1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Memory-to-memory device framework for Video for Linux 2 and videobuf.
4 *
5 * Helper functions for devices that use videobuf buffers for both their
6 * source and destination.
7 *
8 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
9 * Pawel Osciak, <pawel@osciak.com>
10 * Marek Szyprowski, <m.szyprowski@samsung.com>
11 */
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15
16 #include <media/media-device.h>
17 #include <media/videobuf2-v4l2.h>
18 #include <media/v4l2-mem2mem.h>
19 #include <media/v4l2-dev.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-fh.h>
22 #include <media/v4l2-event.h>
23
24 MODULE_DESCRIPTION("Mem to mem device framework for videobuf");
25 MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>");
26 MODULE_LICENSE("GPL");
27
28 static bool debug;
29 module_param(debug, bool, 0644);
30
31 #define dprintk(fmt, arg...) \
32 do { \
33 if (debug) \
34 printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\
35 } while (0)
36
37
38 /* Instance is already queued on the job_queue */
39 #define TRANS_QUEUED (1 << 0)
40 /* Instance is currently running in hardware */
41 #define TRANS_RUNNING (1 << 1)
42 /* Instance is currently aborting */
43 #define TRANS_ABORT (1 << 2)
44
45
46 /* The job queue is not running new jobs */
47 #define QUEUE_PAUSED (1 << 0)
48
49
50 /* Offset base for buffers on the destination queue - used to distinguish
51 * between source and destination buffers when mmapping - they receive the same
52 * offsets but for different queues */
53 #define DST_QUEUE_OFF_BASE (1 << 30)
54
55 enum v4l2_m2m_entity_type {
56 MEM2MEM_ENT_TYPE_SOURCE,
57 MEM2MEM_ENT_TYPE_SINK,
58 MEM2MEM_ENT_TYPE_PROC
59 };
60
61 static const char * const m2m_entity_name[] = {
62 "source",
63 "sink",
64 "proc"
65 };
66
67 /**
68 * struct v4l2_m2m_dev - per-device context
69 * @source: &struct media_entity pointer with the source entity
70 * Used only when the M2M device is registered via
71 * v4l2_m2m_unregister_media_controller().
72 * @source_pad: &struct media_pad with the source pad.
73 * Used only when the M2M device is registered via
74 * v4l2_m2m_unregister_media_controller().
75 * @sink: &struct media_entity pointer with the sink entity
76 * Used only when the M2M device is registered via
77 * v4l2_m2m_unregister_media_controller().
78 * @sink_pad: &struct media_pad with the sink pad.
79 * Used only when the M2M device is registered via
80 * v4l2_m2m_unregister_media_controller().
81 * @proc: &struct media_entity pointer with the M2M device itself.
82 * @proc_pads: &struct media_pad with the @proc pads.
83 * Used only when the M2M device is registered via
84 * v4l2_m2m_unregister_media_controller().
85 * @intf_devnode: &struct media_intf devnode pointer with the interface
86 * with controls the M2M device.
87 * @curr_ctx: currently running instance
88 * @job_queue: instances queued to run
89 * @job_spinlock: protects job_queue
90 * @job_work: worker to run queued jobs.
91 * @job_queue_flags: flags of the queue status, %QUEUE_PAUSED.
92 * @m2m_ops: driver callbacks
93 */
94 struct v4l2_m2m_dev {
95 struct v4l2_m2m_ctx *curr_ctx;
96 #ifdef CONFIG_MEDIA_CONTROLLER
97 struct media_entity *source;
98 struct media_pad source_pad;
99 struct media_entity sink;
100 struct media_pad sink_pad;
101 struct media_entity proc;
102 struct media_pad proc_pads[2];
103 struct media_intf_devnode *intf_devnode;
104 #endif
105
106 struct list_head job_queue;
107 spinlock_t job_spinlock;
108 struct work_struct job_work;
109 unsigned long job_queue_flags;
110
111 const struct v4l2_m2m_ops *m2m_ops;
112 };
113
get_queue_ctx(struct v4l2_m2m_ctx * m2m_ctx,enum v4l2_buf_type type)114 static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx,
115 enum v4l2_buf_type type)
116 {
117 if (V4L2_TYPE_IS_OUTPUT(type))
118 return &m2m_ctx->out_q_ctx;
119 else
120 return &m2m_ctx->cap_q_ctx;
121 }
122
v4l2_m2m_get_vq(struct v4l2_m2m_ctx * m2m_ctx,enum v4l2_buf_type type)123 struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
124 enum v4l2_buf_type type)
125 {
126 struct v4l2_m2m_queue_ctx *q_ctx;
127
128 q_ctx = get_queue_ctx(m2m_ctx, type);
129 if (!q_ctx)
130 return NULL;
131
132 return &q_ctx->q;
133 }
134 EXPORT_SYMBOL(v4l2_m2m_get_vq);
135
v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx * q_ctx)136 struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx)
137 {
138 struct v4l2_m2m_buffer *b;
139 unsigned long flags;
140
141 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
142
143 if (list_empty(&q_ctx->rdy_queue)) {
144 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
145 return NULL;
146 }
147
148 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
149 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
150 return &b->vb;
151 }
152 EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf);
153
v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx * q_ctx)154 struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx)
155 {
156 struct v4l2_m2m_buffer *b;
157 unsigned long flags;
158
159 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
160
161 if (list_empty(&q_ctx->rdy_queue)) {
162 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
163 return NULL;
164 }
165
166 b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
167 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
168 return &b->vb;
169 }
170 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf);
171
v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx * q_ctx)172 struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx)
173 {
174 struct v4l2_m2m_buffer *b;
175 unsigned long flags;
176
177 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
178 if (list_empty(&q_ctx->rdy_queue)) {
179 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
180 return NULL;
181 }
182 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
183 list_del(&b->list);
184 q_ctx->num_rdy--;
185 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
186
187 return &b->vb;
188 }
189 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove);
190
v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx * q_ctx,struct vb2_v4l2_buffer * vbuf)191 void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx,
192 struct vb2_v4l2_buffer *vbuf)
193 {
194 struct v4l2_m2m_buffer *b;
195 unsigned long flags;
196
197 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
198 b = container_of(vbuf, struct v4l2_m2m_buffer, vb);
199 list_del(&b->list);
200 q_ctx->num_rdy--;
201 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
202 }
203 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf);
204
205 struct vb2_v4l2_buffer *
v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx * q_ctx,unsigned int idx)206 v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx)
207
208 {
209 struct v4l2_m2m_buffer *b, *tmp;
210 struct vb2_v4l2_buffer *ret = NULL;
211 unsigned long flags;
212
213 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
214 list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) {
215 if (b->vb.vb2_buf.index == idx) {
216 list_del(&b->list);
217 q_ctx->num_rdy--;
218 ret = &b->vb;
219 break;
220 }
221 }
222 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
223
224 return ret;
225 }
226 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx);
227
228 /*
229 * Scheduling handlers
230 */
231
v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev * m2m_dev)232 void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev)
233 {
234 unsigned long flags;
235 void *ret = NULL;
236
237 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
238 if (m2m_dev->curr_ctx)
239 ret = m2m_dev->curr_ctx->priv;
240 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
241
242 return ret;
243 }
244 EXPORT_SYMBOL(v4l2_m2m_get_curr_priv);
245
246 /**
247 * v4l2_m2m_try_run() - select next job to perform and run it if possible
248 * @m2m_dev: per-device context
249 *
250 * Get next transaction (if present) from the waiting jobs list and run it.
