(struct hfi1_packet * packet)1611 static void show_eflags_errs(struct hfi1_packet *packet)
1612 {
1613 struct hfi1_ctxtdata *rcd = packet->rcd;
1614 u32 rte = rhf_rcv_type_err(packet->rhf);
1615
1616 dd_dev_err(rcd->dd,
1617 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n",
1618 rcd->ctxt, packet->rhf,
1619 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1620 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1621 packet->rhf & RHF_DC_ERR ? "dc " : "",
1622 packet->rhf & RHF_TID_ERR ? "tid " : "",
1623 packet->rhf & RHF_LEN_ERR ? "len " : "",
1624 packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1625 packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1626 rte);
1627 }
1628
handle_eflags(struct hfi1_packet * packet)1629 void handle_eflags(struct hfi1_packet *packet)
1630 {
1631 struct hfi1_ctxtdata *rcd = packet->rcd;
1632
1633 rcv_hdrerr(rcd, rcd->ppd, packet);
1634 if (rhf_err_flags(packet->rhf))
1635 show_eflags_errs(packet);
1636 }
1637
hfi1_ipoib_ib_rcv(struct hfi1_packet * packet)1638 static void hfi1_ipoib_ib_rcv(struct hfi1_packet *packet)
1639 {
1640 struct hfi1_ibport *ibp;
1641 struct net_device *netdev;
1642 struct hfi1_ctxtdata *rcd = packet->rcd;
1643 struct napi_struct *napi = rcd->napi;
1644 struct sk_buff *skb;
1645 struct hfi1_netdev_rxq *rxq = container_of(napi,
1646 struct hfi1_netdev_rxq, napi);
1647 u32 extra_bytes;
1648 u32 tlen, qpnum;
1649 bool do_work, do_cnp;
1650
1651 trace_hfi1_rcvhdr(packet);
1652
1653 hfi1_setup_ib_header(packet);
1654
1655 packet->ohdr = &((struct ib_header *)packet->hdr)->u.oth;
1656 packet->grh = NULL;
1657
1658 if (unlikely(rhf_err_flags(packet->rhf))) {
1659 handle_eflags(packet);
1660 return;
1661 }
1662
1663 qpnum = ib_bth_get_qpn(packet->ohdr);
1664 netdev = hfi1_netdev_get_data(rcd->dd, qpnum);
1665 if (!netdev)
1666 goto drop_no_nd;
1667
1668 trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
1669 trace_ctxt_rsm_hist(rcd->ctxt);
1670
1671 /* handle congestion notifications */
1672 do_work = hfi1_may_ecn(packet);
1673 if (unlikely(do_work)) {
1674 do_cnp = (packet->opcode != IB_OPCODE_CNP);
1675 (void)hfi1_process_ecn_slowpath(hfi1_ipoib_priv(netdev)->qp,
1676 packet, do_cnp);
1677 }
1678
1679 /*
1680 * We have split point after last byte of DETH
1681 * lets strip padding and CRC and ICRC.
1682 * tlen is whole packet len so we need to
1683 * subtract header size as well.
1684 */
1685 tlen = packet->tlen;
1686 extra_bytes = ib_bth_get_pad(packet->ohdr) + (SIZE_OF_CRC << 2) +
1687 packet->hlen;
1688 if (unlikely(tlen < extra_bytes))
1689 goto drop;
1690
1691 tlen -= extra_bytes;
1692
1693 skb = hfi1_ipoib_prepare_skb(rxq, tlen, packet->ebuf);
1694 if (unlikely(!skb))
1695 goto drop;
1696
1697 dev_sw_netstats_rx_add(netdev, skb->len);
1698
1699 skb->dev = netdev;
1700 skb->pkt_type = PACKET_HOST;
1701 netif_receive_skb(skb);
1702
1703 return;
1704
1705 drop:
1706 ++netdev->stats.rx_dropped;
1707 drop_no_nd:
1708 ibp = rcd_to_iport(packet->rcd);
1709 ++ibp->rvp.n_pkt_drops;
1710 }
1711
1712 /*
1713 * The following functions are called by the interrupt handler. They are type
1714 * specific handlers for each packet type.
1715 */
process_receive_ib(struct hfi1_packet * packet)1716 static void process_receive_ib(struct hfi1_packet *packet)
1717 {
1718 if (hfi1_setup_9B_packet(packet))
1719 return;
1720
1721 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1722 return;
1723
1724 trace_hfi1_rcvhdr(packet);
1725
1726 if (unlikely(rhf_err_flags(packet->rhf))) {
1727 handle_eflags(packet);
1728 return;
1729 }
1730
1731 hfi1_ib_rcv(packet);
1732 }
1733
process_receive_bypass(struct hfi1_packet * packet)1734 static void process_receive_bypass(struct hfi1_packet *packet)
1735 {
1736 struct hfi1_devdata *dd = packet->rcd->dd;
1737
1738 if (hfi1_setup_bypass_packet(packet))
1739 return;
1740
1741 trace_hfi1_rcvhdr(packet);
1742
1743 if (unlikely(rhf_err_flags(packet->rhf))) {
1744 handle_eflags(packet);
1745 return;
1746 }
1747
1748 if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1749 hfi1_16B_rcv(packet);
1750 } else {
1751 dd_dev_err(dd,
1752 "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1753 incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1754 if (!(dd->err_info_rcvport.status_and_code &
1755 OPA_EI_STATUS_SMASK)) {
1756 u64 *flits = packet->ebuf;
1757
1758 if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1759 dd->err_info_rcvport.packet_flit1 = flits[0];
1760 dd->err_info_rcvport.packet_flit2 =
1761 packet->tlen > sizeof(flits[0]) ?
