1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4 *
5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6 */
7
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/delay.h>
11 #include <linux/mmc/mmc.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/pm_opp.h>
14 #include <linux/slab.h>
15 #include <linux/iopoll.h>
16 #include <linux/qcom_scm.h>
17 #include <linux/regulator/consumer.h>
18 #include <linux/interconnect.h>
19 #include <linux/pinctrl/consumer.h>
20
21 #include "sdhci-pltfm.h"
22 #include "cqhci.h"
23
24 #define CORE_MCI_VERSION 0x50
25 #define CORE_VERSION_MAJOR_SHIFT 28
26 #define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT)
27 #define CORE_VERSION_MINOR_MASK 0xff
28
29 #define CORE_MCI_GENERICS 0x70
30 #define SWITCHABLE_SIGNALING_VOLTAGE BIT(29)
31
32 #define HC_MODE_EN 0x1
33 #define CORE_POWER 0x0
34 #define CORE_SW_RST BIT(7)
35 #define FF_CLK_SW_RST_DIS BIT(13)
36
37 #define CORE_PWRCTL_BUS_OFF BIT(0)
38 #define CORE_PWRCTL_BUS_ON BIT(1)
39 #define CORE_PWRCTL_IO_LOW BIT(2)
40 #define CORE_PWRCTL_IO_HIGH BIT(3)
41 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
42 #define CORE_PWRCTL_BUS_FAIL BIT(1)
43 #define CORE_PWRCTL_IO_SUCCESS BIT(2)
44 #define CORE_PWRCTL_IO_FAIL BIT(3)
45 #define REQ_BUS_OFF BIT(0)
46 #define REQ_BUS_ON BIT(1)
47 #define REQ_IO_LOW BIT(2)
48 #define REQ_IO_HIGH BIT(3)
49 #define INT_MASK 0xf
50 #define MAX_PHASES 16
51 #define CORE_DLL_LOCK BIT(7)
52 #define CORE_DDR_DLL_LOCK BIT(11)
53 #define CORE_DLL_EN BIT(16)
54 #define CORE_CDR_EN BIT(17)
55 #define CORE_CK_OUT_EN BIT(18)
56 #define CORE_CDR_EXT_EN BIT(19)
57 #define CORE_DLL_PDN BIT(29)
58 #define CORE_DLL_RST BIT(30)
59 #define CORE_CMD_DAT_TRACK_SEL BIT(0)
60
61 #define CORE_DDR_CAL_EN BIT(0)
62 #define CORE_FLL_CYCLE_CNT BIT(18)
63 #define CORE_DLL_CLOCK_DISABLE BIT(21)
64
65 #define DLL_USR_CTL_POR_VAL 0x10800
66 #define ENABLE_DLL_LOCK_STATUS BIT(26)
67 #define FINE_TUNE_MODE_EN BIT(27)
68 #define BIAS_OK_SIGNAL BIT(29)
69
70 #define DLL_CONFIG_3_LOW_FREQ_VAL 0x08
71 #define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10
72
73 #define CORE_VENDOR_SPEC_POR_VAL 0xa9c
74 #define CORE_CLK_PWRSAVE BIT(1)
75 #define CORE_HC_MCLK_SEL_DFLT (2 << 8)
76 #define CORE_HC_MCLK_SEL_HS400 (3 << 8)
77 #define CORE_HC_MCLK_SEL_MASK (3 << 8)
78 #define CORE_IO_PAD_PWR_SWITCH_EN BIT(15)
79 #define CORE_IO_PAD_PWR_SWITCH BIT(16)
80 #define CORE_HC_SELECT_IN_EN BIT(18)
81 #define CORE_HC_SELECT_IN_HS400 (6 << 19)
82 #define CORE_HC_SELECT_IN_MASK (7 << 19)
83
84 #define CORE_3_0V_SUPPORT BIT(25)
85 #define CORE_1_8V_SUPPORT BIT(26)
86 #define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
87
88 #define CORE_CSR_CDC_CTLR_CFG0 0x130
89 #define CORE_SW_TRIG_FULL_CALIB BIT(16)
90 #define CORE_HW_AUTOCAL_ENA BIT(17)
91
92 #define CORE_CSR_CDC_CTLR_CFG1 0x134
93 #define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138
94 #define CORE_TIMER_ENA BIT(16)
95
96 #define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C
97 #define CORE_CSR_CDC_REFCOUNT_CFG 0x140
98 #define CORE_CSR_CDC_COARSE_CAL_CFG 0x144
99 #define CORE_CDC_OFFSET_CFG 0x14C
100 #define CORE_CSR_CDC_DELAY_CFG 0x150
101 #define CORE_CDC_SLAVE_DDA_CFG 0x160
102 #define CORE_CSR_CDC_STATUS0 0x164
103 #define CORE_CALIBRATION_DONE BIT(0)
104
105 #define CORE_CDC_ERROR_CODE_MASK 0x7000000
106
107 #define CORE_CSR_CDC_GEN_CFG 0x178
108 #define CORE_CDC_SWITCH_BYPASS_OFF BIT(0)
109 #define CORE_CDC_SWITCH_RC_EN BIT(1)
110
111 #define CORE_CDC_T4_DLY_SEL BIT(0)
112 #define CORE_CMDIN_RCLK_EN BIT(1)
113 #define CORE_START_CDC_TRAFFIC BIT(6)
114
115 #define CORE_PWRSAVE_DLL BIT(3)
116
117 #define DDR_CONFIG_POR_VAL 0x80040873
118
119
120 #define INVALID_TUNING_PHASE -1
121 #define SDHCI_MSM_MIN_CLOCK 400000
122 #define CORE_FREQ_100MHZ (100 * 1000 * 1000)
123
124 #define CDR_SELEXT_SHIFT 20
125 #define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT)
