1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2007-2008 Pierre Ossman
4 */
5
6 #include <linux/mmc/core.h>
7 #include <linux/mmc/card.h>
8 #include <linux/mmc/host.h>
9 #include <linux/mmc/mmc.h>
10 #include <linux/slab.h>
11
12 #include <linux/scatterlist.h>
13 #include <linux/list.h>
14
15 #include <linux/debugfs.h>
16 #include <linux/uaccess.h>
17 #include <linux/seq_file.h>
18 #include <linux/module.h>
19
20 #include "core.h"
21 #include "card.h"
22 #include "host.h"
23 #include "bus.h"
24 #include "mmc_ops.h"
25
26 #define RESULT_OK 0
27 #define RESULT_FAIL 1
28 #define RESULT_UNSUP_HOST 2
29 #define RESULT_UNSUP_CARD 3
30
31 #define BUFFER_ORDER 2
32 #define BUFFER_SIZE (PAGE_SIZE << BUFFER_ORDER)
33
34 #define TEST_ALIGN_END 8
35
36 /*
37 * Limit the test area size to the maximum MMC HC erase group size. Note that
38 * the maximum SD allocation unit size is just 4MiB.
39 */
40 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
41
42 /**
43 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
44 * @page: first page in the allocation
45 * @order: order of the number of pages allocated
46 */
47 struct mmc_test_pages {
48 struct page *page;
49 unsigned int order;
50 };
51
52 /**
53 * struct mmc_test_mem - allocated memory.
54 * @arr: array of allocations
55 * @cnt: number of allocations
56 */
57 struct mmc_test_mem {
58 struct mmc_test_pages *arr;
59 unsigned int cnt;
60 };
61
62 /**
63 * struct mmc_test_area - information for performance tests.
64 * @max_sz: test area size (in bytes)
65 * @dev_addr: address on card at which to do performance tests
66 * @max_tfr: maximum transfer size allowed by driver (in bytes)
67 * @max_segs: maximum segments allowed by driver in scatterlist @sg
68 * @max_seg_sz: maximum segment size allowed by driver
69 * @blocks: number of (512 byte) blocks currently mapped by @sg
70 * @sg_len: length of currently mapped scatterlist @sg
71 * @mem: allocated memory
72 * @sg: scatterlist
73 * @sg_areq: scatterlist for non-blocking request
74 */
75 struct mmc_test_area {
76 unsigned long max_sz;
77 unsigned int dev_addr;
78 unsigned int max_tfr;
79 unsigned int max_segs;
80 unsigned int max_seg_sz;
81 unsigned int blocks;
82 unsigned int sg_len;
83 struct mmc_test_mem *mem;
84 struct scatterlist *sg;
85 struct scatterlist *sg_areq;
86 };
87
88 /**
89 * struct mmc_test_transfer_result - transfer results for performance tests.
90 * @link: double-linked list
91 * @count: amount of group of sectors to check
92 * @sectors: amount of sectors to check in one group
93 * @ts: time values of transfer
94 * @rate: calculated transfer rate
95 * @iops: I/O operations per second (times 100)
96 */
97 struct mmc_test_transfer_result {
98 struct list_head link;
99 unsigned int count;
100 unsigned int sectors;
101 struct timespec64 ts;
102 unsigned int rate;
103 unsigned int iops;
104 };
105
106 /**
107 * struct mmc_test_general_result - results for tests.
108 * @link: double-linked list
109 * @card: card under test
110 * @testcase: number of test case
111 * @result: result of test run
112 * @tr_lst: transfer measurements if any as mmc_test_transfer_result
113 */
114 struct mmc_test_general_result {
115 struct list_head link;
116 struct mmc_card *card;
117 int testcase;
118 int result;
119 struct list_head tr_lst;
120 };
121
122 /**
123 * struct mmc_test_dbgfs_file - debugfs related file.
124 * @link: double-linked list
125 * @card: card under test
126 * @file: file created under debugfs
127 */
128 struct mmc_test_dbgfs_file {
129 struct list_head link;
130 struct mmc_card *card;
131 struct dentry *file;
132 };
133
134 /**
135 * struct mmc_test_card - test information.
136 * @card: card under test
137 * @scratch: transfer buffer
138 * @buffer: transfer buffer
139 * @highmem: buffer for highmem tests
140 * @area: information for performance tests
141 * @gr: pointer to results of current testcase
142 */
143 struct mmc_test_card {
144 struct mmc_card *card;
145
146 u8 scratch[BUFFER_SIZE];
147 u8 *buffer;
148 #ifdef CONFIG_HIGHMEM
149 struct page *highmem;
150 #endif
151 struct mmc_test_area area;
152 struct mmc_test_general_result *gr;
153 };
154
155 enum mmc_test_prep_media {
156 MMC_TEST_PREP_NONE = 0,
157 MMC_TEST_PREP_WRITE_FULL = 1 << 0,
158 MMC_TEST_PREP_ERASE = 1 << 1,
159 };
160
161 struct mmc_test_multiple_rw {
162 unsigned int *sg_len;
163 unsigned int *bs;
164 unsigned int len;
165 unsigned int size;
166 bool do_write;
167 bool do_nonblock_req;
168 enum mmc_test_prep_media prepare;
169 };
170
171 /*******************************************************************/
172 /* General helper functions */
173 /*******************************************************************/
174
175 /*
176 * Configure correct block size in card
177 */
mmc_test_set_blksize(struct mmc_test_card * test,unsigned size)178 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
179 {
180 return mmc_set_blocklen(test->card, size);
181 }
182
mmc_test_card_cmd23(struct mmc_card * card)183 static bool mmc_test_card_cmd23(struct mmc_card *card)
184 {
185 return mmc_card_mmc(card) ||
186 (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
187 }
188
mmc_test_prepare_sbc(struct mmc_test_card * test,struct mmc_request * mrq,unsigned int blocks)189 static void mmc_test_prepare_sbc(struct mmc_test_card *test,
190 struct mmc_request *mrq, unsigned int blocks)
191 {
192 struct mmc_card *card = test->card;
193
194 if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
195 !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
196 (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
197 mrq->sbc = NULL;
198 return;
199 }
200
201 mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
202 mrq->sbc->arg = blocks;
203 mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
204 }
205
206 /*
207 * Fill in the mmc_request structure given a set of transfer parameters.
208 */
mmc_test_prepare_mrq(struct mmc_test_card * test,struct mmc_request * mrq,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write)209 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
210 struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
211 unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
212 {
213 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
214 return;
215
216 if (blocks > 1) {
217 mrq->cmd->opcode = write ?
218 MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
219 } else {
220 mrq->cmd->opcode = write ?
221 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
222 }
223
224 mrq->cmd->arg = dev_addr;
225 if (!mmc_card_blockaddr(test->card))
226 mrq->cmd->arg <<= 9;
227
228 mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
229
230 if (blocks == 1)
231 mrq->stop = NULL;
232 else {
233 mrq->stop->opcode = MMC_STOP_TRANSMISSION;
234 mrq->stop->arg = 0;
235 mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
236 }
237
238 mrq->data->blksz = blksz;
239 mrq->data->blocks = blocks;
240 mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
241 mrq->data->sg = sg;
242 mrq->data->sg_len = sg_len;
243
244 mmc_test_prepare_sbc(test, mrq, blocks);
245
246 mmc_set_data_timeout(mrq->data, test->card);
247 }
248
mmc_test_busy(struct mmc_command * cmd)249 static int mmc_test_busy(struct mmc_command *cmd)
250 {
251 return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
252 (R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
253 }
254
255 /*
256 * Wait for the card to finish the busy state
257 */
mmc_test_wait_busy(struct mmc_test_card * test)258 static int mmc_test_wait_busy(struct mmc_test_card *test)
259 {
260 int ret, busy;
261 struct mmc_command cmd = {};
262
263 busy = 0;
264 do {
265 memset(&cmd, 0, sizeof(struct mmc_command));
266
267 cmd.opcode = MMC_SEND_STATUS;
268 cmd.arg = test->card->rca << 16;
269 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
270
271 ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
272 if (ret)
273 break;
274
275 if (!busy && mmc_test_busy(&cmd)) {
276 busy = 1;
277 if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
278 pr_info("%s: Warning: Host did not wait for busy state to end.\n",
279 mmc_hostname(test->card->host));
280 }
281 } while (mmc_test_busy(&cmd));
282
283 return ret;
284 }
285
286 /*
287 * Transfer a single sector of kernel addressable data
288 */
mmc_test_buffer_transfer(struct mmc_test_card * test,u8 * buffer,unsigned addr,unsigned blksz,int write)289 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
290 u8 *buffer, unsigned addr, unsigned blksz, int write)
291 {
292 struct mmc_request mrq = {};
293 struct mmc_command cmd = {};
294 struct mmc_command stop = {};
295 struct mmc_data data = {};
296
297 struct scatterlist sg;
298
299 mrq.cmd = &cmd;
300 mrq.data = &data;
301 mrq.stop = &stop;
302
303 sg_init_one(&sg, buffer, blksz);
304
305 mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
306
307 mmc_wait_for_req(test->card->host, &mrq);
308
309 if (cmd.error)
310 return cmd.error;
311 if (data.error)
312 return data.error;
313
314 return mmc_test_wait_busy(test);
315 }
316
mmc_test_free_mem(struct mmc_test_mem * mem)317 static void mmc_test_free_mem(struct mmc_test_mem *mem)
318 {
319 if (!mem)
320 return;
321 while (mem->cnt--)
322 __free_pages(mem->arr[mem->cnt].page,
323 mem->arr[mem->cnt].order);
324 kfree(mem->arr);
325 kfree(mem);
326 }
327
328 /*
329 * Allocate a lot of memory, preferably max_sz but at least min_sz. In case
330 * there isn't much memory do not exceed 1/16th total lowmem pages. Also do
331 * not exceed a maximum number of segments and try not to make segments much
332 * bigger than maximum segment size.
333 */
mmc_test_alloc_mem(unsigned long min_sz,unsigned long max_sz,unsigned int max_segs,unsigned int max_seg_sz)334 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
335 unsigned long max_sz,
336 unsigned int max_segs,
337 unsigned int max_seg_sz)
338 {
339 unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
340 unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
341 unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
342 unsigned long page_cnt = 0;
343 unsigned long limit = nr_free_buffer_pages() >> 4;
344 struct mmc_test_mem *mem;
345
346 if (max_page_cnt > limit)
347 max_page_cnt = limit;
348 if (min_page_cnt > max_page_cnt)
349 min_page_cnt = max_page_cnt;
350
351 if (max_seg_page_cnt > max_page_cnt)
352 max_seg_page_cnt = max_page_cnt;
353
354 if (max_segs > max_page_cnt)
355 max_segs = max_page_cnt;
356
357 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
358 if (!mem)
359 return NULL;
360
361 mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
362 if (!mem->arr)
363 goto out_free;
364
365 while (max_page_cnt) {
366 struct page *page;
367 unsigned int order;
368 gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
369 __GFP_NORETRY;
370
371 order = get_order(max_seg_page_cnt << PAGE_SHIFT);
372 while (1) {
373 page = alloc_pages(flags, order);
374 if (page || !order)
375 break;
376 order -= 1;
377 }
378 if (!page) {
379 if (page_cnt < min_page_cnt)
380 goto out_free;
381 break;
382 }
383 mem->arr[mem->cnt].page = page;
384 mem->arr[mem->cnt].order = order;
385 mem->cnt += 1;
386 if (max_page_cnt <= (1UL << order))
387 break;
388 max_page_cnt -= 1UL << order;
389 page_cnt += 1UL << order;
390 if (mem->cnt >= max_segs) {
391 if (page_cnt < min_page_cnt)
392 goto out_free;
393 break;
394 }
395 }
396
397 return mem;
398
399 out_free:
400 mmc_test_free_mem(mem);
401 return NULL;
402 }
403
404 /*
405 * Map memory into a scatterlist. Optionally allow the same memory to be
406 * mapped more than once.
407 */
mmc_test_map_sg(struct mmc_test_mem * mem,unsigned long size,struct scatterlist * sglist,int repeat,unsigned int max_segs,unsigned int max_seg_sz,unsigned int * sg_len,int min_sg_len)408 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
409 struct scatterlist *sglist, int repeat,
410 unsigned int max_segs, unsigned int max_seg_sz,
411 unsigned int *sg_len, int min_sg_len)
412 {
413 struct scatterlist *sg = NULL;
414 unsigned int i;
415 unsigned long sz = size;
416
417 sg_init_table(sglist, max_segs);
418 if (min_sg_len > max_segs)
419 min_sg_len = max_segs;
420
421 *sg_len = 0;
422 do {
423 for (i = 0; i < mem->cnt; i++) {
424 unsigned long len = PAGE_SIZE << mem->arr[i].order;
425
426 if (min_sg_len && (size / min_sg_len < len))
427 len = ALIGN(size / min_sg_len, 512);
428 if (len > sz)
429 len = sz;
430 if (len > max_seg_sz)
431 len = max_seg_sz;
432 if (sg)
433 sg = sg_next(sg);
434 else
435 sg = sglist;
436 if (!sg)
437 return -EINVAL;
438 sg_set_page(sg, mem->arr[i].page, len, 0);
439 sz -= len;
440 *sg_len += 1;
441 if (!sz)
442 break;
443 }
444 } while (sz && repeat);
445
446 if (sz)
447 return -EINVAL;
448
449 if (sg)
450 sg_mark_end(sg);
451
452 return 0;
453 }
454
455 /*
456 * Map memory into a scatterlist so that no pages are contiguous. Allow the
457 * same memory to be mapped more than once.