251 *
252 * Note that this function can run on a given v4l2_m2m_ctx context,
253 * but call .device_run for another context.
254 */
v4l2_m2m_try_run(struct v4l2_m2m_dev * m2m_dev)255 static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev)
256 {
257 unsigned long flags;
258
259 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
260 if (NULL != m2m_dev->curr_ctx) {
261 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
262 dprintk("Another instance is running, won't run now\n");
263 return;
264 }
265
266 if (list_empty(&m2m_dev->job_queue)) {
267 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
268 dprintk("No job pending\n");
269 return;
270 }
271
272 if (m2m_dev->job_queue_flags & QUEUE_PAUSED) {
273 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
274 dprintk("Running new jobs is paused\n");
275 return;
276 }
277
278 m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue,
279 struct v4l2_m2m_ctx, queue);
280 m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING;
281 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
282
283 dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx);
284 m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv);
285 }
286
287 /*
288 * __v4l2_m2m_try_queue() - queue a job
289 * @m2m_dev: m2m device
290 * @m2m_ctx: m2m context
291 *
292 * Check if this context is ready to queue a job.
293 *
294 * This function can run in interrupt context.
295 */
__v4l2_m2m_try_queue(struct v4l2_m2m_dev * m2m_dev,struct v4l2_m2m_ctx * m2m_ctx)296 static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev,
297 struct v4l2_m2m_ctx *m2m_ctx)
298 {
299 unsigned long flags_job;
300 struct vb2_v4l2_buffer *dst, *src;
301
302 dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx);
303
304 if (!m2m_ctx->out_q_ctx.q.streaming
305 || !m2m_ctx->cap_q_ctx.q.streaming) {
306 dprintk("Streaming needs to be on for both queues\n");
307 return;
308 }
309
310 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
311
312 /* If the context is aborted then don't schedule it */
313 if (m2m_ctx->job_flags & TRANS_ABORT) {
314 dprintk("Aborted context\n");
315 goto job_unlock;
316 }
317
318 if (m2m_ctx->job_flags & TRANS_QUEUED) {
319 dprintk("On job queue already\n");
320 goto job_unlock;
321 }
322
323 src = v4l2_m2m_next_src_buf(m2m_ctx);
324 dst = v4l2_m2m_next_dst_buf(m2m_ctx);
325 if (!src && !m2m_ctx->out_q_ctx.buffered) {
326 dprintk("No input buffers available\n");
327 goto job_unlock;
328 }
329 if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
330 dprintk("No output buffers available\n");
331 goto job_unlock;
332 }
333
334 m2m_ctx->new_frame = true;
335
336 if (src && dst && dst->is_held &&
337 dst->vb2_buf.copied_timestamp &&
338 dst->vb2_buf.timestamp != src->vb2_buf.timestamp) {
339 dst->is_held = false;
340 v4l2_m2m_dst_buf_remove(m2m_ctx);
341 v4l2_m2m_buf_done(dst, VB2_BUF_STATE_DONE);
342 dst = v4l2_m2m_next_dst_buf(m2m_ctx);
343
344 if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
345 dprintk("No output buffers available after returning held buffer\n");
346 goto job_unlock;
347 }
348 }
349
350 if (src && dst && (m2m_ctx->out_q_ctx.q.subsystem_flags &
351 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF))
352 m2m_ctx->new_frame = !dst->vb2_buf.copied_timestamp ||
353 dst->vb2_buf.timestamp != src->vb2_buf.timestamp;
354
355 if (m2m_ctx->has_stopped) {
356 dprintk("Device has stopped\n");
357 goto job_unlock;
358 }
359
360 if (m2m_dev->m2m_ops->job_ready
361 && (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) {
362 dprintk("Driver not ready\n");
363 goto job_unlock;
364 }
365
366 list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue);
367 m2m_ctx->job_flags |= TRANS_QUEUED;
368
369 job_unlock:
370 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
371 }
372
373 /**
374 * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context
375 * @m2m_ctx: m2m context
376 *
377 * Check if this context is ready to queue a job. If suitable,
378 * run the next queued job on the mem2mem device.
379 *
380 * This function shouldn't run in interrupt context.
381 *
382 * Note that v4l2_m2m_try_schedule() can schedule one job for this context,
383 * and then run another job for another context.
384 */
v4l2_m2m_try_schedule(struct v4l2_m2m_ctx * m2m_ctx)385 void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx)
386 {
387 struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev;
388
389 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
390 v4l2_m2m_try_run(m2m_dev);
391 }
392 EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule);
393
394 /**
395 * v4l2_m2m_device_run_work() - run pending jobs for the context
396 * @work: Work structure used for scheduling the execution of this function.
397 */
v4l2_m2m_device_run_work(struct work_struct * work)398 static void v4l2_m2m_device_run_work(struct work_struct *work)
399 {
400 struct v4l2_m2m_dev *m2m_dev =
401 container_of(work, struct v4l2_m2m_dev, job_work);
402
403 v4l2_m2m_try_run(m2m_dev);
404 }
405
406 /**
407 * v4l2_m2m_cancel_job() - cancel pending jobs for the context
408 * @m2m_ctx: m2m context with jobs to be canceled
409 *
410 * In case of streamoff or release called on any context,
411 * 1] If the context is currently running, then abort job will be called
412 * 2] If the context is queued, then the context will be removed from
413 * the job_queue
414 */
v4l2_m2m_cancel_job(struct v4l2_m2m_ctx * m2m_ctx)415 static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx)
416 {
417 struct v4l2_m2m_dev *m2m_dev;
418 unsigned long flags;
419
420 m2m_dev = m2m_ctx->m2m_dev;
421 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
422
423 m2m_ctx->job_flags |= TRANS_ABORT;
424 if (m2m_ctx->job_flags & TRANS_RUNNING) {
425 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
426 if (m2m_dev->m2m_ops->job_abort)
427 m2m_dev->m2m_ops->job_abort(m2m_ctx->priv);
428 dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx);
429 wait_event(m2m_ctx->finished,
430 !(m2m_ctx->job_flags & TRANS_RUNNING));
431 } else if (m2m_ctx->job_flags & TRANS_QUEUED) {
432 list_del(&m2m_ctx->queue);
433 m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
434 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
435 dprintk("m2m_ctx: %p had been on queue and was removed\n",
436 m2m_ctx);
437 } else {
438 /* Do nothing, was not on queue/running */
439 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
440 }
441 }
442
443 /*
444 * Schedule the next job, called from v4l2_m2m_job_finish() or
445 * v4l2_m2m_buf_done_and_job_finish().