126 #define CMUX_SHIFT_PHASE_SHIFT 24
127 #define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT)
128
129 #define MSM_MMC_AUTOSUSPEND_DELAY_MS 50
130
131 /* Timeout value to avoid infinite waiting for pwr_irq */
132 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
133
134 /* Max load for eMMC Vdd-io supply */
135 #define MMC_VQMMC_MAX_LOAD_UA 325000
136
137 #define msm_host_readl(msm_host, host, offset) \
138 msm_host->var_ops->msm_readl_relaxed(host, offset)
139
140 #define msm_host_writel(msm_host, val, host, offset) \
141 msm_host->var_ops->msm_writel_relaxed(val, host, offset)
142
143 /* CQHCI vendor specific registers */
144 #define CQHCI_VENDOR_CFG1 0xA00
145 #define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13)
146
147 struct sdhci_msm_offset {
148 u32 core_hc_mode;
149 u32 core_mci_data_cnt;
150 u32 core_mci_status;
151 u32 core_mci_fifo_cnt;
152 u32 core_mci_version;
153 u32 core_generics;
154 u32 core_testbus_config;
155 u32 core_testbus_sel2_bit;
156 u32 core_testbus_ena;
157 u32 core_testbus_sel2;
158 u32 core_pwrctl_status;
159 u32 core_pwrctl_mask;
160 u32 core_pwrctl_clear;
161 u32 core_pwrctl_ctl;
162 u32 core_sdcc_debug_reg;
163 u32 core_dll_config;
164 u32 core_dll_status;
165 u32 core_vendor_spec;
166 u32 core_vendor_spec_adma_err_addr0;
167 u32 core_vendor_spec_adma_err_addr1;
168 u32 core_vendor_spec_func2;
169 u32 core_vendor_spec_capabilities0;
170 u32 core_ddr_200_cfg;
171 u32 core_vendor_spec3;
172 u32 core_dll_config_2;
173 u32 core_dll_config_3;
174 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
175 u32 core_ddr_config;
176 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
177 };
178
179 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
180 .core_mci_data_cnt = 0x35c,
181 .core_mci_status = 0x324,
182 .core_mci_fifo_cnt = 0x308,
183 .core_mci_version = 0x318,
184 .core_generics = 0x320,
185 .core_testbus_config = 0x32c,
186 .core_testbus_sel2_bit = 3,
187 .core_testbus_ena = (1 << 31),
188 .core_testbus_sel2 = (1 << 3),
189 .core_pwrctl_status = 0x240,
190 .core_pwrctl_mask = 0x244,
191 .core_pwrctl_clear = 0x248,
192 .core_pwrctl_ctl = 0x24c,
193 .core_sdcc_debug_reg = 0x358,
194 .core_dll_config = 0x200,
195 .core_dll_status = 0x208,
196 .core_vendor_spec = 0x20c,
197 .core_vendor_spec_adma_err_addr0 = 0x214,
198 .core_vendor_spec_adma_err_addr1 = 0x218,
199 .core_vendor_spec_func2 = 0x210,
200 .core_vendor_spec_capabilities0 = 0x21c,
201 .core_ddr_200_cfg = 0x224,
202 .core_vendor_spec3 = 0x250,
203 .core_dll_config_2 = 0x254,
204 .core_dll_config_3 = 0x258,
205 .core_ddr_config = 0x25c,
206 .core_dll_usr_ctl = 0x388,
207 };
208
209 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
210 .core_hc_mode = 0x78,
211 .core_mci_data_cnt = 0x30,
212 .core_mci_status = 0x34,
213 .core_mci_fifo_cnt = 0x44,
214 .core_mci_version = 0x050,
215 .core_generics = 0x70,
216 .core_testbus_config = 0x0cc,
217 .core_testbus_sel2_bit = 4,
218 .core_testbus_ena = (1 << 3),
219 .core_testbus_sel2 = (1 << 4),
220 .core_pwrctl_status = 0xdc,
221 .core_pwrctl_mask = 0xe0,
222 .core_pwrctl_clear = 0xe4,
223 .core_pwrctl_ctl = 0xe8,
224 .core_sdcc_debug_reg = 0x124,
225 .core_dll_config = 0x100,
226 .core_dll_status = 0x108,
227 .core_vendor_spec = 0x10c,
228 .core_vendor_spec_adma_err_addr0 = 0x114,
229 .core_vendor_spec_adma_err_addr1 = 0x118,
230 .core_vendor_spec_func2 = 0x110,
231 .core_vendor_spec_capabilities0 = 0x11c,
232 .core_ddr_200_cfg = 0x184,
233 .core_vendor_spec3 = 0x1b0,
234 .core_dll_config_2 = 0x1b4,
235 .core_ddr_config_old = 0x1b8,
236 .core_ddr_config = 0x1bc,
237 };
238
239 struct sdhci_msm_variant_ops {
240 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
241 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
242 u32 offset);
243 };
244
245 /*
246 * From V5, register spaces have changed. Wrap this info in a structure
247 * and choose the data_structure based on version info mentioned in DT.