458 */
mmc_test_map_sg_max_scatter(struct mmc_test_mem * mem,unsigned long sz,struct scatterlist * sglist,unsigned int max_segs,unsigned int max_seg_sz,unsigned int * sg_len)459 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
460 unsigned long sz,
461 struct scatterlist *sglist,
462 unsigned int max_segs,
463 unsigned int max_seg_sz,
464 unsigned int *sg_len)
465 {
466 struct scatterlist *sg = NULL;
467 unsigned int i = mem->cnt, cnt;
468 unsigned long len;
469 void *base, *addr, *last_addr = NULL;
470
471 sg_init_table(sglist, max_segs);
472
473 *sg_len = 0;
474 while (sz) {
475 base = page_address(mem->arr[--i].page);
476 cnt = 1 << mem->arr[i].order;
477 while (sz && cnt) {
478 addr = base + PAGE_SIZE * --cnt;
479 if (last_addr && last_addr + PAGE_SIZE == addr)
480 continue;
481 last_addr = addr;
482 len = PAGE_SIZE;
483 if (len > max_seg_sz)
484 len = max_seg_sz;
485 if (len > sz)
486 len = sz;
487 if (sg)
488 sg = sg_next(sg);
489 else
490 sg = sglist;
491 if (!sg)
492 return -EINVAL;
493 sg_set_page(sg, virt_to_page(addr), len, 0);
494 sz -= len;
495 *sg_len += 1;
496 }
497 if (i == 0)
498 i = mem->cnt;
499 }
500
501 if (sg)
502 sg_mark_end(sg);
503
504 return 0;
505 }
506
507 /*
508 * Calculate transfer rate in bytes per second.
509 */
mmc_test_rate(uint64_t bytes,struct timespec64 * ts)510 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
511 {
512 uint64_t ns;
513
514 ns = timespec64_to_ns(ts);
515 bytes *= 1000000000;
516
517 while (ns > UINT_MAX) {
518 bytes >>= 1;
519 ns >>= 1;
520 }
521
522 if (!ns)
523 return 0;
524
525 do_div(bytes, (uint32_t)ns);
526
527 return bytes;
528 }
529
530 /*
531 * Save transfer results for future usage
532 */
mmc_test_save_transfer_result(struct mmc_test_card * test,unsigned int count,unsigned int sectors,struct timespec64 ts,unsigned int rate,unsigned int iops)533 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
534 unsigned int count, unsigned int sectors, struct timespec64 ts,
535 unsigned int rate, unsigned int iops)
536 {
537 struct mmc_test_transfer_result *tr;
538
539 if (!test->gr)
540 return;
541
542 tr = kmalloc(sizeof(*tr), GFP_KERNEL);
543 if (!tr)
544 return;
545
546 tr->count = count;
547 tr->sectors = sectors;
548 tr->ts = ts;
549 tr->rate = rate;
550 tr->iops = iops;
551
552 list_add_tail(&tr->link, &test->gr->tr_lst);
553 }
554
555 /*
556 * Print the transfer rate.
557 */
mmc_test_print_rate(struct mmc_test_card * test,uint64_t bytes,struct timespec64 * ts1,struct timespec64 * ts2)558 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
559 struct timespec64 *ts1, struct timespec64 *ts2)
560 {
561 unsigned int rate, iops, sectors = bytes >> 9;
562 struct timespec64 ts;
563
564 ts = timespec64_sub(*ts2, *ts1);
565
566 rate = mmc_test_rate(bytes, &ts);
567 iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
568
569 pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
570 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
571 mmc_hostname(test->card->host), sectors, sectors >> 1,
572 (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
573 (u32)ts.tv_nsec, rate / 1000, rate / 1024,
574 iops / 100, iops % 100);
575
576 mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
577 }
578
579 /*
580 * Print the average transfer rate.
581 */
mmc_test_print_avg_rate(struct mmc_test_card * test,uint64_t bytes,unsigned int count,struct timespec64 * ts1,struct timespec64 * ts2)582 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
583 unsigned int count, struct timespec64 *ts1,
584 struct timespec64 *ts2)
585 {
586 unsigned int rate, iops, sectors = bytes >> 9;
587 uint64_t tot = bytes * count;
588 struct timespec64 ts;
589
590 ts = timespec64_sub(*ts2, *ts1);
591
592 rate = mmc_test_rate(tot, &ts);
593 iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
594
595 pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
596 "%llu.%09u seconds (%u kB/s, %u KiB/s, "
597 "%u.%02u IOPS, sg_len %d)\n",
598 mmc_hostname(test->card->host), count, sectors, count,
599 sectors >> 1, (sectors & 1 ? ".5" : ""),
600 (u64)ts.tv_sec, (u32)ts.tv_nsec,
601 rate / 1000, rate / 1024, iops / 100, iops % 100,
602 test->area.sg_len);
603
604 mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
605 }
606
607 /*
608 * Return the card size in sectors.
609 */
mmc_test_capacity(struct mmc_card * card)610 static unsigned int mmc_test_capacity(struct mmc_card *card)
611 {
612 if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
613 return card->ext_csd.sectors;
614 else
615 return card->csd.capacity << (card->csd.read_blkbits - 9);
616 }
617
618 /*******************************************************************/
619 /* Test preparation and cleanup */
620 /*******************************************************************/
621
622 /*
623 * Fill the first couple of sectors of the card with known data
624 * so that bad reads/writes can be detected
625 */
__mmc_test_prepare(struct mmc_test_card * test,int write,int val)626 static int __mmc_test_prepare(struct mmc_test_card *test, int write, int val)
627 {
628 int ret, i;
629
630 ret = mmc_test_set_blksize(test, 512);
631 if (ret)
632 return ret;
633
634 if (write)
635 memset(test->buffer, val, 512);
636 else {
637 for (i = 0; i < 512; i++)
638 test->buffer[i] = i;
639 }
640
641 for (i = 0; i < BUFFER_SIZE / 512; i++) {
642 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
643 if (ret)
644 return ret;
645 }
646
647 return 0;
648 }
649
mmc_test_prepare_write(struct mmc_test_card * test)650 static int mmc_test_prepare_write(struct mmc_test_card *test)
651 {
652 return __mmc_test_prepare(test, 1, 0xDF);
653 }
654
mmc_test_prepare_read(struct mmc_test_card * test)655 static int mmc_test_prepare_read(struct mmc_test_card *test)
656 {
657 return __mmc_test_prepare(test, 0, 0);
658 }
659
mmc_test_cleanup(struct mmc_test_card * test)660 static int mmc_test_cleanup(struct mmc_test_card *test)
661 {
662 return __mmc_test_prepare(test, 1, 0);
663 }
664
665 /*******************************************************************/
666 /* Test execution helpers */
667 /*******************************************************************/
668
669 /*
670 * Modifies the mmc_request to perform the "short transfer" tests
671 */
mmc_test_prepare_broken_mrq(struct mmc_test_card * test,struct mmc_request * mrq,int write)672 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
673 struct mmc_request *mrq, int write)
674 {
675 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
676 return;
677
678 if (mrq->data->blocks > 1) {
679 mrq->cmd->opcode = write ?
680 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
681 mrq->stop = NULL;
682 } else {
683 mrq->cmd->opcode = MMC_SEND_STATUS;
684 mrq->cmd->arg = test->card->rca << 16;
685 }
686 }
687
688 /*
689 * Checks that a normal transfer didn't have any errors
690 */
mmc_test_check_result(struct mmc_test_card * test,struct mmc_request * mrq)691 static int mmc_test_check_result(struct mmc_test_card *test,
692 struct mmc_request *mrq)
693 {
694 int ret;
695
696 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
697 return -EINVAL;
698
699 ret = 0;
700
701 if (mrq->sbc && mrq->sbc->error)
702 ret = mrq->sbc->error;
703 if (!ret && mrq->cmd->error)
704 ret = mrq->cmd->error;
705 if (!ret && mrq->data->error)
706 ret = mrq->data->error;
707 if (!ret && mrq->stop && mrq->stop->error)
708 ret = mrq->stop->error;
709 if (!ret && mrq->data->bytes_xfered !=
710 mrq->data->blocks * mrq->data->blksz)
711 ret = RESULT_FAIL;
712
713 if (ret == -EINVAL)
714 ret = RESULT_UNSUP_HOST;
715
716 return ret;
717 }
718
719 /*
720 * Checks that a "short transfer" behaved as expected
721 */
mmc_test_check_broken_result(struct mmc_test_card * test,struct mmc_request * mrq)722 static int mmc_test_check_broken_result(struct mmc_test_card *test,
723 struct mmc_request *mrq)
724 {
725 int ret;
726
727 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
728 return -EINVAL;
729
730 ret = 0;
731
732 if (!ret && mrq->cmd->error)
733 ret = mrq->cmd->error;
734 if (!ret && mrq->data->error == 0)
735 ret = RESULT_FAIL;
736 if (!ret && mrq->data->error != -ETIMEDOUT)
737 ret = mrq->data->error;
738 if (!ret && mrq->stop && mrq->stop->error)
739 ret = mrq->stop->error;
740 if (mrq->data->blocks > 1) {
741 if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
742 ret = RESULT_FAIL;
743 } else {
744 if (!ret && mrq->data->bytes_xfered > 0)
745 ret = RESULT_FAIL;
746 }
747
748 if (ret == -EINVAL)
749 ret = RESULT_UNSUP_HOST;
750
751 return ret;
752 }
753
754 struct mmc_test_req {
755 struct mmc_request mrq;
756 struct mmc_command sbc;
757 struct mmc_command cmd;
758 struct mmc_command stop;
759 struct mmc_command status;
760 struct mmc_data data;
761 };
762
763 /*
764 * Tests nonblock transfer with certain parameters
765 */
mmc_test_req_reset(struct mmc_test_req * rq)766 static void mmc_test_req_reset(struct mmc_test_req *rq)
767 {
768 memset(rq, 0, sizeof(struct mmc_test_req));
769
770 rq->mrq.cmd = &rq->cmd;
771 rq->mrq.data = &rq->data;
772 rq->mrq.stop = &rq->stop;
773 }
774
mmc_test_req_alloc(void)775 static struct mmc_test_req *mmc_test_req_alloc(void)
776 {
777 struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
778
779 if (rq)
780 mmc_test_req_reset(rq);
781
782 return rq;
783 }
784
mmc_test_wait_done(struct mmc_request * mrq)785 static void mmc_test_wait_done(struct mmc_request *mrq)
786 {
787 complete(&mrq->completion);
788 }
789
mmc_test_start_areq(struct mmc_test_card * test,struct mmc_request * mrq,struct mmc_request * prev_mrq)790 static int mmc_test_start_areq(struct mmc_test_card *test,
791 struct mmc_request *mrq,
792 struct mmc_request *prev_mrq)
793 {
794 struct mmc_host *host = test->card->host;
795 int err = 0;
796
797 if (mrq) {
798 init_completion(&mrq->completion);
799 mrq->done = mmc_test_wait_done;
800 mmc_pre_req(host, mrq);
801 }
802
803 if (prev_mrq) {
804 wait_for_completion(&prev_mrq->completion);
805 err = mmc_test_wait_busy(test);
806 if (!err)
807 err = mmc_test_check_result(test, prev_mrq);
808 }
809
810 if (!err && mrq) {
811 err = mmc_start_request(host, mrq);
812 if (err)
813 mmc_retune_release(host);
814 }
815
816 if (prev_mrq)
817 mmc_post_req(host, prev_mrq, 0);
818
819 if (err && mrq)
820 mmc_post_req(host, mrq, err);
821
822 return err;
823 }
824
mmc_test_nonblock_transfer(struct mmc_test_card * test,unsigned int dev_addr,int write,int count)825 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
826 unsigned int dev_addr, int write,
827 int count)
828 {
829 struct mmc_test_req *rq1, *rq2;
830 struct mmc_request *mrq, *prev_mrq;
831 int i;
832 int ret = RESULT_OK;
833 struct mmc_test_area *t = &test->area;
834 struct scatterlist *sg = t->sg;
835 struct scatterlist *sg_areq = t->sg_areq;
836
837 rq1 = mmc_test_req_alloc();
838 rq2 = mmc_test_req_alloc();
839 if (!rq1 || !rq2) {
840 ret = RESULT_FAIL;
841 goto err;
842 }
843
844 mrq = &rq1->mrq;
845 prev_mrq = NULL;
846
847 for (i = 0; i < count; i++) {
848 mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
849 mmc_test_prepare_mrq(test, mrq, sg, t->sg_len, dev_addr,
850 t->blocks, 512, write);
851 ret = mmc_test_start_areq(test, mrq, prev_mrq);
852 if (ret)
853 goto err;
854