446 */
v4l2_m2m_schedule_next_job(struct v4l2_m2m_dev * m2m_dev,struct v4l2_m2m_ctx * m2m_ctx)447 static void v4l2_m2m_schedule_next_job(struct v4l2_m2m_dev *m2m_dev,
448 struct v4l2_m2m_ctx *m2m_ctx)
449 {
450 /*
451 * This instance might have more buffers ready, but since we do not
452 * allow more than one job on the job_queue per instance, each has
453 * to be scheduled separately after the previous one finishes.
454 */
455 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
456
457 /*
458 * We might be running in atomic context,
459 * but the job must be run in non-atomic context.
460 */
461 schedule_work(&m2m_dev->job_work);
462 }
463
464 /*
465 * Assumes job_spinlock is held, called from v4l2_m2m_job_finish() or
466 * v4l2_m2m_buf_done_and_job_finish().
467 */
_v4l2_m2m_job_finish(struct v4l2_m2m_dev * m2m_dev,struct v4l2_m2m_ctx * m2m_ctx)468 static bool _v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
469 struct v4l2_m2m_ctx *m2m_ctx)
470 {
471 if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) {
472 dprintk("Called by an instance not currently running\n");
473 return false;
474 }
475
476 list_del(&m2m_dev->curr_ctx->queue);
477 m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
478 wake_up(&m2m_dev->curr_ctx->finished);
479 m2m_dev->curr_ctx = NULL;
480 return true;
481 }
482
v4l2_m2m_job_finish(struct v4l2_m2m_dev * m2m_dev,struct v4l2_m2m_ctx * m2m_ctx)483 void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
484 struct v4l2_m2m_ctx *m2m_ctx)
485 {
486 unsigned long flags;
487 bool schedule_next;
488
489 /*
490 * This function should not be used for drivers that support
491 * holding capture buffers. Those should use
492 * v4l2_m2m_buf_done_and_job_finish() instead.
493 */
494 WARN_ON(m2m_ctx->out_q_ctx.q.subsystem_flags &
495 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF);
496 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
497 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
498 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
499
500 if (schedule_next)
501 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
502 }
503 EXPORT_SYMBOL(v4l2_m2m_job_finish);
504
v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev * m2m_dev,struct v4l2_m2m_ctx * m2m_ctx,enum vb2_buffer_state state)505 void v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev *m2m_dev,
506 struct v4l2_m2m_ctx *m2m_ctx,
507 enum vb2_buffer_state state)
508 {
509 struct vb2_v4l2_buffer *src_buf, *dst_buf;
510 bool schedule_next = false;
511 unsigned long flags;
512
513 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
514 src_buf = v4l2_m2m_src_buf_remove(m2m_ctx);
515 dst_buf = v4l2_m2m_next_dst_buf(m2m_ctx);
516
517 if (WARN_ON(!src_buf || !dst_buf))
518 goto unlock;
519 dst_buf->is_held = src_buf->flags & V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
520 if (!dst_buf->is_held) {
521 v4l2_m2m_dst_buf_remove(m2m_ctx);
522 v4l2_m2m_buf_done(dst_buf, state);
523 }
524 /*
525 * If the request API is being used, returning the OUTPUT
526 * (src) buffer will wake-up any process waiting on the
527 * request file descriptor.
528 *
529 * Therefore, return the CAPTURE (dst) buffer first,
530 * to avoid signalling the request file descriptor
531 * before the CAPTURE buffer is done.
532 */
533 v4l2_m2m_buf_done(src_buf, state);
534 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
535 unlock:
536 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
537
538 if (schedule_next)
539 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
540 }
541 EXPORT_SYMBOL(v4l2_m2m_buf_done_and_job_finish);
542
v4l2_m2m_suspend(struct v4l2_m2m_dev * m2m_dev)543 void v4l2_m2m_suspend(struct v4l2_m2m_dev *m2m_dev)
544 {
545 unsigned long flags;
546 struct v4l2_m2m_ctx *curr_ctx;
547
548 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
549 m2m_dev->job_queue_flags |= QUEUE_PAUSED;
550 curr_ctx = m2m_dev->curr_ctx;
551 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
552
553 if (curr_ctx)
554 wait_event(curr_ctx->finished,
555 !(curr_ctx->job_flags & TRANS_RUNNING));
556 }
557 EXPORT_SYMBOL(v4l2_m2m_suspend);
558
v4l2_m2m_resume(struct v4l2_m2m_dev * m2m_dev)559 void v4l2_m2m_resume(struct v4l2_m2m_dev *m2m_dev)
560 {
561 unsigned long flags;
562
563 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
564 m2m_dev->job_queue_flags &= ~QUEUE_PAUSED;
565 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
566
567 v4l2_m2m_try_run(m2m_dev);
568 }
569 EXPORT_SYMBOL(v4l2_m2m_resume);
570
v4l2_m2m_reqbufs(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_requestbuffers * reqbufs)571 int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
572 struct v4l2_requestbuffers *reqbufs)
573 {
574 struct vb2_queue *vq;
575 int ret;
576
577 vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type);
578 ret = vb2_reqbufs(vq, reqbufs);
579 /* If count == 0, then the owner has released all buffers and he
580 is no longer owner of the queue. Otherwise we have an owner. */
581 if (ret == 0)
582 vq->owner = reqbufs->count ? file->private_data : NULL;
583
584 return ret;
585 }
586 EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs);
587
v4l2_m2m_querybuf(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_buffer * buf)588 int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
589 struct v4l2_buffer *buf)
590 {
591 struct vb2_queue *vq;
592 int ret = 0;
593 unsigned int i;
594
595 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
596 ret = vb2_querybuf(vq, buf);
597
598 /* Adjust MMAP memory offsets for the CAPTURE queue */
599 if (buf->memory == V4L2_MEMORY_MMAP && V4L2_TYPE_IS_CAPTURE(vq->type)) {
600 if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) {
601 for (i = 0; i < buf->length; ++i)
602 buf->m.planes[i].m.mem_offset
603 += DST_QUEUE_OFF_BASE;
604 } else {
605 buf->m.offset += DST_QUEUE_OFF_BASE;
606 }
607 }
608
609 return ret;
610 }
611 EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf);
612
613 /*
614 * This will add the LAST flag and mark the buffer management
615 * state as stopped.
616 * This is called when the last capture buffer must be flagged as LAST
617 * in draining mode from the encoder/decoder driver buf_queue() callback
618 * or from v4l2_update_last_buf_state() when a capture buffer is available.
619 */
v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx * m2m_ctx,struct vb2_v4l2_buffer * vbuf)620 void v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx *m2m_ctx,
621 struct vb2_v4l2_buffer *vbuf)
622 {
623 vbuf->flags |= V4L2_BUF_FLAG_LAST;
624 vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE);
625
626 v4l2_m2m_mark_stopped(m2m_ctx);
627 }
628 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buffer_done);
629
630 /* When stop command is issued, update buffer management state */
v4l2_update_last_buf_state(struct v4l2_m2m_ctx * m2m_ctx)631 static int v4l2_update_last_buf_state(struct v4l2_m2m_ctx *m2m_ctx)
632 {
633 struct vb2_v4l2_buffer *next_dst_buf;
634
635 if (m2m_ctx->is_draining)
636 return -EBUSY;
637
638 if (m2m_ctx->has_stopped)
639 return 0;
640
641 m2m_ctx->last_src_buf = v4l2_m2m_last_src_buf(m2m_ctx);
642 m2m_ctx->is_draining = true;
643
644 /*
645 * The processing of the last output buffer queued before
646 * the STOP command is expected to mark the buffer management
647 * state as stopped with v4l2_m2m_mark_stopped().