248 */
249 struct sdhci_msm_variant_info {
250 bool mci_removed;
251 bool restore_dll_config;
252 const struct sdhci_msm_variant_ops *var_ops;
253 const struct sdhci_msm_offset *offset;
254 };
255
256 struct sdhci_msm_host {
257 struct platform_device *pdev;
258 void __iomem *core_mem; /* MSM SDCC mapped address */
259 void __iomem *ice_mem; /* MSM ICE mapped address (if available) */
260 int pwr_irq; /* power irq */
261 struct clk *bus_clk; /* SDHC bus voter clock */
262 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/
263 /* core, iface, cal, sleep, and ice clocks */
264 struct clk_bulk_data bulk_clks[5];
265 unsigned long clk_rate;
266 struct mmc_host *mmc;
267 bool use_14lpp_dll_reset;
268 bool tuning_done;
269 bool calibration_done;
270 u8 saved_tuning_phase;
271 bool use_cdclp533;
272 u32 curr_pwr_state;
273 u32 curr_io_level;
274 wait_queue_head_t pwr_irq_wait;
275 bool pwr_irq_flag;
276 u32 caps_0;
277 bool mci_removed;
278 bool restore_dll_config;
279 const struct sdhci_msm_variant_ops *var_ops;
280 const struct sdhci_msm_offset *offset;
281 bool use_cdr;
282 u32 transfer_mode;
283 bool updated_ddr_cfg;
284 bool uses_tassadar_dll;
285 u32 dll_config;
286 u32 ddr_config;
287 bool vqmmc_enabled;
288 };
289
sdhci_priv_msm_offset(struct sdhci_host * host)290 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
291 {
292 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
293 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
294
295 return msm_host->offset;
296 }
297
298 /*
299 * APIs to read/write to vendor specific registers which were there in the
300 * core_mem region before MCI was removed.
301 */
sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host * host,u32 offset)302 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
303 u32 offset)
304 {
305 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
306 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
307
308 return readl_relaxed(msm_host->core_mem + offset);
309 }
310
sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host * host,u32 offset)311 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
312 u32 offset)
313 {
314 return readl_relaxed(host->ioaddr + offset);
315 }
316
sdhci_msm_mci_variant_writel_relaxed(u32 val,struct sdhci_host * host,u32 offset)317 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
318 struct sdhci_host *host, u32 offset)
319 {
320 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
321 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
322
323 writel_relaxed(val, msm_host->core_mem + offset);
324 }
325
sdhci_msm_v5_variant_writel_relaxed(u32 val,struct sdhci_host * host,u32 offset)326 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
327 struct sdhci_host *host, u32 offset)
328 {
329 writel_relaxed(val, host->ioaddr + offset);
330 }
331
msm_get_clock_mult_for_bus_mode(struct sdhci_host * host)332 static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
333 {
334 struct mmc_ios ios = host->mmc->ios;
335 /*
336 * The SDHC requires internal clock frequency to be double the
337 * actual clock that will be set for DDR mode. The controller
338 * uses the faster clock(100/400MHz) for some of its parts and
339 * send the actual required clock (50/200MHz) to the card.
340 */
341 if (ios.timing == MMC_TIMING_UHS_DDR50 ||
342 ios.timing == MMC_TIMING_MMC_DDR52 ||
343 ios.timing == MMC_TIMING_MMC_HS400 ||
344 host->flags & SDHCI_HS400_TUNING)
345 return 2;
346 return 1;
347 }
348
msm_set_clock_rate_for_bus_mode(struct sdhci_host * host,unsigned int clock)349 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
350 unsigned int clock)
351 {
352 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
353 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
354 struct mmc_ios curr_ios = host->mmc->ios;
355 struct clk *core_clk = msm_host->bulk_clks[0].clk;
356 unsigned long achieved_rate;
357 unsigned int desired_rate;
358 unsigned int mult;
359 int rc;
360
361 mult = msm_get_clock_mult_for_bus_mode(host);
362 desired_rate = clock * mult;
363 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
364 if (rc) {
365 pr_err("%s: Failed to set clock at rate %u at timing %d\n",
366 mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
367 return;
368 }
369
370 /*
371 * Qualcomm clock drivers by default round clock _up_ if they can't
372 * make the requested rate. This is not good for SD. Yell if we
373 * encounter it.
374 */
375 achieved_rate = clk_get_rate(core_clk);
376 if (achieved_rate > desired_rate)
377 pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
378 mmc_hostname(host->mmc), desired_rate, achieved_rate);
379 host->mmc->actual_clock = achieved_rate / mult;
380
381 /* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
382 msm_host->clk_rate = desired_rate;
383
384 pr_debug("%s: Setting clock at rate %lu at timing %d\n",
385 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
386 }
387
388 /* Platform specific tuning */
msm_dll_poll_ck_out_en(struct sdhci_host * host,u8 poll)389 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
390 {
391 u32 wait_cnt = 50;
392 u8 ck_out_en;
393 struct mmc_host *mmc = host->mmc;
394 const struct sdhci_msm_offset *msm_offset =
395 sdhci_priv_msm_offset(host);
396
397 /* Poll for CK_OUT_EN bit. max. poll time = 50us */
398 ck_out_en = !!(readl_relaxed(host->ioaddr +
399 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
400
401 while (ck_out_en != poll) {
402 if (--wait_cnt == 0) {
403 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
404 mmc_hostname(mmc), poll);
405 return -ETIMEDOUT;
406 }
407 udelay(1);
408
409 ck_out_en = !!(readl_relaxed(host->ioaddr +
410 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
411 }
412
413 return 0;
414 }
415
msm_config_cm_dll_phase(struct sdhci_host * host,u8 phase)416 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
417 {
418 int rc;
419 static const u8 grey_coded_phase_table[] = {
420 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
421 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
422 };
423 unsigned long flags;
424 u32 config;
425 struct mmc_host *mmc = host->mmc;
426 const struct sdhci_msm_offset *msm_offset =
427 sdhci_priv_msm_offset(host);
428
429 if (phase > 0xf)
430 return -EINVAL;
431
432 spin_lock_irqsave(&host->lock, flags);
433
434 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
435 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
436 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
437 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
438
439 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
440 rc = msm_dll_poll_ck_out_en(host, 0);
441 if (rc)
442 goto err_out;
443
444 /*
445 * Write the selected DLL clock output phase (0 ... 15)
446 * to CDR_SELEXT bit field of DLL_CONFIG register.