855 if (!prev_mrq)
856 prev_mrq = &rq2->mrq;
857
858 swap(mrq, prev_mrq);
859 swap(sg, sg_areq);
860 dev_addr += t->blocks;
861 }
862
863 ret = mmc_test_start_areq(test, NULL, prev_mrq);
864 err:
865 kfree(rq1);
866 kfree(rq2);
867 return ret;
868 }
869
870 /*
871 * Tests a basic transfer with certain parameters
872 */
mmc_test_simple_transfer(struct mmc_test_card * test,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write)873 static int mmc_test_simple_transfer(struct mmc_test_card *test,
874 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
875 unsigned blocks, unsigned blksz, int write)
876 {
877 struct mmc_request mrq = {};
878 struct mmc_command cmd = {};
879 struct mmc_command stop = {};
880 struct mmc_data data = {};
881
882 mrq.cmd = &cmd;
883 mrq.data = &data;
884 mrq.stop = &stop;
885
886 mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
887 blocks, blksz, write);
888
889 mmc_wait_for_req(test->card->host, &mrq);
890
891 mmc_test_wait_busy(test);
892
893 return mmc_test_check_result(test, &mrq);
894 }
895
896 /*
897 * Tests a transfer where the card will fail completely or partly
898 */
mmc_test_broken_transfer(struct mmc_test_card * test,unsigned blocks,unsigned blksz,int write)899 static int mmc_test_broken_transfer(struct mmc_test_card *test,
900 unsigned blocks, unsigned blksz, int write)
901 {
902 struct mmc_request mrq = {};
903 struct mmc_command cmd = {};
904 struct mmc_command stop = {};
905 struct mmc_data data = {};
906
907 struct scatterlist sg;
908
909 mrq.cmd = &cmd;
910 mrq.data = &data;
911 mrq.stop = &stop;
912
913 sg_init_one(&sg, test->buffer, blocks * blksz);
914
915 mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
916 mmc_test_prepare_broken_mrq(test, &mrq, write);
917
918 mmc_wait_for_req(test->card->host, &mrq);
919
920 mmc_test_wait_busy(test);
921
922 return mmc_test_check_broken_result(test, &mrq);
923 }
924
925 /*
926 * Does a complete transfer test where data is also validated
927 *
928 * Note: mmc_test_prepare() must have been done before this call
929 */
mmc_test_transfer(struct mmc_test_card * test,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write)930 static int mmc_test_transfer(struct mmc_test_card *test,
931 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
932 unsigned blocks, unsigned blksz, int write)
933 {
934 int ret, i;
935 unsigned long flags;
936
937 if (write) {
938 for (i = 0; i < blocks * blksz; i++)
939 test->scratch[i] = i;
940 } else {
941 memset(test->scratch, 0, BUFFER_SIZE);
942 }
943 local_irq_save(flags);
944 sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
945 local_irq_restore(flags);
946
947 ret = mmc_test_set_blksize(test, blksz);
948 if (ret)
949 return ret;
950
951 ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
952 blocks, blksz, write);
953 if (ret)
954 return ret;
955
956 if (write) {
957 int sectors;
958
959 ret = mmc_test_set_blksize(test, 512);
960 if (ret)
961 return ret;
962
963 sectors = (blocks * blksz + 511) / 512;
964 if ((sectors * 512) == (blocks * blksz))
965 sectors++;
966
967 if ((sectors * 512) > BUFFER_SIZE)
968 return -EINVAL;
969
970 memset(test->buffer, 0, sectors * 512);
971
972 for (i = 0; i < sectors; i++) {
973 ret = mmc_test_buffer_transfer(test,
974 test->buffer + i * 512,
975 dev_addr + i, 512, 0);
976 if (ret)
977 return ret;
978 }
979
980 for (i = 0; i < blocks * blksz; i++) {
981 if (test->buffer[i] != (u8)i)
982 return RESULT_FAIL;
983 }
984
985 for (; i < sectors * 512; i++) {
986 if (test->buffer[i] != 0xDF)
987 return RESULT_FAIL;
988 }
989 } else {
990 local_irq_save(flags);
991 sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
992 local_irq_restore(flags);
993 for (i = 0; i < blocks * blksz; i++) {
994 if (test->scratch[i] != (u8)i)
995 return RESULT_FAIL;
996 }
997 }
998
999 return 0;
1000 }
1001
1002 /*******************************************************************/
1003 /* Tests */
1004 /*******************************************************************/
1005
1006 struct mmc_test_case {
1007 const char *name;
1008
1009 int (*prepare)(struct mmc_test_card *);
1010 int (*run)(struct mmc_test_card *);
1011 int (*cleanup)(struct mmc_test_card *);
1012 };
1013
mmc_test_basic_write(struct mmc_test_card * test)1014 static int mmc_test_basic_write(struct mmc_test_card *test)
1015 {
1016 int ret;
1017 struct scatterlist sg;
1018
1019 ret = mmc_test_set_blksize(test, 512);
1020 if (ret)
1021 return ret;
1022
1023 sg_init_one(&sg, test->buffer, 512);
1024
1025 return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1026 }
1027
mmc_test_basic_read(struct mmc_test_card * test)1028 static int mmc_test_basic_read(struct mmc_test_card *test)
1029 {
1030 int ret;
1031 struct scatterlist sg;
1032
1033 ret = mmc_test_set_blksize(test, 512);
1034 if (ret)
1035 return ret;
1036
1037 sg_init_one(&sg, test->buffer, 512);
1038
1039 return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1040 }
1041
mmc_test_verify_write(struct mmc_test_card * test)1042 static int mmc_test_verify_write(struct mmc_test_card *test)
1043 {
1044 struct scatterlist sg;
1045
1046 sg_init_one(&sg, test->buffer, 512);
1047
1048 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1049 }
1050
mmc_test_verify_read(struct mmc_test_card * test)1051 static int mmc_test_verify_read(struct mmc_test_card *test)
1052 {
1053 struct scatterlist sg;
1054
1055 sg_init_one(&sg, test->buffer, 512);
1056
1057 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1058 }
1059
mmc_test_multi_write(struct mmc_test_card * test)1060 static int mmc_test_multi_write(struct mmc_test_card *test)
1061 {
1062 unsigned int size;
1063 struct scatterlist sg;
1064
1065 if (test->card->host->max_blk_count == 1)
1066 return RESULT_UNSUP_HOST;
1067
1068 size = PAGE_SIZE * 2;
1069 size = min(size, test->card->host->max_req_size);
1070 size = min(size, test->card->host->max_seg_size);
1071 size = min(size, test->card->host->max_blk_count * 512);
1072
1073 if (size < 1024)
1074 return RESULT_UNSUP_HOST;
1075
1076 sg_init_one(&sg, test->buffer, size);
1077
1078 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1079 }
1080
mmc_test_multi_read(struct mmc_test_card * test)1081 static int mmc_test_multi_read(struct mmc_test_card *test)
1082 {
1083 unsigned int size;
1084 struct scatterlist sg;
1085
1086 if (test->card->host->max_blk_count == 1)
1087 return RESULT_UNSUP_HOST;
1088
1089 size = PAGE_SIZE * 2;
1090 size = min(size, test->card->host->max_req_size);
1091 size = min(size, test->card->host->max_seg_size);
1092 size = min(size, test->card->host->max_blk_count * 512);
1093
1094 if (size < 1024)
1095 return RESULT_UNSUP_HOST;
1096
1097 sg_init_one(&sg, test->buffer, size);
1098
1099 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1100 }
1101
mmc_test_pow2_write(struct mmc_test_card * test)1102 static int mmc_test_pow2_write(struct mmc_test_card *test)
1103 {
1104 int ret, i;
1105 struct scatterlist sg;
1106
1107 if (!test->card->csd.write_partial)
1108 return RESULT_UNSUP_CARD;
1109
1110 for (i = 1; i < 512; i <<= 1) {
1111 sg_init_one(&sg, test->buffer, i);
1112 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1113 if (ret)
1114 return ret;
1115 }
1116
1117 return 0;
1118 }
1119
mmc_test_pow2_read(struct mmc_test_card * test)1120 static int mmc_test_pow2_read(struct mmc_test_card *test)
1121 {
1122 int ret, i;
1123 struct scatterlist sg;
1124
1125 if (!test->card->csd.read_partial)
1126 return RESULT_UNSUP_CARD;
1127
1128 for (i = 1; i < 512; i <<= 1) {
1129 sg_init_one(&sg, test->buffer, i);
1130 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1131 if (ret)
1132 return ret;
1133 }
1134
1135 return 0;
1136 }
1137
mmc_test_weird_write(struct mmc_test_card * test)1138 static int mmc_test_weird_write(struct mmc_test_card *test)
1139 {
1140 int ret, i;
1141 struct scatterlist sg;
1142
1143 if (!test->card->csd.write_partial)
1144 return RESULT_UNSUP_CARD;
1145
1146 for (i = 3; i < 512; i += 7) {
1147 sg_init_one(&sg, test->buffer, i);
1148 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1149 if (ret)
1150 return ret;
1151 }
1152
1153 return 0;
1154 }
1155
mmc_test_weird_read(struct mmc_test_card * test)1156 static int mmc_test_weird_read(struct mmc_test_card *test)
1157 {
1158 int ret, i;
1159 struct scatterlist sg;
1160
1161 if (!test->card->csd.read_partial)
1162 return RESULT_UNSUP_CARD;
1163
1164 for (i = 3; i < 512; i += 7) {
1165 sg_init_one(&sg, test->buffer, i);
1166 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1167 if (ret)
1168 return ret;
1169 }
1170
1171 return 0;
1172 }
1173
mmc_test_align_write(struct mmc_test_card * test)1174 static int mmc_test_align_write(struct mmc_test_card *test)
1175 {
1176 int ret, i;
1177 struct scatterlist sg;
1178
1179 for (i = 1; i < TEST_ALIGN_END; i++) {
1180 sg_init_one(&sg, test->buffer + i, 512);
1181 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1182 if (ret)
1183 return ret;
1184 }
1185
1186 return 0;
1187 }
1188
mmc_test_align_read(struct mmc_test_card * test)1189 static int mmc_test_align_read(struct mmc_test_card *test)
1190 {
1191 int ret, i;
1192 struct scatterlist sg;
1193
1194 for (i = 1; i < TEST_ALIGN_END; i++) {
1195 sg_init_one(&sg, test->buffer + i, 512);
1196 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1197 if (ret)
1198 return ret;
1199 }
1200
1201 return 0;
1202 }
1203
mmc_test_align_multi_write(struct mmc_test_card * test)1204 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1205 {
1206 int ret, i;
1207 unsigned int size;
1208 struct scatterlist sg;
1209
1210 if (test->card->host->max_blk_count == 1)
1211 return RESULT_UNSUP_HOST;
1212
1213 size = PAGE_SIZE * 2;
1214 size = min(size, test->card->host->max_req_size);
1215 size = min(size, test->card->host->max_seg_size);
1216 size = min(size, test->card->host->max_blk_count * 512);
1217
1218 if (size < 1024)
1219 return RESULT_UNSUP_HOST;
1220
1221 for (i = 1; i < TEST_ALIGN_END; i++) {
1222 sg_init_one(&sg, test->buffer + i, size);
1223 ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1224 if (ret)
1225 return ret;
1226 }
1227
1228 return 0;
1229 }
1230
mmc_test_align_multi_read(struct mmc_test_card * test)1231 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1232 {
1233 int ret, i;
1234 unsigned int size;
1235 struct scatterlist sg;
1236
1237 if (test->card->host->max_blk_count == 1)
1238 return RESULT_UNSUP_HOST;
1239
1240 size = PAGE_SIZE * 2;
1241 size = min(size, test->card->host->max_req_size);
1242 size = min(size, test->card->host->max_seg_size);
1243 size = min(size, test->card->host->max_blk_count * 512);
1244
1245 if (size < 1024)
1246 return RESULT_UNSUP_HOST;
1247
1248 for (i = 1; i < TEST_ALIGN_END; i++) {
1249 sg_init_one(&sg, test->buffer + i, size);
1250 ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1251 if (ret)
1252 return ret;
1253 }
1254
1255 return 0;
1256 }
1257
mmc_test_xfersize_write(struct mmc_test_card * test)1258 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1259 {
1260 int ret;
1261
1262 ret = mmc_test_set_blksize(test, 512);
1263 if (ret)
1264 return ret;
1265
1266 return mmc_test_broken_transfer(test, 1, 512, 1);
1267 }
1268
mmc_test_xfersize_read(struct mmc_test_card * test)1269 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1270 {