648 */
649 if (m2m_ctx->last_src_buf)
650 return 0;
651
652 /*
653 * In case the output queue is empty, try to mark the last capture
654 * buffer as LAST.
655 */
656 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
657 if (!next_dst_buf) {
658 /*
659 * Wait for the next queued one in encoder/decoder driver
660 * buf_queue() callback using the v4l2_m2m_dst_buf_is_last()
661 * helper or in v4l2_m2m_qbuf() if encoder/decoder is not yet
662 * streaming.
663 */
664 m2m_ctx->next_buf_last = true;
665 return 0;
666 }
667
668 v4l2_m2m_last_buffer_done(m2m_ctx, next_dst_buf);
669
670 return 0;
671 }
672
673 /*
674 * Updates the encoding/decoding buffer management state, should
675 * be called from encoder/decoder drivers start_streaming()
676 */
v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx * m2m_ctx,struct vb2_queue * q)677 void v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
678 struct vb2_queue *q)
679 {
680 /* If start streaming again, untag the last output buffer */
681 if (V4L2_TYPE_IS_OUTPUT(q->type))
682 m2m_ctx->last_src_buf = NULL;
683 }
684 EXPORT_SYMBOL_GPL(v4l2_m2m_update_start_streaming_state);
685
686 /*
687 * Updates the encoding/decoding buffer management state, should
688 * be called from encoder/decoder driver stop_streaming()
689 */
v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx * m2m_ctx,struct vb2_queue * q)690 void v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
691 struct vb2_queue *q)
692 {
693 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
694 /*
695 * If in draining state, either mark next dst buffer as
696 * done or flag next one to be marked as done either
697 * in encoder/decoder driver buf_queue() callback using
698 * the v4l2_m2m_dst_buf_is_last() helper or in v4l2_m2m_qbuf()
699 * if encoder/decoder is not yet streaming
700 */
701 if (m2m_ctx->is_draining) {
702 struct vb2_v4l2_buffer *next_dst_buf;
703
704 m2m_ctx->last_src_buf = NULL;
705 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
706 if (!next_dst_buf)
707 m2m_ctx->next_buf_last = true;
708 else
709 v4l2_m2m_last_buffer_done(m2m_ctx,
710 next_dst_buf);
711 }
712 } else {
713 v4l2_m2m_clear_state(m2m_ctx);
714 }
715 }
716 EXPORT_SYMBOL_GPL(v4l2_m2m_update_stop_streaming_state);
717
v4l2_m2m_force_last_buf_done(struct v4l2_m2m_ctx * m2m_ctx,struct vb2_queue * q)718 static void v4l2_m2m_force_last_buf_done(struct v4l2_m2m_ctx *m2m_ctx,
719 struct vb2_queue *q)
720 {
721 struct vb2_buffer *vb;
722 struct vb2_v4l2_buffer *vbuf;
723 unsigned int i;
724
725 if (WARN_ON(q->is_output))
726 return;
727 if (list_empty(&q->queued_list))
728 return;
729
730 vb = list_first_entry(&q->queued_list, struct vb2_buffer, queued_entry);
731 for (i = 0; i < vb->num_planes; i++)
732 vb2_set_plane_payload(vb, i, 0);
733
734 /*
735 * Since the buffer hasn't been queued to the ready queue,
736 * mark is active and owned before marking it LAST and DONE
737 */
738 vb->state = VB2_BUF_STATE_ACTIVE;
739 atomic_inc(&q->owned_by_drv_count);
740
741 vbuf = to_vb2_v4l2_buffer(vb);
742 vbuf->field = V4L2_FIELD_NONE;
743
744 v4l2_m2m_last_buffer_done(m2m_ctx, vbuf);
745 }
746
v4l2_m2m_qbuf(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_buffer * buf)747 int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
748 struct v4l2_buffer *buf)
749 {
750 struct video_device *vdev = video_devdata(file);
751 struct vb2_queue *vq;
752 int ret;
753
754 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
755 if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
756 (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) {
757 dprintk("%s: requests cannot be used with capture buffers\n",
758 __func__);
759 return -EPERM;
760 }
761
762 ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf);
763 if (ret)
764 return ret;
765
766 /*
767 * If the capture queue is streaming, but streaming hasn't started
768 * on the device, but was asked to stop, mark the previously queued
769 * buffer as DONE with LAST flag since it won't be queued on the
770 * device.
771 */
772 if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
773 vb2_is_streaming(vq) && !vb2_start_streaming_called(vq) &&
774 (v4l2_m2m_has_stopped(m2m_ctx) || v4l2_m2m_dst_buf_is_last(m2m_ctx)))
775 v4l2_m2m_force_last_buf_done(m2m_ctx, vq);
776 else if (!(buf->flags & V4L2_BUF_FLAG_IN_REQUEST))
777 v4l2_m2m_try_schedule(m2m_ctx);
778
779 return 0;
780 }
781 EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf);
782
v4l2_m2m_dqbuf(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_buffer * buf)783 int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
784 struct v4l2_buffer *buf)
785 {
786 struct vb2_queue *vq;
787
788 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
789 return vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK);
790 }
791 EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf);
792
v4l2_m2m_prepare_buf(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_buffer * buf)793 int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
794 struct v4l2_buffer *buf)
795 {
796 struct video_device *vdev = video_devdata(file);
797 struct vb2_queue *vq;
798
799 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
800 return vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf);
801 }
802 EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf);
803
v4l2_m2m_create_bufs(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_create_buffers * create)804 int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
805 struct v4l2_create_buffers *create)
806 {
807 struct vb2_queue *vq;
808
809 vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type);
810 return vb2_create_bufs(vq, create);
811 }
812 EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs);
813
v4l2_m2m_expbuf(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_exportbuffer * eb)814 int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
815 struct v4l2_exportbuffer *eb)
816 {
817 struct vb2_queue *vq;
818
819 vq = v4l2_m2m_get_vq(m2m_ctx, eb->type);
820 return vb2_expbuf(vq, eb);
821 }
822 EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf);
823
v4l2_m2m_streamon(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,enum v4l2_buf_type type)824 int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
825 enum v4l2_buf_type type)
826 {
827 struct vb2_queue *vq;
828 int ret;
829
830 vq = v4l2_m2m_get_vq(m2m_ctx, type);
831 ret = vb2_streamon(vq, type);
832 if (!ret)
833 v4l2_m2m_try_schedule(m2m_ctx);
834
835 return ret;
836 }
837 EXPORT_SYMBOL_GPL(v4l2_m2m_streamon);
838
v4l2_m2m_streamoff(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,enum v4l2_buf_type type)839 int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
840 enum v4l2_buf_type type)
841 {
842 struct v4l2_m2m_dev *m2m_dev;
843 struct v4l2_m2m_queue_ctx *q_ctx;
844 unsigned long flags_job, flags;
845 int ret;
846
847 /* wait until the current context is dequeued from job_queue */
848 v4l2_m2m_cancel_job(m2m_ctx);
849
850 q_ctx = get_queue_ctx(m2m_ctx, type);
851 ret = vb2_streamoff(&q_ctx->q, type);
852 if (ret)
853 return ret;
854
855 m2m_dev = m2m_ctx->m2m_dev;
856 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
857 /* We should not be scheduled anymore, since we're dropping a queue. */
858 if (m2m_ctx->job_flags & TRANS_QUEUED)
859 list_del(&m2m_ctx->queue);
860 m2m_ctx->job_flags = 0;
861
862 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
863 /* Drop queue, since streamoff returns device to the same state as after
864 * calling reqbufs. */
865 INIT_LIST_HEAD(&q_ctx->rdy_queue);
866 q_ctx->num_rdy = 0;
867 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
868
869 if (m2m_dev->curr_ctx == m2m_ctx) {
870 m2m_dev->curr_ctx = NULL;
871 wake_up(&m2m_ctx->finished);
872 }
873 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
874
875 return 0;
876 }
877 EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff);
878
v4l2_m2m_poll_for_data(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct poll_table_struct * wait)879 static __poll_t v4l2_m2m_poll_for_data(struct file *file,
880 struct v4l2_m2m_ctx *m2m_ctx,
881 struct poll_table_struct *wait)
882 {
883 struct vb2_queue *src_q, *dst_q;
884 __poll_t rc = 0;
885 unsigned long flags;
886
887 src_q = v4l2_m2m_get_src_vq(m2m_ctx);
888 dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
889
890 /*
891 * There has to be at least one buffer queued on each queued_list, which
892 * means either in driver already or waiting for driver to claim it
893 * and start processing.