447 */
448 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
449 config &= ~CDR_SELEXT_MASK;
450 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
451 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
452
453 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
454 config |= CORE_CK_OUT_EN;
455 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
456
457 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
458 rc = msm_dll_poll_ck_out_en(host, 1);
459 if (rc)
460 goto err_out;
461
462 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
463 config |= CORE_CDR_EN;
464 config &= ~CORE_CDR_EXT_EN;
465 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
466 goto out;
467
468 err_out:
469 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
470 mmc_hostname(mmc), phase);
471 out:
472 spin_unlock_irqrestore(&host->lock, flags);
473 return rc;
474 }
475
476 /*
477 * Find out the greatest range of consecuitive selected
478 * DLL clock output phases that can be used as sampling
479 * setting for SD3.0 UHS-I card read operation (in SDR104
480 * timing mode) or for eMMC4.5 card read operation (in
481 * HS400/HS200 timing mode).
482 * Select the 3/4 of the range and configure the DLL with the
483 * selected DLL clock output phase.
484 */
485
msm_find_most_appropriate_phase(struct sdhci_host * host,u8 * phase_table,u8 total_phases)486 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
487 u8 *phase_table, u8 total_phases)
488 {
489 int ret;
490 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
491 u8 phases_per_row[MAX_PHASES] = { 0 };
492 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
493 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
494 bool phase_0_found = false, phase_15_found = false;
495 struct mmc_host *mmc = host->mmc;
496
497 if (!total_phases || (total_phases > MAX_PHASES)) {
498 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
499 mmc_hostname(mmc), total_phases);
500 return -EINVAL;
501 }
502
503 for (cnt = 0; cnt < total_phases; cnt++) {
504 ranges[row_index][col_index] = phase_table[cnt];
505 phases_per_row[row_index] += 1;
506 col_index++;
507
508 if ((cnt + 1) == total_phases) {
509 continue;
510 /* check if next phase in phase_table is consecutive or not */
511 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
512 row_index++;
513 col_index = 0;
514 }
515 }
516
517 if (row_index >= MAX_PHASES)
518 return -EINVAL;
519
520 /* Check if phase-0 is present in first valid window? */
521 if (!ranges[0][0]) {
522 phase_0_found = true;
523 phase_0_raw_index = 0;
524 /* Check if cycle exist between 2 valid windows */
525 for (cnt = 1; cnt <= row_index; cnt++) {
526 if (phases_per_row[cnt]) {
527 for (i = 0; i < phases_per_row[cnt]; i++) {
528 if (ranges[cnt][i] == 15) {
529 phase_15_found = true;
530 phase_15_raw_index = cnt;
531 break;
532 }
533 }
534 }
535 }
536 }
537
538 /* If 2 valid windows form cycle then merge them as single window */
539 if (phase_0_found && phase_15_found) {
540 /* number of phases in raw where phase 0 is present */
541 u8 phases_0 = phases_per_row[phase_0_raw_index];
542 /* number of phases in raw where phase 15 is present */
543 u8 phases_15 = phases_per_row[phase_15_raw_index];
544
545 if (phases_0 + phases_15 >= MAX_PHASES)
546 /*
547 * If there are more than 1 phase windows then total
548 * number of phases in both the windows should not be
549 * more than or equal to MAX_PHASES.
550 */
551 return -EINVAL;
552
553 /* Merge 2 cyclic windows */
554 i = phases_15;
555 for (cnt = 0; cnt < phases_0; cnt++) {
556 ranges[phase_15_raw_index][i] =
557 ranges[phase_0_raw_index][cnt];
558 if (++i >= MAX_PHASES)
559 break;
560 }
561
562 phases_per_row[phase_0_raw_index] = 0;
563 phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
564 }
565
566 for (cnt = 0; cnt <= row_index; cnt++) {
567 if (phases_per_row[cnt] > curr_max) {
568 curr_max = phases_per_row[cnt];
569 selected_row_index = cnt;
570 }
571 }
572
573 i = (curr_max * 3) / 4;
574 if (i)
575 i--;
576
577 ret = ranges[selected_row_index][i];
578
579 if (ret >= MAX_PHASES) {
580 ret = -EINVAL;
581 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
582 mmc_hostname(mmc), ret);
583 }
584
585 return ret;
586 }
587
msm_cm_dll_set_freq(struct sdhci_host * host)588 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
589 {
590 u32 mclk_freq = 0, config;
591 const struct sdhci_msm_offset *msm_offset =
592 sdhci_priv_msm_offset(host);
593
594 /* Program the MCLK value to MCLK_FREQ bit field */
595 if (host->clock <= 112000000)
596 mclk_freq = 0;
597 else if (host->clock <= 125000000)
598 mclk_freq = 1;
599 else if (host->clock <= 137000000)
600 mclk_freq = 2;
601 else if (host->clock <= 150000000)
602 mclk_freq = 3;
603 else if (host->clock <= 162000000)
604 mclk_freq = 4;
605 else if (host->clock <= 175000000)
606 mclk_freq = 5;
607 else if (host->clock <= 187000000)
608 mclk_freq = 6;
609 else if (host->clock <= 200000000)
610 mclk_freq = 7;
611
612 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
613 config &= ~CMUX_SHIFT_PHASE_MASK;
614 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
615 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
616 }
617
618 /* Initialize the DLL (Programmable Delay Line) */
msm_init_cm_dll(struct sdhci_host * host)619 static int msm_init_cm_dll(struct sdhci_host *host)
620 {
621 struct mmc_host *mmc = host->mmc;
622 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
623 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
624 int wait_cnt = 50;
625 unsigned long flags, xo_clk = 0;
626 u32 config;
627 const struct sdhci_msm_offset *msm_offset =
628 msm_host->offset;
629
630 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
631 xo_clk = clk_get_rate(msm_host->xo_clk);
632
633 spin_lock_irqsave(&host->lock, flags);
634
635 /*
636 * Make sure that clock is always enabled when DLL
637 * tuning is in progress. Keeping PWRSAVE ON may
638 * turn off the clock.