1271 int ret;
1272
1273 ret = mmc_test_set_blksize(test, 512);
1274 if (ret)
1275 return ret;
1276
1277 return mmc_test_broken_transfer(test, 1, 512, 0);
1278 }
1279
mmc_test_multi_xfersize_write(struct mmc_test_card * test)1280 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1281 {
1282 int ret;
1283
1284 if (test->card->host->max_blk_count == 1)
1285 return RESULT_UNSUP_HOST;
1286
1287 ret = mmc_test_set_blksize(test, 512);
1288 if (ret)
1289 return ret;
1290
1291 return mmc_test_broken_transfer(test, 2, 512, 1);
1292 }
1293
mmc_test_multi_xfersize_read(struct mmc_test_card * test)1294 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1295 {
1296 int ret;
1297
1298 if (test->card->host->max_blk_count == 1)
1299 return RESULT_UNSUP_HOST;
1300
1301 ret = mmc_test_set_blksize(test, 512);
1302 if (ret)
1303 return ret;
1304
1305 return mmc_test_broken_transfer(test, 2, 512, 0);
1306 }
1307
1308 #ifdef CONFIG_HIGHMEM
1309
mmc_test_write_high(struct mmc_test_card * test)1310 static int mmc_test_write_high(struct mmc_test_card *test)
1311 {
1312 struct scatterlist sg;
1313
1314 sg_init_table(&sg, 1);
1315 sg_set_page(&sg, test->highmem, 512, 0);
1316
1317 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1318 }
1319
mmc_test_read_high(struct mmc_test_card * test)1320 static int mmc_test_read_high(struct mmc_test_card *test)
1321 {
1322 struct scatterlist sg;
1323
1324 sg_init_table(&sg, 1);
1325 sg_set_page(&sg, test->highmem, 512, 0);
1326
1327 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1328 }
1329
mmc_test_multi_write_high(struct mmc_test_card * test)1330 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1331 {
1332 unsigned int size;
1333 struct scatterlist sg;
1334
1335 if (test->card->host->max_blk_count == 1)
1336 return RESULT_UNSUP_HOST;
1337
1338 size = PAGE_SIZE * 2;
1339 size = min(size, test->card->host->max_req_size);
1340 size = min(size, test->card->host->max_seg_size);
1341 size = min(size, test->card->host->max_blk_count * 512);
1342
1343 if (size < 1024)
1344 return RESULT_UNSUP_HOST;
1345
1346 sg_init_table(&sg, 1);
1347 sg_set_page(&sg, test->highmem, size, 0);
1348
1349 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1350 }
1351
mmc_test_multi_read_high(struct mmc_test_card * test)1352 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1353 {
1354 unsigned int size;
1355 struct scatterlist sg;
1356
1357 if (test->card->host->max_blk_count == 1)
1358 return RESULT_UNSUP_HOST;
1359
1360 size = PAGE_SIZE * 2;
1361 size = min(size, test->card->host->max_req_size);
1362 size = min(size, test->card->host->max_seg_size);
1363 size = min(size, test->card->host->max_blk_count * 512);
1364
1365 if (size < 1024)
1366 return RESULT_UNSUP_HOST;
1367
1368 sg_init_table(&sg, 1);
1369 sg_set_page(&sg, test->highmem, size, 0);
1370
1371 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1372 }
1373
1374 #else
1375
mmc_test_no_highmem(struct mmc_test_card * test)1376 static int mmc_test_no_highmem(struct mmc_test_card *test)
1377 {
1378 pr_info("%s: Highmem not configured - test skipped\n",
1379 mmc_hostname(test->card->host));
1380 return 0;
1381 }
1382
1383 #endif /* CONFIG_HIGHMEM */
1384
1385 /*
1386 * Map sz bytes so that it can be transferred.
1387 */
mmc_test_area_map(struct mmc_test_card * test,unsigned long sz,int max_scatter,int min_sg_len,bool nonblock)1388 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1389 int max_scatter, int min_sg_len, bool nonblock)
1390 {
1391 struct mmc_test_area *t = &test->area;
1392 int err;
1393 unsigned int sg_len = 0;
1394
1395 t->blocks = sz >> 9;
1396
1397 if (max_scatter) {
1398 err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1399 t->max_segs, t->max_seg_sz,
1400 &t->sg_len);
1401 } else {
1402 err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1403 t->max_seg_sz, &t->sg_len, min_sg_len);
1404 }
1405
1406 if (err || !nonblock)
1407 goto err;
1408
1409 if (max_scatter) {
1410 err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg_areq,
1411 t->max_segs, t->max_seg_sz,
1412 &sg_len);
1413 } else {
1414 err = mmc_test_map_sg(t->mem, sz, t->sg_areq, 1, t->max_segs,
1415 t->max_seg_sz, &sg_len, min_sg_len);
1416 }
1417 if (!err && sg_len != t->sg_len)
1418 err = -EINVAL;
1419
1420 err:
1421 if (err)
1422 pr_info("%s: Failed to map sg list\n",
1423 mmc_hostname(test->card->host));
1424 return err;
1425 }
1426
1427 /*
1428 * Transfer bytes mapped by mmc_test_area_map().
1429 */
mmc_test_area_transfer(struct mmc_test_card * test,unsigned int dev_addr,int write)1430 static int mmc_test_area_transfer(struct mmc_test_card *test,
1431 unsigned int dev_addr, int write)
1432 {
1433 struct mmc_test_area *t = &test->area;
1434
1435 return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1436 t->blocks, 512, write);
1437 }
1438
1439 /*
1440 * Map and transfer bytes for multiple transfers.
1441 */
mmc_test_area_io_seq(struct mmc_test_card * test,unsigned long sz,unsigned int dev_addr,int write,int max_scatter,int timed,int count,bool nonblock,int min_sg_len)1442 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1443 unsigned int dev_addr, int write,
1444 int max_scatter, int timed, int count,
1445 bool nonblock, int min_sg_len)
1446 {
1447 struct timespec64 ts1, ts2;
1448 int ret = 0;
1449 int i;
1450
1451 /*
1452 * In the case of a maximally scattered transfer, the maximum transfer
1453 * size is further limited by using PAGE_SIZE segments.
1454 */
1455 if (max_scatter) {
1456 struct mmc_test_area *t = &test->area;
1457 unsigned long max_tfr;
1458
1459 if (t->max_seg_sz >= PAGE_SIZE)
1460 max_tfr = t->max_segs * PAGE_SIZE;
1461 else
1462 max_tfr = t->max_segs * t->max_seg_sz;
1463 if (sz > max_tfr)
1464 sz = max_tfr;
1465 }
1466
1467 ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len, nonblock);
1468 if (ret)
1469 return ret;
1470
1471 if (timed)
1472 ktime_get_ts64(&ts1);
1473 if (nonblock)
1474 ret = mmc_test_nonblock_transfer(test, dev_addr, write, count);
1475 else
1476 for (i = 0; i < count && ret == 0; i++) {
1477 ret = mmc_test_area_transfer(test, dev_addr, write);
1478 dev_addr += sz >> 9;
1479 }
1480
1481 if (ret)
1482 return ret;
1483
1484 if (timed)
1485 ktime_get_ts64(&ts2);
1486
1487 if (timed)
1488 mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1489
1490 return 0;
1491 }
1492
mmc_test_area_io(struct mmc_test_card * test,unsigned long sz,unsigned int dev_addr,int write,int max_scatter,int timed)1493 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1494 unsigned int dev_addr, int write, int max_scatter,
1495 int timed)
1496 {
1497 return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1498 timed, 1, false, 0);
1499 }
1500
1501 /*
1502 * Write the test area entirely.
1503 */
mmc_test_area_fill(struct mmc_test_card * test)1504 static int mmc_test_area_fill(struct mmc_test_card *test)
1505 {
1506 struct mmc_test_area *t = &test->area;
1507
1508 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1509 }
1510
1511 /*
1512 * Erase the test area entirely.
1513 */
mmc_test_area_erase(struct mmc_test_card * test)1514 static int mmc_test_area_erase(struct mmc_test_card *test)
1515 {
1516 struct mmc_test_area *t = &test->area;
1517
1518 if (!mmc_can_erase(test->card))
1519 return 0;
1520
1521 return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1522 MMC_ERASE_ARG);
1523 }
1524
1525 /*
1526 * Cleanup struct mmc_test_area.
1527 */
mmc_test_area_cleanup(struct mmc_test_card * test)1528 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1529 {
1530 struct mmc_test_area *t = &test->area;
1531
1532 kfree(t->sg);
1533 kfree(t->sg_areq);
1534 mmc_test_free_mem(t->mem);
1535
1536 return 0;
1537 }
1538
1539 /*
1540 * Initialize an area for testing large transfers. The test area is set to the
1541 * middle of the card because cards may have different characteristics at the
1542 * front (for FAT file system optimization). Optionally, the area is erased
1543 * (if the card supports it) which may improve write performance. Optionally,
1544 * the area is filled with data for subsequent read tests.
1545 */
mmc_test_area_init(struct mmc_test_card * test,int erase,int fill)1546 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1547 {
1548 struct mmc_test_area *t = &test->area;
1549 unsigned long min_sz = 64 * 1024, sz;
1550 int ret;
1551
1552 ret = mmc_test_set_blksize(test, 512);
1553 if (ret)
1554 return ret;
1555
1556 /* Make the test area size about 4MiB */
1557 sz = (unsigned long)test->card->pref_erase << 9;
1558 t->max_sz = sz;
1559 while (t->max_sz < 4 * 1024 * 1024)
1560 t->max_sz += sz;
1561 while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1562 t->max_sz -= sz;
1563
1564 t->max_segs = test->card->host->max_segs;
1565 t->max_seg_sz = test->card->host->max_seg_size;
1566 t->max_seg_sz -= t->max_seg_sz % 512;
1567
1568 t->max_tfr = t->max_sz;
1569 if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1570 t->max_tfr = test->card->host->max_blk_count << 9;
1571 if (t->max_tfr > test->card->host->max_req_size)
1572 t->max_tfr = test->card->host->max_req_size;
1573 if (t->max_tfr / t->max_seg_sz > t->max_segs)
1574 t->max_tfr = t->max_segs * t->max_seg_sz;
1575
1576 /*
1577 * Try to allocate enough memory for a max. sized transfer. Less is OK
1578 * because the same memory can be mapped into the scatterlist more than
1579 * once. Also, take into account the limits imposed on scatterlist
1580 * segments by the host driver.
1581 */
1582 t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1583 t->max_seg_sz);
1584 if (!t->mem)
1585 return -ENOMEM;
1586
1587 t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1588 if (!t->sg) {
1589 ret = -ENOMEM;
1590 goto out_free;
1591 }
1592
1593 t->sg_areq = kmalloc_array(t->max_segs, sizeof(*t->sg_areq),
1594 GFP_KERNEL);
1595 if (!t->sg_areq) {
1596 ret = -ENOMEM;
1597 goto out_free;
1598 }
1599
1600 t->dev_addr = mmc_test_capacity(test->card) / 2;
1601 t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1602
1603 if (erase) {
1604 ret = mmc_test_area_erase(test);
1605 if (ret)
1606 goto out_free;
1607 }
1608
1609 if (fill) {
1610 ret = mmc_test_area_fill(test);
1611 if (ret)
1612 goto out_free;
1613 }
1614
1615 return 0;
1616
1617 out_free:
1618 mmc_test_area_cleanup(test);
1619 return ret;
1620 }
1621
1622 /*
1623 * Prepare for large transfers. Do not erase the test area.
1624 */
mmc_test_area_prepare(struct mmc_test_card * test)1625 static int mmc_test_area_prepare(struct mmc_test_card *test)
1626 {
1627 return mmc_test_area_init(test, 0, 0);
1628 }
1629
1630 /*
1631 * Prepare for large transfers. Do erase the test area.
1632 */
mmc_test_area_prepare_erase(struct mmc_test_card * test)1633 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1634 {
1635 return mmc_test_area_init(test, 1, 0);
1636 }
1637
1638 /*
1639 * Prepare for large transfers. Erase and fill the test area.
1640 */
mmc_test_area_prepare_fill(struct mmc_test_card * test)1641 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1642 {
1643 return mmc_test_area_init(test, 1, 1);
1644 }
1645
1646 /*
1647 * Test best-case performance. Best-case performance is expected from
1648 * a single large transfer.