894 */
895 if ((!src_q->streaming || src_q->error ||
896 list_empty(&src_q->queued_list)) &&
897 (!dst_q->streaming || dst_q->error ||
898 list_empty(&dst_q->queued_list)))
899 return EPOLLERR;
900
901 spin_lock_irqsave(&src_q->done_lock, flags);
902 if (!list_empty(&src_q->done_list))
903 rc |= EPOLLOUT | EPOLLWRNORM;
904 spin_unlock_irqrestore(&src_q->done_lock, flags);
905
906 spin_lock_irqsave(&dst_q->done_lock, flags);
907 /*
908 * If the last buffer was dequeued from the capture queue, signal
909 * userspace. DQBUF(CAPTURE) will return -EPIPE.
910 */
911 if (!list_empty(&dst_q->done_list) || dst_q->last_buffer_dequeued)
912 rc |= EPOLLIN | EPOLLRDNORM;
913 spin_unlock_irqrestore(&dst_q->done_lock, flags);
914
915 return rc;
916 }
917
v4l2_m2m_poll(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct poll_table_struct * wait)918 __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
919 struct poll_table_struct *wait)
920 {
921 struct video_device *vfd = video_devdata(file);
922 struct vb2_queue *src_q = v4l2_m2m_get_src_vq(m2m_ctx);
923 struct vb2_queue *dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
924 __poll_t req_events = poll_requested_events(wait);
925 __poll_t rc = 0;
926
927 /*
928 * poll_wait() MUST be called on the first invocation on all the
929 * potential queues of interest, even if we are not interested in their
930 * events during this first call. Failure to do so will result in
931 * queue's events to be ignored because the poll_table won't be capable
932 * of adding new wait queues thereafter.
933 */
934 poll_wait(file, &src_q->done_wq, wait);
935 poll_wait(file, &dst_q->done_wq, wait);
936
937 if (req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM))
938 rc = v4l2_m2m_poll_for_data(file, m2m_ctx, wait);
939
940 if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
941 struct v4l2_fh *fh = file->private_data;
942
943 poll_wait(file, &fh->wait, wait);
944 if (v4l2_event_pending(fh))
945 rc |= EPOLLPRI;
946 }
947
948 return rc;
949 }
950 EXPORT_SYMBOL_GPL(v4l2_m2m_poll);
951
v4l2_m2m_mmap(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct vm_area_struct * vma)952 int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
953 struct vm_area_struct *vma)
954 {
955 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
956 struct vb2_queue *vq;
957
958 if (offset < DST_QUEUE_OFF_BASE) {
959 vq = v4l2_m2m_get_src_vq(m2m_ctx);
960 } else {
961 vq = v4l2_m2m_get_dst_vq(m2m_ctx);
962 vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
963 }
964
965 return vb2_mmap(vq, vma);
966 }
967 EXPORT_SYMBOL(v4l2_m2m_mmap);
968
969 #if defined(CONFIG_MEDIA_CONTROLLER)
v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev * m2m_dev)970 void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev)
971 {
972 media_remove_intf_links(&m2m_dev->intf_devnode->intf);
973 media_devnode_remove(m2m_dev->intf_devnode);
974
975 media_entity_remove_links(m2m_dev->source);
976 media_entity_remove_links(&m2m_dev->sink);
977 media_entity_remove_links(&m2m_dev->proc);
978 media_device_unregister_entity(m2m_dev->source);
979 media_device_unregister_entity(&m2m_dev->sink);
980 media_device_unregister_entity(&m2m_dev->proc);
981 kfree(m2m_dev->source->name);
982 kfree(m2m_dev->sink.name);
983 kfree(m2m_dev->proc.name);
984 }
985 EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller);
986
v4l2_m2m_register_entity(struct media_device * mdev,struct v4l2_m2m_dev * m2m_dev,enum v4l2_m2m_entity_type type,struct video_device * vdev,int function)987 static int v4l2_m2m_register_entity(struct media_device *mdev,
988 struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type,
989 struct video_device *vdev, int function)
990 {
991 struct media_entity *entity;
992 struct media_pad *pads;
993 char *name;
994 unsigned int len;
995 int num_pads;
996 int ret;
997
998 switch (type) {
999 case MEM2MEM_ENT_TYPE_SOURCE:
1000 entity = m2m_dev->source;
1001 pads = &m2m_dev->source_pad;
1002 pads[0].flags = MEDIA_PAD_FL_SOURCE;
1003 num_pads = 1;
1004 break;
1005 case MEM2MEM_ENT_TYPE_SINK:
1006 entity = &m2m_dev->sink;
1007 pads = &m2m_dev->sink_pad;
1008 pads[0].flags = MEDIA_PAD_FL_SINK;
1009 num_pads = 1;
1010 break;
1011 case MEM2MEM_ENT_TYPE_PROC:
1012 entity = &m2m_dev->proc;
1013 pads = m2m_dev->proc_pads;
1014 pads[0].flags = MEDIA_PAD_FL_SINK;
1015 pads[1].flags = MEDIA_PAD_FL_SOURCE;
1016 num_pads = 2;
1017 break;
1018 default:
1019 return -EINVAL;
1020 }
1021
1022 entity->obj_type = MEDIA_ENTITY_TYPE_BASE;
1023 if (type != MEM2MEM_ENT_TYPE_PROC) {
1024 entity->info.dev.major = VIDEO_MAJOR;
1025 entity->info.dev.minor = vdev->minor;
1026 }
1027 len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]);
1028 name = kmalloc(len, GFP_KERNEL);
1029 if (!name)
1030 return -ENOMEM;
1031 snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]);
1032 entity->name = name;
1033 entity->function = function;
1034
1035 ret = media_entity_pads_init(entity, num_pads, pads);
1036 if (ret)
1037 return ret;
1038 ret = media_device_register_entity(mdev, entity);
1039 if (ret)
1040 return ret;
1041
1042 return 0;
1043 }
1044
v4l2_m2m_register_media_controller(struct v4l2_m2m_dev * m2m_dev,struct video_device * vdev,int function)1045 int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
1046 struct video_device *vdev, int function)
1047 {
1048 struct media_device *mdev = vdev->v4l2_dev->mdev;
1049 struct media_link *link;
1050 int ret;
1051
1052 if (!mdev)
1053 return 0;
1054
1055 /* A memory-to-memory device consists in two
1056 * DMA engine and one video processing entities.