639 */
640 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
641 config &= ~CORE_CLK_PWRSAVE;
642 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
643
644 if (msm_host->dll_config)
645 writel_relaxed(msm_host->dll_config,
646 host->ioaddr + msm_offset->core_dll_config);
647
648 if (msm_host->use_14lpp_dll_reset) {
649 config = readl_relaxed(host->ioaddr +
650 msm_offset->core_dll_config);
651 config &= ~CORE_CK_OUT_EN;
652 writel_relaxed(config, host->ioaddr +
653 msm_offset->core_dll_config);
654
655 config = readl_relaxed(host->ioaddr +
656 msm_offset->core_dll_config_2);
657 config |= CORE_DLL_CLOCK_DISABLE;
658 writel_relaxed(config, host->ioaddr +
659 msm_offset->core_dll_config_2);
660 }
661
662 config = readl_relaxed(host->ioaddr +
663 msm_offset->core_dll_config);
664 config |= CORE_DLL_RST;
665 writel_relaxed(config, host->ioaddr +
666 msm_offset->core_dll_config);
667
668 config = readl_relaxed(host->ioaddr +
669 msm_offset->core_dll_config);
670 config |= CORE_DLL_PDN;
671 writel_relaxed(config, host->ioaddr +
672 msm_offset->core_dll_config);
673
674 if (!msm_host->dll_config)
675 msm_cm_dll_set_freq(host);
676
677 if (msm_host->use_14lpp_dll_reset &&
678 !IS_ERR_OR_NULL(msm_host->xo_clk)) {
679 u32 mclk_freq = 0;
680
681 config = readl_relaxed(host->ioaddr +
682 msm_offset->core_dll_config_2);
683 config &= CORE_FLL_CYCLE_CNT;
684 if (config)
685 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
686 xo_clk);
687 else
688 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
689 xo_clk);
690
691 config = readl_relaxed(host->ioaddr +
692 msm_offset->core_dll_config_2);
693 config &= ~(0xFF << 10);
694 config |= mclk_freq << 10;
695
696 writel_relaxed(config, host->ioaddr +
697 msm_offset->core_dll_config_2);
698 /* wait for 5us before enabling DLL clock */
699 udelay(5);
700 }
701
702 config = readl_relaxed(host->ioaddr +
703 msm_offset->core_dll_config);
704 config &= ~CORE_DLL_RST;
705 writel_relaxed(config, host->ioaddr +
706 msm_offset->core_dll_config);
707
708 config = readl_relaxed(host->ioaddr +
709 msm_offset->core_dll_config);
710 config &= ~CORE_DLL_PDN;
711 writel_relaxed(config, host->ioaddr +
712 msm_offset->core_dll_config);
713
714 if (msm_host->use_14lpp_dll_reset) {
715 if (!msm_host->dll_config)
716 msm_cm_dll_set_freq(host);
717 config = readl_relaxed(host->ioaddr +
718 msm_offset->core_dll_config_2);
719 config &= ~CORE_DLL_CLOCK_DISABLE;
720 writel_relaxed(config, host->ioaddr +
721 msm_offset->core_dll_config_2);
722 }
723
724 /*
725 * Configure DLL user control register to enable DLL status.
726 * This setting is applicable to SDCC v5.1 onwards only.