1649 *
1650 * An additional option (max_scatter) allows the measurement of the same
1651 * transfer but with no contiguous pages in the scatter list. This tests
1652 * the efficiency of DMA to handle scattered pages.
1653 */
mmc_test_best_performance(struct mmc_test_card * test,int write,int max_scatter)1654 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1655 int max_scatter)
1656 {
1657 struct mmc_test_area *t = &test->area;
1658
1659 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1660 max_scatter, 1);
1661 }
1662
1663 /*
1664 * Best-case read performance.
1665 */
mmc_test_best_read_performance(struct mmc_test_card * test)1666 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1667 {
1668 return mmc_test_best_performance(test, 0, 0);
1669 }
1670
1671 /*
1672 * Best-case write performance.
1673 */
mmc_test_best_write_performance(struct mmc_test_card * test)1674 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1675 {
1676 return mmc_test_best_performance(test, 1, 0);
1677 }
1678
1679 /*
1680 * Best-case read performance into scattered pages.
1681 */
mmc_test_best_read_perf_max_scatter(struct mmc_test_card * test)1682 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1683 {
1684 return mmc_test_best_performance(test, 0, 1);
1685 }
1686
1687 /*
1688 * Best-case write performance from scattered pages.
1689 */
mmc_test_best_write_perf_max_scatter(struct mmc_test_card * test)1690 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1691 {
1692 return mmc_test_best_performance(test, 1, 1);
1693 }
1694
1695 /*
1696 * Single read performance by transfer size.
1697 */
mmc_test_profile_read_perf(struct mmc_test_card * test)1698 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1699 {
1700 struct mmc_test_area *t = &test->area;
1701 unsigned long sz;
1702 unsigned int dev_addr;
1703 int ret;
1704
1705 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1706 dev_addr = t->dev_addr + (sz >> 9);
1707 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1708 if (ret)
1709 return ret;
1710 }
1711 sz = t->max_tfr;
1712 dev_addr = t->dev_addr;
1713 return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1714 }
1715
1716 /*
1717 * Single write performance by transfer size.
1718 */
mmc_test_profile_write_perf(struct mmc_test_card * test)1719 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1720 {
1721 struct mmc_test_area *t = &test->area;
1722 unsigned long sz;
1723 unsigned int dev_addr;
1724 int ret;
1725
1726 ret = mmc_test_area_erase(test);
1727 if (ret)
1728 return ret;
1729 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1730 dev_addr = t->dev_addr + (sz >> 9);
1731 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1732 if (ret)
1733 return ret;
1734 }
1735 ret = mmc_test_area_erase(test);
1736 if (ret)
1737 return ret;
1738 sz = t->max_tfr;
1739 dev_addr = t->dev_addr;
1740 return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1741 }
1742
1743 /*
1744 * Single trim performance by transfer size.
1745 */
mmc_test_profile_trim_perf(struct mmc_test_card * test)1746 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1747 {
1748 struct mmc_test_area *t = &test->area;
1749 unsigned long sz;
1750 unsigned int dev_addr;
1751 struct timespec64 ts1, ts2;
1752 int ret;
1753
1754 if (!mmc_can_trim(test->card))
1755 return RESULT_UNSUP_CARD;
1756
1757 if (!mmc_can_erase(test->card))
1758 return RESULT_UNSUP_HOST;
1759
1760 for (sz = 512; sz < t->max_sz; sz <<= 1) {
1761 dev_addr = t->dev_addr + (sz >> 9);
1762 ktime_get_ts64(&ts1);
1763 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1764 if (ret)
1765 return ret;
1766 ktime_get_ts64(&ts2);
1767 mmc_test_print_rate(test, sz, &ts1, &ts2);
1768 }
1769 dev_addr = t->dev_addr;
1770 ktime_get_ts64(&ts1);
1771 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1772 if (ret)
1773 return ret;
1774 ktime_get_ts64(&ts2);
1775 mmc_test_print_rate(test, sz, &ts1, &ts2);
1776 return 0;
1777 }
1778
mmc_test_seq_read_perf(struct mmc_test_card * test,unsigned long sz)1779 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1780 {
1781 struct mmc_test_area *t = &test->area;
1782 unsigned int dev_addr, i, cnt;
1783 struct timespec64 ts1, ts2;
1784 int ret;
1785
1786 cnt = t->max_sz / sz;
1787 dev_addr = t->dev_addr;
1788 ktime_get_ts64(&ts1);
1789 for (i = 0; i < cnt; i++) {
1790 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1791 if (ret)
1792 return ret;
1793 dev_addr += (sz >> 9);
1794 }
1795 ktime_get_ts64(&ts2);
1796 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1797 return 0;
1798 }
1799
1800 /*
1801 * Consecutive read performance by transfer size.
1802 */
mmc_test_profile_seq_read_perf(struct mmc_test_card * test)1803 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1804 {
1805 struct mmc_test_area *t = &test->area;
1806 unsigned long sz;
1807 int ret;
1808
1809 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1810 ret = mmc_test_seq_read_perf(test, sz);
1811 if (ret)
1812 return ret;
1813 }
1814 sz = t->max_tfr;
1815 return mmc_test_seq_read_perf(test, sz);
1816 }
1817
mmc_test_seq_write_perf(struct mmc_test_card * test,unsigned long sz)1818 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1819 {
1820 struct mmc_test_area *t = &test->area;
1821 unsigned int dev_addr, i, cnt;
1822 struct timespec64 ts1, ts2;
1823 int ret;
1824
1825 ret = mmc_test_area_erase(test);
1826 if (ret)
1827 return ret;
1828 cnt = t->max_sz / sz;
1829 dev_addr = t->dev_addr;
1830 ktime_get_ts64(&ts1);
1831 for (i = 0; i < cnt; i++) {
1832 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1833 if (ret)
1834 return ret;
1835 dev_addr += (sz >> 9);
1836 }
1837 ktime_get_ts64(&ts2);
1838 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1839 return 0;
1840 }
1841
1842 /*
1843 * Consecutive write performance by transfer size.
1844 */
mmc_test_profile_seq_write_perf(struct mmc_test_card * test)1845 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1846 {
1847 struct mmc_test_area *t = &test->area;
1848 unsigned long sz;
1849 int ret;
1850
1851 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1852 ret = mmc_test_seq_write_perf(test, sz);
1853 if (ret)
1854 return ret;
1855 }
1856 sz = t->max_tfr;
1857 return mmc_test_seq_write_perf(test, sz);
1858 }
1859
1860 /*
1861 * Consecutive trim performance by transfer size.
1862 */
mmc_test_profile_seq_trim_perf(struct mmc_test_card * test)1863 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1864 {
1865 struct mmc_test_area *t = &test->area;
1866 unsigned long sz;
1867 unsigned int dev_addr, i, cnt;
1868 struct timespec64 ts1, ts2;
1869 int ret;
1870
1871 if (!mmc_can_trim(test->card))
1872 return RESULT_UNSUP_CARD;
1873
1874 if (!mmc_can_erase(test->card))
1875 return RESULT_UNSUP_HOST;
1876
1877 for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1878 ret = mmc_test_area_erase(test);
1879 if (ret)
1880 return ret;
1881 ret = mmc_test_area_fill(test);
1882 if (ret)
1883 return ret;
1884 cnt = t->max_sz / sz;
1885 dev_addr = t->dev_addr;
1886 ktime_get_ts64(&ts1);
1887 for (i = 0; i < cnt; i++) {
1888 ret = mmc_erase(test->card, dev_addr, sz >> 9,
1889 MMC_TRIM_ARG);
1890 if (ret)
1891 return ret;
1892 dev_addr += (sz >> 9);
1893 }
1894 ktime_get_ts64(&ts2);
1895 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1896 }
1897 return 0;
1898 }
1899
1900 static unsigned int rnd_next = 1;
1901
mmc_test_rnd_num(unsigned int rnd_cnt)1902 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1903 {
1904 uint64_t r;
1905
1906 rnd_next = rnd_next * 1103515245 + 12345;
1907 r = (rnd_next >> 16) & 0x7fff;
1908 return (r * rnd_cnt) >> 15;
1909 }
1910
mmc_test_rnd_perf(struct mmc_test_card * test,int write,int print,unsigned long sz)1911 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1912 unsigned long sz)
1913 {
1914 unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1915 unsigned int ssz;
1916 struct timespec64 ts1, ts2, ts;
1917 int ret;
1918
1919 ssz = sz >> 9;
1920
1921 rnd_addr = mmc_test_capacity(test->card) / 4;
1922 range1 = rnd_addr / test->card->pref_erase;
1923 range2 = range1 / ssz;
1924
1925 ktime_get_ts64(&ts1);
1926 for (cnt = 0; cnt < UINT_MAX; cnt++) {
1927 ktime_get_ts64(&ts2);
1928 ts = timespec64_sub(ts2, ts1);
1929 if (ts.tv_sec >= 10)
1930 break;
1931 ea = mmc_test_rnd_num(range1);
1932 if (ea == last_ea)
1933 ea -= 1;
1934 last_ea = ea;
1935 dev_addr = rnd_addr + test->card->pref_erase * ea +
1936 ssz * mmc_test_rnd_num(range2);
1937 ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1938 if (ret)
1939 return ret;
1940 }
1941 if (print)
1942 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1943 return 0;
1944 }
1945
mmc_test_random_perf(struct mmc_test_card * test,int write)1946 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1947 {
1948 struct mmc_test_area *t = &test->area;
1949 unsigned int next;
1950 unsigned long sz;
1951 int ret;
1952
1953 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1954 /*
1955 * When writing, try to get more consistent results by running
1956 * the test twice with exactly the same I/O but outputting the
1957 * results only for the 2nd run.
1958 */
1959 if (write) {
1960 next = rnd_next;
1961 ret = mmc_test_rnd_perf(test, write, 0, sz);
1962 if (ret)
1963 return ret;
1964 rnd_next = next;
1965 }
1966 ret = mmc_test_rnd_perf(test, write, 1, sz);
1967 if (ret)
1968 return ret;
1969 }
1970 sz = t->max_tfr;
1971 if (write) {
1972 next = rnd_next;
1973 ret = mmc_test_rnd_perf(test, write, 0, sz);
1974 if (ret)
1975 return ret;
1976 rnd_next = next;
1977 }
1978 return mmc_test_rnd_perf(test, write, 1, sz);
1979 }
1980
1981 /*
1982 * Random read performance by transfer size.
1983 */
mmc_test_random_read_perf(struct mmc_test_card * test)1984 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1985 {
1986 return mmc_test_random_perf(test, 0);
1987 }
1988
1989 /*
1990 * Random write performance by transfer size.
1991 */
mmc_test_random_write_perf(struct mmc_test_card * test)1992 static int mmc_test_random_write_perf(struct mmc_test_card *test)
1993 {
1994 return mmc_test_random_perf(test, 1);
1995 }
1996
mmc_test_seq_perf(struct mmc_test_card * test,int write,unsigned int tot_sz,int max_scatter)1997 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1998 unsigned int tot_sz, int max_scatter)
1999 {
2000 struct mmc_test_area *t = &test->area;
2001 unsigned int dev_addr, i, cnt, sz, ssz;
2002 struct timespec64 ts1, ts2;
2003 int ret;
2004
2005 sz = t->max_tfr;
2006
2007 /*
2008 * In the case of a maximally scattered transfer, the maximum transfer
2009 * size is further limited by using PAGE_SIZE segments.
2010 */
2011 if (max_scatter) {
2012 unsigned long max_tfr;
2013
2014 if (t->max_seg_sz >= PAGE_SIZE)
2015 max_tfr = t->max_segs * PAGE_SIZE;
2016 else
2017 max_tfr = t->max_segs * t->max_seg_sz;
2018 if (sz > max_tfr)
2019 sz = max_tfr;
2020 }
2021
2022 ssz = sz >> 9;
2023 dev_addr = mmc_test_capacity(test->card) / 4;
2024 if (tot_sz > dev_addr << 9)
2025 tot_sz = dev_addr << 9;
2026 cnt = tot_sz / sz;
2027 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2028
2029 ktime_get_ts64(&ts1);
2030 for (i = 0; i < cnt; i++) {
2031 ret = mmc_test_area_io(test, sz, dev_addr, write,
2032 max_scatter, 0);
2033 if (ret)
2034 return ret;
2035 dev_addr += ssz;
2036 }
2037 ktime_get_ts64(&ts2);
2038
2039 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2040
2041 return 0;
2042 }
2043
mmc_test_large_seq_perf(struct mmc_test_card * test,int write)2044 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2045 {
2046 int ret, i;
2047
2048 for (i = 0; i < 10; i++) {
2049 ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2050 if (ret)
2051 return ret;
2052 }
2053 for (i = 0; i < 5; i++) {
2054 ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2055 if (ret)
2056 return ret;
2057 }
2058 for (i = 0; i < 3; i++) {
2059 ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2060 if (ret)
2061 return ret;
2062 }
2063
2064 return ret;
2065 }
2066
2067 /*
2068 * Large sequential read performance.