1762 flits[1] : 0;
1763 }
1764 dd->err_info_rcvport.status_and_code |=
1765 (OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1766 }
1767 }
1768 }
1769
process_receive_error(struct hfi1_packet * packet)1770 static void process_receive_error(struct hfi1_packet *packet)
1771 {
1772 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1773 if (unlikely(
1774 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1775 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1776 packet->rhf & RHF_DC_ERR)))
1777 return;
1778
1779 hfi1_setup_ib_header(packet);
1780 handle_eflags(packet);
1781
1782 if (unlikely(rhf_err_flags(packet->rhf)))
1783 dd_dev_err(packet->rcd->dd,
1784 "Unhandled error packet received. Dropping.\n");
1785 }
1786
kdeth_process_expected(struct hfi1_packet * packet)1787 static void kdeth_process_expected(struct hfi1_packet *packet)
1788 {
1789 hfi1_setup_9B_packet(packet);
1790 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1791 return;
1792
1793 if (unlikely(rhf_err_flags(packet->rhf))) {
1794 struct hfi1_ctxtdata *rcd = packet->rcd;
1795
1796 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1797 return;
1798 }
1799
1800 hfi1_kdeth_expected_rcv(packet);
1801 }
1802
kdeth_process_eager(struct hfi1_packet * packet)1803 static void kdeth_process_eager(struct hfi1_packet *packet)
1804 {
1805 hfi1_setup_9B_packet(packet);
1806 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1807 return;
1808
1809 trace_hfi1_rcvhdr(packet);
1810 if (unlikely(rhf_err_flags(packet->rhf))) {
1811 struct hfi1_ctxtdata *rcd = packet->rcd;
1812
1813 show_eflags_errs(packet);
1814 if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet))
1815 return;
1816 }
1817
1818 hfi1_kdeth_eager_rcv(packet);
1819 }
1820
process_receive_invalid(struct hfi1_packet * packet)1821 static void process_receive_invalid(struct hfi1_packet *packet)
1822 {
1823 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1824 rhf_rcv_type(packet->rhf));
1825 }
1826
1827 #define HFI1_RCVHDR_DUMP_MAX 5
1828
seqfile_dump_rcd(struct seq_file * s,struct hfi1_ctxtdata * rcd)1829 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1830 {
1831 struct hfi1_packet packet;
1832 struct ps_mdata mdata;
1833 int i;
1834
1835 seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s ctrl 0x%08llx status 0x%08llx, head %llu tail %llu sw head %u\n",
1836 rcd->ctxt, get_hdrq_cnt(rcd), get_hdrqentsize(rcd),
1837 get_dma_rtail_setting(rcd) ?
1838 "dma_rtail" : "nodma_rtail",
1839 read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_CTRL),
1840 read_kctxt_csr(rcd->dd, rcd->ctxt, RCV_CTXT_STATUS),
1841 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1842 RCV_HDR_HEAD_HEAD_MASK,
1843 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL),
1844 rcd->head);
1845
1846 init_packet(rcd, &packet);
1847 init_ps_mdata(&mdata, &packet);
1848
1849 for (i = 0; i < HFI1_RCVHDR_DUMP_MAX; i++) {
1850 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1851 rcd->rhf_offset;
1852 struct ib_header *hdr;
1853 u64 rhf = rhf_to_cpu(rhf_addr);
1854 u32 etype = rhf_rcv_type(rhf), qpn;
1855 u8 opcode;
1856 u32 psn;
1857 u8 lnh;
1858
1859 if (ps_done(&mdata, rhf, rcd))
1860 break;
1861
1862 if (ps_skip(&mdata, rhf, rcd))
1863 goto next;
1864
1865 if (etype > RHF_RCV_TYPE_IB)
1866 goto next;
1867
1868 packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1869 hdr = packet.hdr;
1870
1871 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1872
1873 if (lnh == HFI1_LRH_BTH)
1874 packet.ohdr = &hdr->u.oth;
1875 else if (lnh == HFI1_LRH_GRH)
1876 packet.ohdr = &hdr->u.l.oth;
1877 else
1878 goto next; /* just in case */
1879
1880 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1881 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1882 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1883
1884 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1885 mdata.ps_head, opcode, qpn, psn);
1886 next:
1887 update_ps_mdata(&mdata, rcd);
1888 }
1889 }
1890
1891 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1892 [RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1893 [RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1894 [RHF_RCV_TYPE_IB] = process_receive_ib,
1895 [RHF_RCV_TYPE_ERROR] = process_receive_error,
1896 [RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1897 [RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1898 [RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1899 [RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1900 };
1901
1902 const rhf_rcv_function_ptr netdev_rhf_rcv_functions[] = {
1903 [RHF_RCV_TYPE_EXPECTED] = process_receive_invalid,
1904 [RHF_RCV_TYPE_EAGER] = process_receive_invalid,
1905 [RHF_RCV_TYPE_IB] = hfi1_ipoib_ib_rcv,
1906 [RHF_RCV_TYPE_ERROR] = process_receive_error,
1907 [RHF_RCV_TYPE_BYPASS] = hfi1_vnic_bypass_rcv,
1908 [RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1909 [RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1910 [RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1911 };
1912