727 */
728 if (msm_host->uses_tassadar_dll) {
729 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
730 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
731 writel_relaxed(config, host->ioaddr +
732 msm_offset->core_dll_usr_ctl);
733
734 config = readl_relaxed(host->ioaddr +
735 msm_offset->core_dll_config_3);
736 config &= ~0xFF;
737 if (msm_host->clk_rate < 150000000)
738 config |= DLL_CONFIG_3_LOW_FREQ_VAL;
739 else
740 config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
741 writel_relaxed(config, host->ioaddr +
742 msm_offset->core_dll_config_3);
743 }
744
745 config = readl_relaxed(host->ioaddr +
746 msm_offset->core_dll_config);
747 config |= CORE_DLL_EN;
748 writel_relaxed(config, host->ioaddr +
749 msm_offset->core_dll_config);
750
751 config = readl_relaxed(host->ioaddr +
752 msm_offset->core_dll_config);
753 config |= CORE_CK_OUT_EN;
754 writel_relaxed(config, host->ioaddr +
755 msm_offset->core_dll_config);
756
757 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
758 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
759 CORE_DLL_LOCK)) {
760 /* max. wait for 50us sec for LOCK bit to be set */
761 if (--wait_cnt == 0) {
762 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
763 mmc_hostname(mmc));
764 spin_unlock_irqrestore(&host->lock, flags);
765 return -ETIMEDOUT;
766 }
767 udelay(1);
768 }
769
770 spin_unlock_irqrestore(&host->lock, flags);
771 return 0;
772 }
773
msm_hc_select_default(struct sdhci_host * host)774 static void msm_hc_select_default(struct sdhci_host *host)
775 {
776 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
777 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
778 u32 config;
779 const struct sdhci_msm_offset *msm_offset =
780 msm_host->offset;
781
782 if (!msm_host->use_cdclp533) {
783 config = readl_relaxed(host->ioaddr +
784 msm_offset->core_vendor_spec3);
785 config &= ~CORE_PWRSAVE_DLL;
786 writel_relaxed(config, host->ioaddr +
787 msm_offset->core_vendor_spec3);
788 }
789
790 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
791 config &= ~CORE_HC_MCLK_SEL_MASK;
792 config |= CORE_HC_MCLK_SEL_DFLT;
793 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
794
795 /*
796 * Disable HC_SELECT_IN to be able to use the UHS mode select
797 * configuration from Host Control2 register for all other
798 * modes.
799 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
800 * in VENDOR_SPEC_FUNC
801 */
802 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
803 config &= ~CORE_HC_SELECT_IN_EN;
804 config &= ~CORE_HC_SELECT_IN_MASK;
805 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
806
807 /*
808 * Make sure above writes impacting free running MCLK are completed
809 * before changing the clk_rate at GCC.
810 */
811 wmb();
812 }
813
msm_hc_select_hs400(struct sdhci_host * host)814 static void msm_hc_select_hs400(struct sdhci_host *host)
815 {
816 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
817 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
818 struct mmc_ios ios = host->mmc->ios;
819 u32 config, dll_lock;
820 int rc;
821 const struct sdhci_msm_offset *msm_offset =
822 msm_host->offset;
823
824 /* Select the divided clock (free running MCLK/2) */
825 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
826 config &= ~CORE_HC_MCLK_SEL_MASK;
827 config |= CORE_HC_MCLK_SEL_HS400;
828
829 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
830 /*
831 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
832 * register
833 */
834 if ((msm_host->tuning_done || ios.enhanced_strobe) &&
835 !msm_host->calibration_done) {
836 config = readl_relaxed(host->ioaddr +
837 msm_offset->core_vendor_spec);
838 config |= CORE_HC_SELECT_IN_HS400;
839 config |= CORE_HC_SELECT_IN_EN;
840 writel_relaxed(config, host->ioaddr +
841 msm_offset->core_vendor_spec);
842 }
843 if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
844 /*
845 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
846 * core_dll_status to be set. This should get set
847 * within 15 us at 200 MHz.
848 */
849 rc = readl_relaxed_poll_timeout(host->ioaddr +
850 msm_offset->core_dll_status,
851 dll_lock,
852 (dll_lock &
853 (CORE_DLL_LOCK |
854 CORE_DDR_DLL_LOCK)), 10,
855 1000);
856 if (rc == -ETIMEDOUT)
857 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
858 mmc_hostname(host->mmc), dll_lock);
859 }
860 /*
861 * Make sure above writes impacting free running MCLK are completed
862 * before changing the clk_rate at GCC.
863 */
864 wmb();
865 }
866
867 /*
868 * sdhci_msm_hc_select_mode :- In general all timing modes are
869 * controlled via UHS mode select in Host Control2 register.
870 * eMMC specific HS200/HS400 doesn't have their respective modes
871 * defined here, hence we use these values.
872 *
873 * HS200 - SDR104 (Since they both are equivalent in functionality)
874 * HS400 - This involves multiple configurations
875 * Initially SDR104 - when tuning is required as HS200
876 * Then when switching to DDR @ 400MHz (HS400) we use
877 * the vendor specific HC_SELECT_IN to control the mode.
878 *
879 * In addition to controlling the modes we also need to select the
880 * correct input clock for DLL depending on the mode.
881 *
882 * HS400 - divided clock (free running MCLK/2)
883 * All other modes - default (free running MCLK)
884 */
sdhci_msm_hc_select_mode(struct sdhci_host * host)885 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
886 {
887 struct mmc_ios ios = host->mmc->ios;
888
889 if (ios.timing == MMC_TIMING_MMC_HS400 ||
890 host->flags & SDHCI_HS400_TUNING)
891 msm_hc_select_hs400(host);
892 else
893 msm_hc_select_default(host);
894 }
895
sdhci_msm_cdclp533_calibration(struct sdhci_host * host)896 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
897 {
898 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
899 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
900 u32 config, calib_done;
901 int ret;
902 const struct sdhci_msm_offset *msm_offset =
903 msm_host->offset;
904
905 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
906
907 /*
908 * Retuning in HS400 (DDR mode) will fail, just reset the
909 * tuning block and restore the saved tuning phase.