1057 * The DMA engine entities are linked to a V4L interface
1058 */
1059
1060 /* Create the three entities with their pads */
1061 m2m_dev->source = &vdev->entity;
1062 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1063 MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L);
1064 if (ret)
1065 return ret;
1066 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1067 MEM2MEM_ENT_TYPE_PROC, vdev, function);
1068 if (ret)
1069 goto err_rel_entity0;
1070 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1071 MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L);
1072 if (ret)
1073 goto err_rel_entity1;
1074
1075 /* Connect the three entities */
1076 ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 0,
1077 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1078 if (ret)
1079 goto err_rel_entity2;
1080
1081 ret = media_create_pad_link(&m2m_dev->proc, 1, &m2m_dev->sink, 0,
1082 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1083 if (ret)
1084 goto err_rm_links0;
1085
1086 /* Create video interface */
1087 m2m_dev->intf_devnode = media_devnode_create(mdev,
1088 MEDIA_INTF_T_V4L_VIDEO, 0,
1089 VIDEO_MAJOR, vdev->minor);
1090 if (!m2m_dev->intf_devnode) {
1091 ret = -ENOMEM;
1092 goto err_rm_links1;
1093 }
1094
1095 /* Connect the two DMA engines to the interface */
1096 link = media_create_intf_link(m2m_dev->source,
1097 &m2m_dev->intf_devnode->intf,
1098 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1099 if (!link) {
1100 ret = -ENOMEM;
1101 goto err_rm_devnode;
1102 }
1103
1104 link = media_create_intf_link(&m2m_dev->sink,
1105 &m2m_dev->intf_devnode->intf,
1106 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1107 if (!link) {
1108 ret = -ENOMEM;
1109 goto err_rm_intf_link;
1110 }
1111 return 0;
1112
1113 err_rm_intf_link:
1114 media_remove_intf_links(&m2m_dev->intf_devnode->intf);
1115 err_rm_devnode:
1116 media_devnode_remove(m2m_dev->intf_devnode);
1117 err_rm_links1:
1118 media_entity_remove_links(&m2m_dev->sink);
1119 err_rm_links0:
1120 media_entity_remove_links(&m2m_dev->proc);
1121 media_entity_remove_links(m2m_dev->source);
1122 err_rel_entity2:
1123 media_device_unregister_entity(&m2m_dev->proc);
1124 kfree(m2m_dev->proc.name);
1125 err_rel_entity1:
1126 media_device_unregister_entity(&m2m_dev->sink);
1127 kfree(m2m_dev->sink.name);
1128 err_rel_entity0:
1129 media_device_unregister_entity(m2m_dev->source);
1130 kfree(m2m_dev->source->name);
1131 return ret;
1132 return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller);
1135 #endif
1136
v4l2_m2m_init(const struct v4l2_m2m_ops * m2m_ops)1137 struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops)
1138 {
1139 struct v4l2_m2m_dev *m2m_dev;
1140
1141 if (!m2m_ops || WARN_ON(!m2m_ops->device_run))
1142 return ERR_PTR(-EINVAL);
1143
1144 m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL);
1145 if (!m2m_dev)
1146 return ERR_PTR(-ENOMEM);
1147
1148 m2m_dev->curr_ctx = NULL;
1149 m2m_dev->m2m_ops = m2m_ops;
1150 INIT_LIST_HEAD(&m2m_dev->job_queue);
1151 spin_lock_init(&m2m_dev->job_spinlock);
1152 INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work);
1153
1154 return m2m_dev;
1155 }
1156 EXPORT_SYMBOL_GPL(v4l2_m2m_init);
1157
v4l2_m2m_release(struct v4l2_m2m_dev * m2m_dev)1158 void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev)
1159 {
1160 kfree(m2m_dev);
1161 }
1162 EXPORT_SYMBOL_GPL(v4l2_m2m_release);
1163
v4l2_m2m_ctx_init(struct v4l2_m2m_dev * m2m_dev,void * drv_priv,int (* queue_init)(void * priv,struct vb2_queue * src_vq,struct vb2_queue * dst_vq))1164 struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
1165 void *drv_priv,
1166 int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq))
1167 {
1168 struct v4l2_m2m_ctx *m2m_ctx;
1169 struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx;
1170 int ret;
1171
1172 m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL);
1173 if (!m2m_ctx)
1174 return ERR_PTR(-ENOMEM);
1175
1176 m2m_ctx->priv = drv_priv;
1177 m2m_ctx->m2m_dev = m2m_dev;
1178 init_waitqueue_head(&m2m_ctx->finished);
1179
1180 out_q_ctx = &m2m_ctx->out_q_ctx;
1181 cap_q_ctx = &m2m_ctx->cap_q_ctx;
1182
1183 INIT_LIST_HEAD(&out_q_ctx->rdy_queue);
1184 INIT_LIST_HEAD(&cap_q_ctx->rdy_queue);
1185 spin_lock_init(&out_q_ctx->rdy_spinlock);
1186 spin_lock_init(&cap_q_ctx->rdy_spinlock);
1187
1188 INIT_LIST_HEAD(&m2m_ctx->queue);
1189
1190 ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q);
1191
1192 if (ret)
1193 goto err;
1194 /*
1195 * Both queues should use same the mutex to lock the m2m context.
1196 * This lock is used in some v4l2_m2m_* helpers.