2069 */
mmc_test_large_seq_read_perf(struct mmc_test_card * test)2070 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2071 {
2072 return mmc_test_large_seq_perf(test, 0);
2073 }
2074
2075 /*
2076 * Large sequential write performance.
2077 */
mmc_test_large_seq_write_perf(struct mmc_test_card * test)2078 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2079 {
2080 return mmc_test_large_seq_perf(test, 1);
2081 }
2082
mmc_test_rw_multiple(struct mmc_test_card * test,struct mmc_test_multiple_rw * tdata,unsigned int reqsize,unsigned int size,int min_sg_len)2083 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2084 struct mmc_test_multiple_rw *tdata,
2085 unsigned int reqsize, unsigned int size,
2086 int min_sg_len)
2087 {
2088 unsigned int dev_addr;
2089 struct mmc_test_area *t = &test->area;
2090 int ret = 0;
2091
2092 /* Set up test area */
2093 if (size > mmc_test_capacity(test->card) / 2 * 512)
2094 size = mmc_test_capacity(test->card) / 2 * 512;
2095 if (reqsize > t->max_tfr)
2096 reqsize = t->max_tfr;
2097 dev_addr = mmc_test_capacity(test->card) / 4;
2098 if ((dev_addr & 0xffff0000))
2099 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2100 else
2101 dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2102 if (!dev_addr)
2103 goto err;
2104
2105 if (reqsize > size)
2106 return 0;
2107
2108 /* prepare test area */
2109 if (mmc_can_erase(test->card) &&
2110 tdata->prepare & MMC_TEST_PREP_ERASE) {
2111 ret = mmc_erase(test->card, dev_addr,
2112 size / 512, test->card->erase_arg);
2113 if (ret)
2114 ret = mmc_erase(test->card, dev_addr,
2115 size / 512, MMC_ERASE_ARG);
2116 if (ret)
2117 goto err;
2118 }
2119
2120 /* Run test */
2121 ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2122 tdata->do_write, 0, 1, size / reqsize,
2123 tdata->do_nonblock_req, min_sg_len);
2124 if (ret)
2125 goto err;
2126
2127 return ret;
2128 err:
2129 pr_info("[%s] error\n", __func__);
2130 return ret;
2131 }
2132
mmc_test_rw_multiple_size(struct mmc_test_card * test,struct mmc_test_multiple_rw * rw)2133 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2134 struct mmc_test_multiple_rw *rw)
2135 {
2136 int ret = 0;
2137 int i;
2138 void *pre_req = test->card->host->ops->pre_req;
2139 void *post_req = test->card->host->ops->post_req;
2140
2141 if (rw->do_nonblock_req &&
2142 ((!pre_req && post_req) || (pre_req && !post_req))) {
2143 pr_info("error: only one of pre/post is defined\n");
2144 return -EINVAL;
2145 }
2146
2147 for (i = 0 ; i < rw->len && ret == 0; i++) {
2148 ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2149 if (ret)
2150 break;
2151 }
2152 return ret;
2153 }
2154
mmc_test_rw_multiple_sg_len(struct mmc_test_card * test,struct mmc_test_multiple_rw * rw)2155 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2156 struct mmc_test_multiple_rw *rw)
2157 {
2158 int ret = 0;
2159 int i;
2160
2161 for (i = 0 ; i < rw->len && ret == 0; i++) {
2162 ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2163 rw->sg_len[i]);
2164 if (ret)
2165 break;
2166 }
2167 return ret;
2168 }
2169
2170 /*
2171 * Multiple blocking write 4k to 4 MB chunks
2172 */
mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card * test)2173 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2174 {
2175 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2176 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2177 struct mmc_test_multiple_rw test_data = {
2178 .bs = bs,
2179 .size = TEST_AREA_MAX_SIZE,
2180 .len = ARRAY_SIZE(bs),
2181 .do_write = true,
2182 .do_nonblock_req = false,
2183 .prepare = MMC_TEST_PREP_ERASE,
2184 };
2185
2186 return mmc_test_rw_multiple_size(test, &test_data);
2187 };
2188
2189 /*
2190 * Multiple non-blocking write 4k to 4 MB chunks
2191 */
mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card * test)2192 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2193 {
2194 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2195 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2196 struct mmc_test_multiple_rw test_data = {
2197 .bs = bs,
2198 .size = TEST_AREA_MAX_SIZE,
2199 .len = ARRAY_SIZE(bs),
2200 .do_write = true,
2201 .do_nonblock_req = true,
2202 .prepare = MMC_TEST_PREP_ERASE,
2203 };
2204
2205 return mmc_test_rw_multiple_size(test, &test_data);
2206 }
2207
2208 /*
2209 * Multiple blocking read 4k to 4 MB chunks
2210 */
mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card * test)2211 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2212 {
2213 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2214 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2215 struct mmc_test_multiple_rw test_data = {
2216 .bs = bs,
2217 .size = TEST_AREA_MAX_SIZE,
2218 .len = ARRAY_SIZE(bs),
2219 .do_write = false,
2220 .do_nonblock_req = false,
2221 .prepare = MMC_TEST_PREP_NONE,
2222 };
2223
2224 return mmc_test_rw_multiple_size(test, &test_data);
2225 }
2226
2227 /*
2228 * Multiple non-blocking read 4k to 4 MB chunks
2229 */
mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card * test)2230 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2231 {
2232 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2233 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2234 struct mmc_test_multiple_rw test_data = {
2235 .bs = bs,
2236 .size = TEST_AREA_MAX_SIZE,
2237 .len = ARRAY_SIZE(bs),
2238 .do_write = false,
2239 .do_nonblock_req = true,
2240 .prepare = MMC_TEST_PREP_NONE,
2241 };
2242
2243 return mmc_test_rw_multiple_size(test, &test_data);
2244 }
2245
2246 /*
2247 * Multiple blocking write 1 to 512 sg elements
2248 */
mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card * test)2249 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2250 {
2251 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2252 1 << 7, 1 << 8, 1 << 9};
2253 struct mmc_test_multiple_rw test_data = {
2254 .sg_len = sg_len,
2255 .size = TEST_AREA_MAX_SIZE,
2256 .len = ARRAY_SIZE(sg_len),
2257 .do_write = true,
2258 .do_nonblock_req = false,
2259 .prepare = MMC_TEST_PREP_ERASE,
2260 };
2261
2262 return mmc_test_rw_multiple_sg_len(test, &test_data);
2263 };
2264
2265 /*
2266 * Multiple non-blocking write 1 to 512 sg elements
2267 */
mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card * test)2268 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2269 {
2270 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2271 1 << 7, 1 << 8, 1 << 9};
2272 struct mmc_test_multiple_rw test_data = {
2273 .sg_len = sg_len,
2274 .size = TEST_AREA_MAX_SIZE,
2275 .len = ARRAY_SIZE(sg_len),
2276 .do_write = true,
2277 .do_nonblock_req = true,
2278 .prepare = MMC_TEST_PREP_ERASE,
2279 };
2280
2281 return mmc_test_rw_multiple_sg_len(test, &test_data);
2282 }
2283
2284 /*
2285 * Multiple blocking read 1 to 512 sg elements
2286 */
mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card * test)2287 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2288 {
2289 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2290 1 << 7, 1 << 8, 1 << 9};
2291 struct mmc_test_multiple_rw test_data = {
2292 .sg_len = sg_len,
2293 .size = TEST_AREA_MAX_SIZE,
2294 .len = ARRAY_SIZE(sg_len),
2295 .do_write = false,
2296 .do_nonblock_req = false,
2297 .prepare = MMC_TEST_PREP_NONE,
2298 };
2299
2300 return mmc_test_rw_multiple_sg_len(test, &test_data);
2301 }
2302
2303 /*
2304 * Multiple non-blocking read 1 to 512 sg elements
2305 */
mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card * test)2306 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2307 {
2308 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2309 1 << 7, 1 << 8, 1 << 9};
2310 struct mmc_test_multiple_rw test_data = {
2311 .sg_len = sg_len,
2312 .size = TEST_AREA_MAX_SIZE,
2313 .len = ARRAY_SIZE(sg_len),
2314 .do_write = false,
2315 .do_nonblock_req = true,
2316 .prepare = MMC_TEST_PREP_NONE,
2317 };
2318
2319 return mmc_test_rw_multiple_sg_len(test, &test_data);
2320 }
2321
2322 /*
2323 * eMMC hardware reset.
2324 */
mmc_test_reset(struct mmc_test_card * test)2325 static int mmc_test_reset(struct mmc_test_card *test)
2326 {
2327 struct mmc_card *card = test->card;
2328 struct mmc_host *host = card->host;
2329 int err;
2330
2331 err = mmc_hw_reset(host);
2332 if (!err) {
2333 /*
2334 * Reset will re-enable the card's command queue, but tests
2335 * expect it to be disabled.
2336 */
2337 if (card->ext_csd.cmdq_en)
2338 mmc_cmdq_disable(card);
2339 return RESULT_OK;
2340 } else if (err == -EOPNOTSUPP) {
2341 return RESULT_UNSUP_HOST;
2342 }
2343
2344 return RESULT_FAIL;
2345 }
2346
mmc_test_send_status(struct mmc_test_card * test,struct mmc_command * cmd)2347 static int mmc_test_send_status(struct mmc_test_card *test,
2348 struct mmc_command *cmd)
2349 {
2350 memset(cmd, 0, sizeof(*cmd));
2351
2352 cmd->opcode = MMC_SEND_STATUS;
2353 if (!mmc_host_is_spi(test->card->host))
2354 cmd->arg = test->card->rca << 16;
2355 cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2356
2357 return mmc_wait_for_cmd(test->card->host, cmd, 0);
2358 }
2359
mmc_test_ongoing_transfer(struct mmc_test_card * test,unsigned int dev_addr,int use_sbc,int repeat_cmd,int write,int use_areq)2360 static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2361 unsigned int dev_addr, int use_sbc,
2362 int repeat_cmd, int write, int use_areq)
2363 {
2364 struct mmc_test_req *rq = mmc_test_req_alloc();
2365 struct mmc_host *host = test->card->host;
2366 struct mmc_test_area *t = &test->area;
2367 struct mmc_request *mrq;
2368 unsigned long timeout;
2369 bool expired = false;
2370 int ret = 0, cmd_ret;
2371 u32 status = 0;
2372 int count = 0;
2373
2374 if (!rq)
2375 return -ENOMEM;
2376
2377 mrq = &rq->mrq;
2378 if (use_sbc)
2379 mrq->sbc = &rq->sbc;
2380 mrq->cap_cmd_during_tfr = true;
2381
2382 mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2383 512, write);
2384
2385 if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2386 ret = mmc_host_cmd23(host) ?
2387 RESULT_UNSUP_CARD :
2388 RESULT_UNSUP_HOST;
2389 goto out_free;
2390 }
2391
2392 /* Start ongoing data request */
2393 if (use_areq) {
2394 ret = mmc_test_start_areq(test, mrq, NULL);
2395 if (ret)
2396 goto out_free;
2397 } else {
2398 mmc_wait_for_req(host, mrq);
2399 }
2400
2401 timeout = jiffies + msecs_to_jiffies(3000);
2402 do {
2403 count += 1;
2404
2405 /* Send status command while data transfer in progress */
2406 cmd_ret = mmc_test_send_status(test, &rq->status);
2407 if (cmd_ret)
2408 break;
2409
2410 status = rq->status.resp[0];
2411 if (status & R1_ERROR) {
2412 cmd_ret = -EIO;
2413 break;
2414 }
2415
2416 if (mmc_is_req_done(host, mrq))
2417 break;
2418
2419 expired = time_after(jiffies, timeout);
2420 if (expired) {
2421 pr_info("%s: timeout waiting for Tran state status %#x\n",
2422 mmc_hostname(host), status);
2423 cmd_ret = -ETIMEDOUT;
2424 break;
2425 }
2426 } while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2427
2428 /* Wait for data request to complete */
2429 if (use_areq) {
2430 ret = mmc_test_start_areq(test, NULL, mrq);
2431 } else {
2432 mmc_wait_for_req_done(test->card->host, mrq);
2433 }
2434
2435 /*
2436 * For cap_cmd_during_tfr request, upper layer must send stop if
2437 * required.