910 */
911 ret = msm_init_cm_dll(host);
912 if (ret)
913 goto out;
914
915 /* Set the selected phase in delay line hw block */
916 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
917 if (ret)
918 goto out;
919
920 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
921 config |= CORE_CMD_DAT_TRACK_SEL;
922 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
923
924 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
925 config &= ~CORE_CDC_T4_DLY_SEL;
926 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
927
928 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
929 config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
930 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
931
932 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
933 config |= CORE_CDC_SWITCH_RC_EN;
934 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
935
936 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
937 config &= ~CORE_START_CDC_TRAFFIC;
938 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
939
940 /* Perform CDC Register Initialization Sequence */
941
942 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
943 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
944 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
945 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
946 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
947 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
948 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
949 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
950 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
951
952 /* CDC HW Calibration */
953
954 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
955 config |= CORE_SW_TRIG_FULL_CALIB;
956 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
957
958 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
959 config &= ~CORE_SW_TRIG_FULL_CALIB;
960 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
961
962 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
963 config |= CORE_HW_AUTOCAL_ENA;
964 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
965
966 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
967 config |= CORE_TIMER_ENA;
968 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
969
970 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
971 calib_done,
972 (calib_done & CORE_CALIBRATION_DONE),
973 1, 50);
974
975 if (ret == -ETIMEDOUT) {
976 pr_err("%s: %s: CDC calibration was not completed\n",
977 mmc_hostname(host->mmc), __func__);
978 goto out;
979 }
980
981 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
982 & CORE_CDC_ERROR_CODE_MASK;
983 if (ret) {
984 pr_err("%s: %s: CDC error code %d\n",
985 mmc_hostname(host->mmc), __func__, ret);
986 ret = -EINVAL;
987 goto out;
988 }
989
990 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
991 config |= CORE_START_CDC_TRAFFIC;
992 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
993 out:
994 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
995 __func__, ret);
996 return ret;
997 }
998
sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host * host)999 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1000 {
1001 struct mmc_host *mmc = host->mmc;
1002 u32 dll_status, config, ddr_cfg_offset;
1003 int ret;
1004 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1005 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1006 const struct sdhci_msm_offset *msm_offset =
1007 sdhci_priv_msm_offset(host);
1008
1009 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1010
1011 /*
1012 * Currently the core_ddr_config register defaults to desired
1013 * configuration on reset. Currently reprogramming the power on
1014 * reset (POR) value in case it might have been modified by
1015 * bootloaders. In the future, if this changes, then the desired
1016 * values will need to be programmed appropriately.
1017 */
1018 if (msm_host->updated_ddr_cfg)
1019 ddr_cfg_offset = msm_offset->core_ddr_config;
1020 else
1021 ddr_cfg_offset = msm_offset->core_ddr_config_old;
1022 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1023
1024 if (mmc->ios.enhanced_strobe) {
1025 config = readl_relaxed(host->ioaddr +
1026 msm_offset->core_ddr_200_cfg);
1027 config |= CORE_CMDIN_RCLK_EN;
1028 writel_relaxed(config, host->ioaddr +
1029 msm_offset->core_ddr_200_cfg);
1030 }
1031
1032 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1033 config |= CORE_DDR_CAL_EN;
1034 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1035
1036 ret = readl_relaxed_poll_timeout(host->ioaddr +
1037 msm_offset->core_dll_status,
1038 dll_status,
1039 (dll_status & CORE_DDR_DLL_LOCK),
1040 10, 1000);
1041
1042 if (ret == -ETIMEDOUT) {
1043 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1044 mmc_hostname(host->mmc), __func__);
1045 goto out;
1046 }
1047
1048 /*
1049 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1050 * When MCLK is gated OFF, it is not gated for less than 0.5us
1051 * and MCLK must be switched on for at-least 1us before DATA
1052 * starts coming. Controllers with 14lpp and later tech DLL cannot
1053 * guarantee above requirement. So PWRSAVE_DLL should not be
1054 * turned on for host controllers using this DLL.
1055 */
1056 if (!msm_host->use_14lpp_dll_reset) {
1057 config = readl_relaxed(host->ioaddr +
1058 msm_offset->core_vendor_spec3);
1059 config |= CORE_PWRSAVE_DLL;
1060 writel_relaxed(config, host->ioaddr +
1061 msm_offset->core_vendor_spec3);
1062 }
1063
1064 /*
1065 * Drain writebuffer to ensure above DLL calibration
1066 * and PWRSAVE DLL is enabled.
1067 */
1068 wmb();
1069 out:
1070 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1071 __func__, ret);
1072 return ret;
1073 }
1074
sdhci_msm_hs400_dll_calibration(struct sdhci_host * host)1075 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1076 {
1077 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1078 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1079 struct mmc_host *mmc = host->mmc;
1080 int ret;
1081 u32 config;
1082 const struct sdhci_msm_offset *msm_offset =
1083 msm_host->offset;
1084
1085 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1086
1087 /*
1088 * Retuning in HS400 (DDR mode) will fail, just reset the
1089 * tuning block and restore the saved tuning phase.
1090 */
1091 ret = msm_init_cm_dll(host);
1092 if (ret)
1093 goto out;
1094
1095 if (!mmc->ios.enhanced_strobe) {
1096 /* Set the selected phase in delay line hw block */
1097 ret = msm_config_cm_dll_phase(host,
1098 msm_host->saved_tuning_phase);
1099 if (ret)
1100 goto out;
1101 config = readl_relaxed(host->ioaddr +
1102 msm_offset->core_dll_config);
1103 config |= CORE_CMD_DAT_TRACK_SEL;
1104 writel_relaxed(config, host->ioaddr +
1105 msm_offset->core_dll_config);
1106 }
1107
1108 if (msm_host->use_cdclp533)
1109 ret = sdhci_msm_cdclp533_calibration(host);
1110 else
1111 ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1112 out:
1113 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1114 __func__, ret);
1115 return ret;
1116 }
1117
sdhci_msm_is_tuning_needed(struct sdhci_host * host)1118 static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1119 {
1120 struct mmc_ios *ios = &host->mmc->ios;
1121
1122 /*
1123 * Tuning is required for SDR104, HS200 and HS400 cards and
1124 * if clock frequency is greater than 100MHz in these modes.