1197 */
1198 if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) {
1199 ret = -EINVAL;
1200 goto err;
1201 }
1202 m2m_ctx->q_lock = out_q_ctx->q.lock;
1203
1204 return m2m_ctx;
1205 err:
1206 kfree(m2m_ctx);
1207 return ERR_PTR(ret);
1208 }
1209 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init);
1210
v4l2_m2m_ctx_release(struct v4l2_m2m_ctx * m2m_ctx)1211 void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx)
1212 {
1213 /* wait until the current context is dequeued from job_queue */
1214 v4l2_m2m_cancel_job(m2m_ctx);
1215
1216 vb2_queue_release(&m2m_ctx->cap_q_ctx.q);
1217 vb2_queue_release(&m2m_ctx->out_q_ctx.q);
1218
1219 kfree(m2m_ctx);
1220 }
1221 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release);
1222
v4l2_m2m_buf_queue(struct v4l2_m2m_ctx * m2m_ctx,struct vb2_v4l2_buffer * vbuf)1223 void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx,
1224 struct vb2_v4l2_buffer *vbuf)
1225 {
1226 struct v4l2_m2m_buffer *b = container_of(vbuf,
1227 struct v4l2_m2m_buffer, vb);
1228 struct v4l2_m2m_queue_ctx *q_ctx;
1229 unsigned long flags;
1230
1231 q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type);
1232 if (!q_ctx)
1233 return;
1234
1235 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
1236 list_add_tail(&b->list, &q_ctx->rdy_queue);
1237 q_ctx->num_rdy++;
1238 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
1239 }
1240 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue);
1241
v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer * out_vb,struct vb2_v4l2_buffer * cap_vb,bool copy_frame_flags)1242 void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb,
1243 struct vb2_v4l2_buffer *cap_vb,
1244 bool copy_frame_flags)
1245 {
1246 u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1247
1248 if (copy_frame_flags)
1249 mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME |
1250 V4L2_BUF_FLAG_BFRAME;
1251
1252 cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp;
1253
1254 if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE)
1255 cap_vb->timecode = out_vb->timecode;
1256 cap_vb->field = out_vb->field;
1257 cap_vb->flags &= ~mask;
1258 cap_vb->flags |= out_vb->flags & mask;
1259 cap_vb->vb2_buf.copied_timestamp = 1;
1260 }
1261 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata);
1262
v4l2_m2m_request_queue(struct media_request * req)1263 void v4l2_m2m_request_queue(struct media_request *req)
1264 {
1265 struct media_request_object *obj, *obj_safe;
1266 struct v4l2_m2m_ctx *m2m_ctx = NULL;
1267
1268 /*
1269 * Queue all objects. Note that buffer objects are at the end of the
1270 * objects list, after all other object types. Once buffer objects
1271 * are queued, the driver might delete them immediately (if the driver
1272 * processes the buffer at once), so we have to use
1273 * list_for_each_entry_safe() to handle the case where the object we
1274 * queue is deleted.
1275 */
1276 list_for_each_entry_safe(obj, obj_safe, &req->objects, list) {
1277 struct v4l2_m2m_ctx *m2m_ctx_obj;
1278 struct vb2_buffer *vb;
1279
1280 if (!obj->ops->queue)
1281 continue;
1282
1283 if (vb2_request_object_is_buffer(obj)) {
1284 /* Sanity checks */
1285 vb = container_of(obj, struct vb2_buffer, req_obj);
1286 WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type));
1287 m2m_ctx_obj = container_of(vb->vb2_queue,
1288 struct v4l2_m2m_ctx,
1289 out_q_ctx.q);
1290 WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx);
1291 m2m_ctx = m2m_ctx_obj;
1292 }
1293
1294 /*
1295 * The buffer we queue here can in theory be immediately
1296 * unbound, hence the use of list_for_each_entry_safe()
1297 * above and why we call the queue op last.
1298 */
1299 obj->ops->queue(obj);
1300 }
1301
1302 WARN_ON(!m2m_ctx);
1303
1304 if (m2m_ctx)
1305 v4l2_m2m_try_schedule(m2m_ctx);
1306 }
1307 EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue);
1308
1309 /* Videobuf2 ioctl helpers */
1310
v4l2_m2m_ioctl_reqbufs(struct file * file,void * priv,struct v4l2_requestbuffers * rb)1311 int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv,
1312 struct v4l2_requestbuffers *rb)
1313 {
1314 struct v4l2_fh *fh = file->private_data;
1315
1316 return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb);
1317 }
1318 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs);
1319
v4l2_m2m_ioctl_create_bufs(struct file * file,void * priv,struct v4l2_create_buffers * create)1320 int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv,
1321 struct v4l2_create_buffers *create)
1322 {
1323 struct v4l2_fh *fh = file->private_data;
1324
1325 return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create);
1326 }
1327 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs);
1328
v4l2_m2m_ioctl_querybuf(struct file * file,void * priv,struct v4l2_buffer * buf)1329 int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv,
1330 struct v4l2_buffer *buf)
1331 {
1332 struct v4l2_fh *fh = file->private_data;
1333
1334 return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf);
1335 }
1336 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf);
1337
v4l2_m2m_ioctl_qbuf(struct file * file,void * priv,struct v4l2_buffer * buf)1338 int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv,
1339 struct v4l2_buffer *buf)
1340 {
1341 struct v4l2_fh *fh = file->private_data;
1342
1343 return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf);
1344 }
1345 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf);
1346
v4l2_m2m_ioctl_dqbuf(struct file * file,void * priv,struct v4l2_buffer * buf)1347 int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv,
1348 struct v4l2_buffer *buf)
1349 {
1350 struct v4l2_fh *fh = file->private_data;
1351
1352 return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf);
1353 }
1354 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf);
1355
v4l2_m2m_ioctl_prepare_buf(struct file * file,void * priv,struct v4l2_buffer * buf)1356 int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv,
1357 struct v4l2_buffer *buf)
1358 {
1359 struct v4l2_fh *fh = file->private_data;
1360
1361 return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf);
1362 }
1363 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf);
1364
v4l2_m2m_ioctl_expbuf(struct file * file,void * priv,struct v4l2_exportbuffer * eb)1365 int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv,
1366 struct v4l2_exportbuffer *eb)
1367 {
1368 struct v4l2_fh *fh = file->private_data;
1369
1370 return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb);
1371 }
1372 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf);
1373
v4l2_m2m_ioctl_streamon(struct file * file,void * priv,enum v4l2_buf_type type)1374 int v4l2_m2m_ioctl_streamon(struct file *file, void *priv,