2438 */
2439 if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2440 if (ret)
2441 mmc_wait_for_cmd(host, mrq->data->stop, 0);
2442 else
2443 ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2444 }
2445
2446 if (ret)
2447 goto out_free;
2448
2449 if (cmd_ret) {
2450 pr_info("%s: Send Status failed: status %#x, error %d\n",
2451 mmc_hostname(test->card->host), status, cmd_ret);
2452 }
2453
2454 ret = mmc_test_check_result(test, mrq);
2455 if (ret)
2456 goto out_free;
2457
2458 ret = mmc_test_wait_busy(test);
2459 if (ret)
2460 goto out_free;
2461
2462 if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2463 pr_info("%s: %d commands completed during transfer of %u blocks\n",
2464 mmc_hostname(test->card->host), count, t->blocks);
2465
2466 if (cmd_ret)
2467 ret = cmd_ret;
2468 out_free:
2469 kfree(rq);
2470
2471 return ret;
2472 }
2473
__mmc_test_cmds_during_tfr(struct mmc_test_card * test,unsigned long sz,int use_sbc,int write,int use_areq)2474 static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2475 unsigned long sz, int use_sbc, int write,
2476 int use_areq)
2477 {
2478 struct mmc_test_area *t = &test->area;
2479 int ret;
2480
2481 if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2482 return RESULT_UNSUP_HOST;
2483
2484 ret = mmc_test_area_map(test, sz, 0, 0, use_areq);
2485 if (ret)
2486 return ret;
2487
2488 ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2489 use_areq);
2490 if (ret)
2491 return ret;
2492
2493 return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2494 use_areq);
2495 }
2496
mmc_test_cmds_during_tfr(struct mmc_test_card * test,int use_sbc,int write,int use_areq)2497 static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2498 int write, int use_areq)
2499 {
2500 struct mmc_test_area *t = &test->area;
2501 unsigned long sz;
2502 int ret;
2503
2504 for (sz = 512; sz <= t->max_tfr; sz += 512) {
2505 ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2506 use_areq);
2507 if (ret)
2508 return ret;
2509 }
2510 return 0;
2511 }
2512
2513 /*
2514 * Commands during read - no Set Block Count (CMD23).
2515 */
mmc_test_cmds_during_read(struct mmc_test_card * test)2516 static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2517 {
2518 return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2519 }
2520
2521 /*
2522 * Commands during write - no Set Block Count (CMD23).
2523 */
mmc_test_cmds_during_write(struct mmc_test_card * test)2524 static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2525 {
2526 return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2527 }
2528
2529 /*
2530 * Commands during read - use Set Block Count (CMD23).
2531 */
mmc_test_cmds_during_read_cmd23(struct mmc_test_card * test)2532 static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2533 {
2534 return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2535 }
2536
2537 /*
2538 * Commands during write - use Set Block Count (CMD23).
2539 */
mmc_test_cmds_during_write_cmd23(struct mmc_test_card * test)2540 static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2541 {
2542 return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2543 }
2544
2545 /*
2546 * Commands during non-blocking read - use Set Block Count (CMD23).
2547 */
mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card * test)2548 static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2549 {
2550 return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2551 }
2552
2553 /*
2554 * Commands during non-blocking write - use Set Block Count (CMD23).
2555 */
mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card * test)2556 static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2557 {
2558 return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2559 }
2560
2561 static const struct mmc_test_case mmc_test_cases[] = {
2562 {
2563 .name = "Basic write (no data verification)",
2564 .run = mmc_test_basic_write,
2565 },
2566
2567 {
2568 .name = "Basic read (no data verification)",
2569 .run = mmc_test_basic_read,
2570 },
2571
2572 {
2573 .name = "Basic write (with data verification)",
2574 .prepare = mmc_test_prepare_write,
2575 .run = mmc_test_verify_write,
2576 .cleanup = mmc_test_cleanup,
2577 },
2578
2579 {
2580 .name = "Basic read (with data verification)",
2581 .prepare = mmc_test_prepare_read,
2582 .run = mmc_test_verify_read,
2583 .cleanup = mmc_test_cleanup,
2584 },
2585
2586 {
2587 .name = "Multi-block write",
2588 .prepare = mmc_test_prepare_write,
2589 .run = mmc_test_multi_write,
2590 .cleanup = mmc_test_cleanup,
2591 },
2592
2593 {
2594 .name = "Multi-block read",
2595 .prepare = mmc_test_prepare_read,
2596 .run = mmc_test_multi_read,
2597 .cleanup = mmc_test_cleanup,
2598 },
2599
2600 {
2601 .name = "Power of two block writes",
2602 .prepare = mmc_test_prepare_write,
2603 .run = mmc_test_pow2_write,
2604 .cleanup = mmc_test_cleanup,
2605 },
2606
2607 {
2608 .name = "Power of two block reads",
2609 .prepare = mmc_test_prepare_read,
2610 .run = mmc_test_pow2_read,
2611 .cleanup = mmc_test_cleanup,
2612 },
2613
2614 {
2615 .name = "Weird sized block writes",
2616 .prepare = mmc_test_prepare_write,
2617 .run = mmc_test_weird_write,
2618 .cleanup = mmc_test_cleanup,
2619 },
2620
2621 {
2622 .name = "Weird sized block reads",
2623 .prepare = mmc_test_prepare_read,
2624 .run = mmc_test_weird_read,
2625 .cleanup = mmc_test_cleanup,
2626 },
2627
2628 {
2629 .name = "Badly aligned write",
2630 .prepare = mmc_test_prepare_write,
2631 .run = mmc_test_align_write,
2632 .cleanup = mmc_test_cleanup,
2633 },
2634
2635 {
2636 .name = "Badly aligned read",
2637 .prepare = mmc_test_prepare_read,
2638 .run = mmc_test_align_read,
2639 .cleanup = mmc_test_cleanup,
2640 },
2641
2642 {
2643 .name = "Badly aligned multi-block write",
2644 .prepare = mmc_test_prepare_write,
2645 .run = mmc_test_align_multi_write,
2646 .cleanup = mmc_test_cleanup,
2647 },
2648
2649 {
2650 .name = "Badly aligned multi-block read",
2651 .prepare = mmc_test_prepare_read,
2652 .run = mmc_test_align_multi_read,
2653 .cleanup = mmc_test_cleanup,
2654 },
2655
2656 {
2657 .name = "Proper xfer_size at write (start failure)",
2658 .run = mmc_test_xfersize_write,
2659 },
2660
2661 {
2662 .name = "Proper xfer_size at read (start failure)",
2663 .run = mmc_test_xfersize_read,
2664 },
2665
2666 {
2667 .name = "Proper xfer_size at write (midway failure)",
2668 .run = mmc_test_multi_xfersize_write,
2669 },
2670
2671 {
2672 .name = "Proper xfer_size at read (midway failure)",
2673 .run = mmc_test_multi_xfersize_read,
2674 },
2675
2676 #ifdef CONFIG_HIGHMEM
2677
2678 {
2679 .name = "Highmem write",
2680 .prepare = mmc_test_prepare_write,
2681 .run = mmc_test_write_high,
2682 .cleanup = mmc_test_cleanup,
2683 },
2684
2685 {
2686 .name = "Highmem read",
2687 .prepare = mmc_test_prepare_read,
2688 .run = mmc_test_read_high,
2689 .cleanup = mmc_test_cleanup,
2690 },
2691
2692 {
2693 .name = "Multi-block highmem write",
2694 .prepare = mmc_test_prepare_write,
2695 .run = mmc_test_multi_write_high,
2696 .cleanup = mmc_test_cleanup,
2697 },
2698
2699 {
2700 .name = "Multi-block highmem read",
2701 .prepare = mmc_test_prepare_read,
2702 .run = mmc_test_multi_read_high,
2703 .cleanup = mmc_test_cleanup,
2704 },
2705
2706 #else
2707
2708 {
2709 .name = "Highmem write",
2710 .run = mmc_test_no_highmem,
2711 },
2712
2713 {
2714 .name = "Highmem read",
2715 .run = mmc_test_no_highmem,
2716 },
2717
2718 {
2719 .name = "Multi-block highmem write",
2720 .run = mmc_test_no_highmem,
2721 },
2722
2723 {
2724 .name = "Multi-block highmem read",
2725 .run = mmc_test_no_highmem,
2726 },
2727
2728 #endif /* CONFIG_HIGHMEM */
2729
2730 {
2731 .name = "Best-case read performance",
2732 .prepare = mmc_test_area_prepare_fill,
2733 .run = mmc_test_best_read_performance,
2734 .cleanup = mmc_test_area_cleanup,
2735 },
2736
2737 {
2738 .name = "Best-case write performance",
2739 .prepare = mmc_test_area_prepare_erase,
2740 .run = mmc_test_best_write_performance,
2741 .cleanup = mmc_test_area_cleanup,
2742 },
2743
2744 {
2745 .name = "Best-case read performance into scattered pages",
2746 .prepare = mmc_test_area_prepare_fill,
2747 .run = mmc_test_best_read_perf_max_scatter,
2748 .cleanup = mmc_test_area_cleanup,
2749 },
2750
2751 {
2752 .name = "Best-case write performance from scattered pages",
2753 .prepare = mmc_test_area_prepare_erase,
2754 .run = mmc_test_best_write_perf_max_scatter,
2755 .cleanup = mmc_test_area_cleanup,
2756 },
2757
2758 {
2759 .name = "Single read performance by transfer size",
2760 .prepare = mmc_test_area_prepare_fill,
2761 .run = mmc_test_profile_read_perf,
2762 .cleanup = mmc_test_area_cleanup,
2763 },
2764
2765 {
2766 .name = "Single write performance by transfer size",
2767 .prepare = mmc_test_area_prepare,
2768 .run = mmc_test_profile_write_perf,
2769 .cleanup = mmc_test_area_cleanup,
2770 },
2771
2772 {
2773 .name = "Single trim performance by transfer size",
2774 .prepare = mmc_test_area_prepare_fill,
2775 .run = mmc_test_profile_trim_perf,
2776 .cleanup = mmc_test_area_cleanup,
2777 },
2778
2779 {
2780 .name = "Consecutive read performance by transfer size",
2781 .prepare = mmc_test_area_prepare_fill,
2782 .run = mmc_test_profile_seq_read_perf,
2783 .cleanup = mmc_test_area_cleanup,
2784 },
2785
2786 {
2787 .name = "Consecutive write performance by transfer size",
2788 .prepare = mmc_test_area_prepare,
2789 .run = mmc_test_profile_seq_write_perf,
2790 .cleanup = mmc_test_area_cleanup,
2791 },
2792
2793 {
2794 .name = "Consecutive trim performance by transfer size",
2795 .prepare = mmc_test_area_prepare,
2796 .run = mmc_test_profile_seq_trim_perf,
2797 .cleanup = mmc_test_area_cleanup,
2798 },
2799
2800 {
2801 .name = "Random read performance by transfer size",
2802 .prepare = mmc_test_area_prepare,
2803 .run = mmc_test_random_read_perf,
2804 .cleanup = mmc_test_area_cleanup,
2805 },
2806
2807 {
2808 .name = "Random write performance by transfer size",
2809 .prepare = mmc_test_area_prepare,
2810 .run = mmc_test_random_write_perf,
2811 .cleanup = mmc_test_area_cleanup,
2812 },
2813
2814 {
2815 .name = "Large sequential read into scattered pages",
2816 .prepare = mmc_test_area_prepare,
2817 .run = mmc_test_large_seq_read_perf,
2818 .cleanup = mmc_test_area_cleanup,
2819 },
2820
2821 {
2822 .name = "Large sequential write from scattered pages",
2823 .prepare = mmc_test_area_prepare,
2824 .run = mmc_test_large_seq_write_perf,
2825 .cleanup = mmc_test_area_cleanup,
2826 },
2827
2828 {
2829 .name = "Write performance with blocking req 4k to 4MB",
2830 .prepare = mmc_test_area_prepare,
2831 .run = mmc_test_profile_mult_write_blocking_perf,
2832 .cleanup = mmc_test_area_cleanup,
2833 },
2834
2835 {
2836 .name = "Write performance with non-blocking req 4k to 4MB",
2837 .prepare = mmc_test_area_prepare,
2838 .run = mmc_test_profile_mult_write_nonblock_perf,
2839 .cleanup = mmc_test_area_cleanup,
2840 },
2841
2842 {
2843 .name = "Read performance with blocking req 4k to 4MB",
2844 .prepare = mmc_test_area_prepare,
2845 .run = mmc_test_profile_mult_read_blocking_perf,
2846 .cleanup = mmc_test_area_cleanup,
2847 },
2848
2849 {
2850 .name = "Read performance with non-blocking req 4k to 4MB",
2851 .prepare = mmc_test_area_prepare,
2852 .run = mmc_test_profile_mult_read_nonblock_perf,
2853 .cleanup = mmc_test_area_cleanup,
2854 },
2855
2856 {
2857 .name = "Write performance blocking req 1 to 512 sg elems",
2858 .prepare = mmc_test_area_prepare,
2859 .run = mmc_test_profile_sglen_wr_blocking_perf,
2860 .cleanup = mmc_test_area_cleanup,
2861 },
2862
2863 {
2864 .name = "Write performance non-blocking req 1 to 512 sg elems",
2865 .prepare = mmc_test_area_prepare,
2866 .run = mmc_test_profile_sglen_wr_nonblock_perf,
2867 .cleanup = mmc_test_area_cleanup,
2868 },
2869
2870 {
2871 .name = "Read performance blocking req 1 to 512 sg elems",
2872 .prepare = mmc_test_area_prepare,
2873 .run = mmc_test_profile_sglen_r_blocking_perf,
2874 .cleanup = mmc_test_area_cleanup,
2875 },
2876
2877 {
2878 .name = "Read performance non-blocking req 1 to 512 sg elems",
2879 .prepare = mmc_test_area_prepare,
2880 .run = mmc_test_profile_sglen_r_nonblock_perf,
2881 .cleanup = mmc_test_area_cleanup,
2882 },
2883
2884 {
2885 .name = "Reset test",
2886 .run = mmc_test_reset,
2887 },
2888
2889 {
2890 .name = "Commands during read - no Set Block Count (CMD23)",
2891 .prepare = mmc_test_area_prepare,
2892 .run = mmc_test_cmds_during_read,
2893 .cleanup = mmc_test_area_cleanup,
2894 },
2895
2896 {
2897 .name = "Commands during write - no Set Block Count (CMD23)",
2898 .prepare = mmc_test_area_prepare,
2899 .run = mmc_test_cmds_during_write,
2900 .cleanup = mmc_test_area_cleanup,
2901 },
2902
2903 {
2904 .name = "Commands during read - use Set Block Count (CMD23)",
2905 .prepare = mmc_test_area_prepare,
2906 .run = mmc_test_cmds_during_read_cmd23,
2907 .cleanup = mmc_test_area_cleanup,
2908 },
2909
2910 {
2911 .name = "Commands during write - use Set Block Count (CMD23)",
2912 .prepare = mmc_test_area_prepare,
2913 .run = mmc_test_cmds_during_write_cmd23,
2914 .cleanup = mmc_test_area_cleanup,
2915 },
2916
2917 {
2918 .name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2919 .prepare = mmc_test_area_prepare,
2920 .run = mmc_test_cmds_during_read_cmd23_nonblock,
2921 .cleanup = mmc_test_area_cleanup,
2922 },
2923
2924 {
2925 .name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2926 .prepare = mmc_test_area_prepare,
2927 .run = mmc_test_cmds_during_write_cmd23_nonblock,
2928 .cleanup = mmc_test_area_cleanup,
2929 },
2930 };
2931
2932 static DEFINE_MUTEX(mmc_test_lock);
2933
2934 static LIST_HEAD(mmc_test_result);
2935
mmc_test_run(struct mmc_test_card * test,int testcase)2936 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2937 {
2938 int i, ret;
2939
2940 pr_info("%s: Starting tests of card %s...\n",
2941 mmc_hostname(test->card->host), mmc_card_id(test->card));
2942
2943 mmc_claim_host(test->card->host);
2944
2945 for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2946 struct mmc_test_general_result *gr;
2947
2948 if (testcase && ((i + 1) != testcase))
2949 continue;
2950
2951 pr_info("%s: Test case %d. %s...\n",
2952 mmc_hostname(test->card->host), i + 1,
2953 mmc_test_cases[i].name);
2954
2955 if (mmc_test_cases[i].prepare) {
2956 ret = mmc_test_cases[i].prepare(test);
2957 if (ret) {
2958 pr_info("%s: Result: Prepare stage failed! (%d)\n",
2959 mmc_hostname(test->card->host),
2960 ret);
2961 continue;
2962 }
2963 }
2964
2965 gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2966 if (gr) {
2967 INIT_LIST_HEAD(&gr->tr_lst);
2968
2969 /* Assign data what we know already */
2970 gr->card = test->card;
2971 gr->testcase = i;
2972
2973 /* Append container to global one */
2974 list_add_tail(&gr->link, &mmc_test_result);
2975
2976 /*
2977 * Save the pointer to created container in our private
2978 * structure.
2979 */
2980 test->gr = gr;
2981 }
2982
2983 ret = mmc_test_cases[i].run(test);
2984 switch (ret) {
2985 case RESULT_OK:
2986 pr_info("%s: Result: OK\n",
2987 mmc_hostname(test->card->host));
2988 break;
2989 case RESULT_FAIL:
2990 pr_info("%s: Result: FAILED\n",
2991 mmc_hostname(test->card->host));
2992 break;
2993 case RESULT_UNSUP_HOST:
2994 pr_info("%s: Result: UNSUPPORTED (by host)\n",
2995 mmc_hostname(test->card->host));
2996 break;
2997 case RESULT_UNSUP_CARD:
2998 pr_info("%s: Result: UNSUPPORTED (by card)\n",
2999 mmc_hostname(test->card->host));
3000 break;
3001 default:
3002 pr_info("%s: Result: ERROR (%d)\n",
3003 mmc_hostname(test->card->host), ret);
3004 }
3005
3006 /* Save the result */
3007 if (gr)
3008 gr->result = ret;
3009
3010 if (mmc_test_cases[i].cleanup) {
3011 ret = mmc_test_cases[i].cleanup(test);
3012 if (ret) {
3013 pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3014 mmc_hostname(test->card->host),
3015 ret);
3016 }
3017 }
3018 }
3019
3020 mmc_release_host(test->card->host);
3021
3022 pr_info("%s: Tests completed.\n",
3023 mmc_hostname(test->card->host));
3024 }
3025
mmc_test_free_result(struct mmc_card * card)3026 static void mmc_test_free_result(struct mmc_card *card)
3027 {
3028 struct mmc_test_general_result *gr, *grs;
3029
3030 mutex_lock(&mmc_test_lock);
3031
3032 list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3033 struct mmc_test_transfer_result *tr, *trs;
3034
3035 if (card && gr->card != card)
3036 continue;
3037
3038 list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3039 list_del(&tr->link);
3040 kfree(tr);
3041 }
3042
3043 list_del(&gr->link);
3044 kfree(gr);
3045 }
3046
3047 mutex_unlock(&mmc_test_lock);
3048 }
3049
3050 static LIST_HEAD(mmc_test_file_test);
3051
mtf_test_show(struct seq_file * sf,void * data)3052 static int mtf_test_show(struct seq_file *sf, void *data)
3053 {
3054 struct mmc_card *card = (struct mmc_card *)sf->private;
3055 struct mmc_test_general_result *gr;
3056
3057 mutex_lock(&mmc_test_lock);
3058
3059 list_for_each_entry(gr, &mmc_test_result, link) {
3060 struct mmc_test_transfer_result *tr;
3061
3062 if (gr->card != card)
3063 continue;
3064
3065 seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3066
3067 list_for_each_entry(tr, &gr->tr_lst, link) {
3068 seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3069 tr->count, tr->sectors,
3070 (u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
3071 tr->rate, tr->iops / 100, tr->iops % 100);
3072 }
3073 }
3074
3075 mutex_unlock(&mmc_test_lock);
3076
3077 return 0;
3078 }
3079
mtf_test_open(struct inode * inode,struct file * file)3080 static int mtf_test_open(struct inode *inode, struct file *file)
3081 {
3082 return single_open(file, mtf_test_show, inode->i_private);
3083 }
3084
mtf_test_write(struct file * file,const char __user * buf,size_t count,loff_t * pos)3085 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3086 size_t count, loff_t *pos)
3087 {
3088 struct seq_file *sf = (struct seq_file *)file->private_data;
3089 struct mmc_card *card = (struct mmc_card *)sf->private;
3090 struct mmc_test_card *test;
3091 long testcase;
3092 int ret;
3093
3094 ret = kstrtol_from_user(buf, count, 10, &testcase);
3095 if (ret)
3096 return ret;
3097
3098 test = kzalloc(sizeof(*test), GFP_KERNEL);
3099 if (!test)
3100 return -ENOMEM;
3101
3102 /*
3103 * Remove all test cases associated with given card. Thus we have only
3104 * actual data of the last run.
3105 */
3106 mmc_test_free_result(card);
3107
3108 test->card = card;
3109
3110 test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3111 #ifdef CONFIG_HIGHMEM
3112 test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3113 #endif
3114
3115 #ifdef CONFIG_HIGHMEM
3116 if (test->buffer && test->highmem) {
3117 #else
3118 if (test->buffer) {
3119 #endif
3120 mutex_lock(&mmc_test_lock);
3121 mmc_test_run(test, testcase);
3122 mutex_unlock(&mmc_test_lock);
3123 }
3124
3125 #ifdef CONFIG_HIGHMEM
3126 __free_pages(test->highmem, BUFFER_ORDER);
3127 #endif
3128 kfree(test->buffer);
3129 kfree(test);
3130
3131 return count;
3132 }
3133
3134 static const struct file_operations mmc_test_fops_test = {
3135 .open = mtf_test_open,
3136 .read = seq_read,
3137 .write = mtf_test_write,
3138 .llseek = seq_lseek,
3139 .release = single_release,
3140 };
3141
3142 static int mtf_testlist_show(struct seq_file *sf, void *data)
3143 {
3144 int i;
3145
3146 mutex_lock(&mmc_test_lock);
3147
3148 seq_puts(sf, "0:\tRun all tests\n");
3149 for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3150 seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3151
3152 mutex_unlock(&mmc_test_lock);
3153
3154 return 0;
3155 }
3156
3157 DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
3158
3159 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3160 {
3161 struct mmc_test_dbgfs_file *df, *dfs;
3162
3163 mutex_lock(&mmc_test_lock);
3164
3165 list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3166 if (card && df->card != card)
3167 continue;
3168 debugfs_remove(df->file);
3169 list_del(&df->link);
3170 kfree(df);
3171 }
3172
3173 mutex_unlock(&mmc_test_lock);
3174 }
3175
3176 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3177 const char *name, umode_t mode, const struct file_operations *fops)
3178 {
3179 struct dentry *file = NULL;
3180 struct mmc_test_dbgfs_file *df;
3181
3182 if (card->debugfs_root)
3183 debugfs_create_file(name, mode, card->debugfs_root, card, fops);
3184
3185 df = kmalloc(sizeof(*df), GFP_KERNEL);
3186 if (!df) {
3187 debugfs_remove(file);
3188 return -ENOMEM;
3189 }
3190
3191 df->card = card;
3192 df->file = file;
3193
3194 list_add(&df->link, &mmc_test_file_test);
3195 return 0;
3196 }
3197
3198 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3199 {
3200 int ret;
3201
3202 mutex_lock(&mmc_test_lock);
3203
3204 ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3205 &mmc_test_fops_test);
3206 if (ret)
3207 goto err;
3208
3209 ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3210 &mtf_testlist_fops);
3211 if (ret)
3212 goto err;
3213
3214 err:
3215 mutex_unlock(&mmc_test_lock);
3216
3217 return ret;
3218 }
3219
3220 static int mmc_test_probe(struct mmc_card *card)
3221 {
3222 int ret;
3223
3224 if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3225 return -ENODEV;
3226
3227 ret = mmc_test_register_dbgfs_file(card);
3228 if (ret)
3229 return ret;
3230
3231 if (card->ext_csd.cmdq_en) {
3232 mmc_claim_host(card->host);
3233 ret = mmc_cmdq_disable(card);
3234 mmc_release_host(card->host);
3235 if (ret)
3236 return ret;
3237 }
3238
3239 dev_info(&card->dev, "Card claimed for testing.\n");
3240
3241 return 0;
3242 }
3243
3244 static void mmc_test_remove(struct mmc_card *card)
3245 {
3246 if (card->reenable_cmdq) {
3247 mmc_claim_host(card->host);
3248 mmc_cmdq_enable(card);
3249 mmc_release_host(card->host);
3250 }
3251 mmc_test_free_result(card);
3252 mmc_test_free_dbgfs_file(card);
3253 }
3254
3255 static struct mmc_driver mmc_driver = {
3256 .drv = {
3257 .name = "mmc_test",
3258 },
3259 .probe = mmc_test_probe,
3260 .remove = mmc_test_remove,
3261 };
3262
3263 static int __init mmc_test_init(void)
3264 {
3265 return mmc_register_driver(&mmc_driver);
3266 }
3267
3268 static void __exit mmc_test_exit(void)
3269 {
3270 /* Clear stalled data if card is still plugged */
3271 mmc_test_free_result(NULL);
3272 mmc_test_free_dbgfs_file(NULL);
3273
3274 mmc_unregister_driver(&mmc_driver);
3275 }
3276
3277 module_init(mmc_test_init);
3278 module_exit(mmc_test_exit);
3279
3280 MODULE_LICENSE("GPL");
3281 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3282 MODULE_AUTHOR("Pierre Ossman");
3283