1375 enum v4l2_buf_type type)
1376 {
1377 struct v4l2_fh *fh = file->private_data;
1378
1379 return v4l2_m2m_streamon(file, fh->m2m_ctx, type);
1380 }
1381 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon);
1382
v4l2_m2m_ioctl_streamoff(struct file * file,void * priv,enum v4l2_buf_type type)1383 int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv,
1384 enum v4l2_buf_type type)
1385 {
1386 struct v4l2_fh *fh = file->private_data;
1387
1388 return v4l2_m2m_streamoff(file, fh->m2m_ctx, type);
1389 }
1390 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff);
1391
v4l2_m2m_ioctl_try_encoder_cmd(struct file * file,void * fh,struct v4l2_encoder_cmd * ec)1392 int v4l2_m2m_ioctl_try_encoder_cmd(struct file *file, void *fh,
1393 struct v4l2_encoder_cmd *ec)
1394 {
1395 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
1396 return -EINVAL;
1397
1398 ec->flags = 0;
1399 return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_encoder_cmd);
1402
v4l2_m2m_ioctl_try_decoder_cmd(struct file * file,void * fh,struct v4l2_decoder_cmd * dc)1403 int v4l2_m2m_ioctl_try_decoder_cmd(struct file *file, void *fh,
1404 struct v4l2_decoder_cmd *dc)
1405 {
1406 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
1407 return -EINVAL;
1408
1409 dc->flags = 0;
1410
1411 if (dc->cmd == V4L2_DEC_CMD_STOP) {
1412 dc->stop.pts = 0;
1413 } else if (dc->cmd == V4L2_DEC_CMD_START) {
1414 dc->start.speed = 0;
1415 dc->start.format = V4L2_DEC_START_FMT_NONE;
1416 }
1417 return 0;
1418 }
1419 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_decoder_cmd);
1420
1421 /*
1422 * Updates the encoding state on ENC_CMD_STOP/ENC_CMD_START
1423 * Should be called from the encoder driver encoder_cmd() callback
1424 */
v4l2_m2m_encoder_cmd(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_encoder_cmd * ec)1425 int v4l2_m2m_encoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
1426 struct v4l2_encoder_cmd *ec)
1427 {
1428 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
1429 return -EINVAL;
1430
1431 if (ec->cmd == V4L2_ENC_CMD_STOP)
1432 return v4l2_update_last_buf_state(m2m_ctx);
1433
1434 if (m2m_ctx->is_draining)
1435 return -EBUSY;
1436
1437 if (m2m_ctx->has_stopped)
1438 m2m_ctx->has_stopped = false;
1439
1440 return 0;
1441 }
1442 EXPORT_SYMBOL_GPL(v4l2_m2m_encoder_cmd);
1443
1444 /*
1445 * Updates the decoding state on DEC_CMD_STOP/DEC_CMD_START
1446 * Should be called from the decoder driver decoder_cmd() callback
1447 */
v4l2_m2m_decoder_cmd(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_decoder_cmd * dc)1448 int v4l2_m2m_decoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
1449 struct v4l2_decoder_cmd *dc)
1450 {
1451 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
1452 return -EINVAL;
1453
1454 if (dc->cmd == V4L2_DEC_CMD_STOP)
1455 return v4l2_update_last_buf_state(m2m_ctx);
1456
1457 if (m2m_ctx->is_draining)
1458 return -EBUSY;
1459
1460 if (m2m_ctx->has_stopped)
1461 m2m_ctx->has_stopped = false;
1462
1463 return 0;
1464 }
1465 EXPORT_SYMBOL_GPL(v4l2_m2m_decoder_cmd);
1466
v4l2_m2m_ioctl_encoder_cmd(struct file * file,void * priv,struct v4l2_encoder_cmd * ec)1467 int v4l2_m2m_ioctl_encoder_cmd(struct file *file, void *priv,
1468 struct v4l2_encoder_cmd *ec)
1469 {
1470 struct v4l2_fh *fh = file->private_data;
1471
1472 return v4l2_m2m_encoder_cmd(file, fh->m2m_ctx, ec);
1473 }
1474 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_encoder_cmd);
1475
v4l2_m2m_ioctl_decoder_cmd(struct file * file,void * priv,struct v4l2_decoder_cmd * dc)1476 int v4l2_m2m_ioctl_decoder_cmd(struct file *file, void *priv,
1477 struct v4l2_decoder_cmd *dc)
1478 {
1479 struct v4l2_fh *fh = file->private_data;
1480
1481 return v4l2_m2m_decoder_cmd(file, fh->m2m_ctx, dc);
1482 }
1483 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_decoder_cmd);
1484
v4l2_m2m_ioctl_stateless_try_decoder_cmd(struct file * file,void * fh,struct v4l2_decoder_cmd * dc)1485 int v4l2_m2m_ioctl_stateless_try_decoder_cmd(struct file *file, void *fh,
1486 struct v4l2_decoder_cmd *dc)
1487 {
1488 if (dc->cmd != V4L2_DEC_CMD_FLUSH)
1489 return -EINVAL;
1490
1491 dc->flags = 0;
1492
1493 return 0;
1494 }
1495 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_try_decoder_cmd);
1496
v4l2_m2m_ioctl_stateless_decoder_cmd(struct file * file,void * priv,struct v4l2_decoder_cmd * dc)1497 int v4l2_m2m_ioctl_stateless_decoder_cmd(struct file *file, void *priv,
1498 struct v4l2_decoder_cmd *dc)
1499 {
1500 struct v4l2_fh *fh = file->private_data;
1501 struct vb2_v4l2_buffer *out_vb, *cap_vb;
1502 struct v4l2_m2m_dev *m2m_dev = fh->m2m_ctx->m2m_dev;
1503 unsigned long flags;
1504 int ret;
1505
1506 ret = v4l2_m2m_ioctl_stateless_try_decoder_cmd(file, priv, dc);
1507 if (ret < 0)
1508 return ret;
1509
1510 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
1511 out_vb = v4l2_m2m_last_src_buf(fh->m2m_ctx);
1512 cap_vb = v4l2_m2m_last_dst_buf(fh->m2m_ctx);
1513
1514 /*
1515 * If there is an out buffer pending, then clear any HOLD flag.
1516 *
1517 * By clearing this flag we ensure that when this output
1518 * buffer is processed any held capture buffer will be released.
1519 */
1520 if (out_vb) {
1521 out_vb->flags &= ~V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
1522 } else if (cap_vb && cap_vb->is_held) {
1523 /*
1524 * If there were no output buffers, but there is a
1525 * capture buffer that is held, then release that
1526 * buffer.
1527 */
1528 cap_vb->is_held = false;
1529 v4l2_m2m_dst_buf_remove(fh->m2m_ctx);
1530 v4l2_m2m_buf_done(cap_vb, VB2_BUF_STATE_DONE);
1531 }
1532 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
1533
1534 return 0;
1535 }
1536 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_decoder_cmd);
1537
1538 /*
1539 * v4l2_file_operations helpers. It is assumed here same lock is used
1540 * for the output and the capture buffer queue.
1541 */
1542
v4l2_m2m_fop_mmap(struct file * file,struct vm_area_struct * vma)1543 int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma)
1544 {
1545 struct v4l2_fh *fh = file->private_data;
1546
1547 return v4l2_m2m_mmap(file, fh->m2m_ctx, vma);
1548 }
1549 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap);
1550
v4l2_m2m_fop_poll(struct file * file,poll_table * wait)1551 __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait)
1552 {
1553 struct v4l2_fh *fh = file->private_data;
1554 struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx;
1555 __poll_t ret;
1556
1557 if (m2m_ctx->q_lock)
1558 mutex_lock(m2m_ctx->q_lock);
1559
1560 ret = v4l2_m2m_poll(file, m2m_ctx, wait);
1561
1562 if (m2m_ctx->q_lock)
1563 mutex_unlock(m2m_ctx->q_lock);
1564
1565 return ret;
1566 }
1567 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);
1568
1569