1125 */
1126 if (host->clock <= CORE_FREQ_100MHZ ||
1127 !(ios->timing == MMC_TIMING_MMC_HS400 ||
1128 ios->timing == MMC_TIMING_MMC_HS200 ||
1129 ios->timing == MMC_TIMING_UHS_SDR104) ||
1130 ios->enhanced_strobe)
1131 return false;
1132
1133 return true;
1134 }
1135
sdhci_msm_restore_sdr_dll_config(struct sdhci_host * host)1136 static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1137 {
1138 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1139 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1140 int ret;
1141
1142 /*
1143 * SDR DLL comes into picture only for timing modes which needs
1144 * tuning.
1145 */
1146 if (!sdhci_msm_is_tuning_needed(host))
1147 return 0;
1148
1149 /* Reset the tuning block */
1150 ret = msm_init_cm_dll(host);
1151 if (ret)
1152 return ret;
1153
1154 /* Restore the tuning block */
1155 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1156
1157 return ret;
1158 }
1159
sdhci_msm_set_cdr(struct sdhci_host * host,bool enable)1160 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1161 {
1162 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1163 u32 config, oldconfig = readl_relaxed(host->ioaddr +
1164 msm_offset->core_dll_config);
1165
1166 config = oldconfig;
1167 if (enable) {
1168 config |= CORE_CDR_EN;
1169 config &= ~CORE_CDR_EXT_EN;
1170 } else {
1171 config &= ~CORE_CDR_EN;
1172 config |= CORE_CDR_EXT_EN;
1173 }
1174
1175 if (config != oldconfig) {
1176 writel_relaxed(config, host->ioaddr +
1177 msm_offset->core_dll_config);
1178 }
1179 }
1180
sdhci_msm_execute_tuning(struct mmc_host * mmc,u32 opcode)1181 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1182 {
1183 struct sdhci_host *host = mmc_priv(mmc);
1184 int tuning_seq_cnt = 10;
1185 u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1186 int rc;
1187 struct mmc_ios ios = host->mmc->ios;
1188 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1189 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1190
1191 if (!sdhci_msm_is_tuning_needed(host)) {
1192 msm_host->use_cdr = false;
1193 sdhci_msm_set_cdr(host, false);
1194 return 0;
1195 }
1196
1197 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1198 msm_host->use_cdr = true;
1199
1200 /*
1201 * Clear tuning_done flag before tuning to ensure proper
1202 * HS400 settings.
1203 */
1204 msm_host->tuning_done = 0;
1205
1206 /*
1207 * For HS400 tuning in HS200 timing requires:
1208 * - select MCLK/2 in VENDOR_SPEC
1209 * - program MCLK to 400MHz (or nearest supported) in GCC
1210 */
1211 if (host->flags & SDHCI_HS400_TUNING) {
1212 sdhci_msm_hc_select_mode(host);
1213 msm_set_clock_rate_for_bus_mode(host, ios.clock);
1214 host->flags &= ~SDHCI_HS400_TUNING;
1215 }
1216
1217 retry:
1218 /* First of all reset the tuning block */
1219 rc = msm_init_cm_dll(host);
1220 if (rc)
1221 return rc;
1222
1223 phase = 0;
1224 do {
1225 /* Set the phase in delay line hw block */
1226 rc = msm_config_cm_dll_phase(host, phase);
1227 if (rc)
1228 return rc;
1229
1230 rc = mmc_send_tuning(mmc, opcode, NULL);
1231 if (!rc) {
1232 /* Tuning is successful at this tuning point */
1233 tuned_phases[tuned_phase_cnt++] = phase;
1234 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1235 mmc_hostname(mmc), phase);
1236 }
1237 } while (++phase < ARRAY_SIZE(tuned_phases));
1238
1239 if (tuned_phase_cnt) {
1240 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1241 /*
1242 * All phases valid is _almost_ as bad as no phases
1243 * valid. Probably all phases are not really reliable
1244 * but we didn't detect where the unreliable place is.
1245 * That means we'll essentially be guessing and hoping
1246 * we get a good phase. Better to try a few times.
1247 */
1248 dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1249 mmc_hostname(mmc));
1250 if (--tuning_seq_cnt) {
1251 tuned_phase_cnt = 0;
1252 goto retry;
1253 }
1254 }
1255
1256 rc = msm_find_most_appropriate_phase(host, tuned_phases,
1257 tuned_phase_cnt);
1258 if (rc < 0)
1259 return rc;
1260 else
1261 phase = rc;
1262
1263 /*
1264 * Finally set the selected phase in delay
1265 * line hw block.
1266 */
1267 rc = msm_config_cm_dll_phase(host, phase);
1268 if (rc)
1269 return rc;
1270 msm_host->saved_tuning_phase = phase;
1271 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1272 mmc_hostname(mmc), phase);
1273 } else {
1274 if (--tuning_seq_cnt)
1275 goto retry;
1276 /* Tuning failed */
1277 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1278 mmc_hostname(mmc));
1279 rc = -EIO;
1280 }
1281
1282 if (!rc)
1283 msm_host->tuning_done = true;
1284 return rc;
1285 }
1286
1287 /*
1288 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1289 * This needs to be done for both tuning and enhanced_strobe mode.
1290 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1291 * fixed feedback clock is used.
1292 */
sdhci_msm_hs400(struct sdhci_host * host,struct mmc_ios * ios)1293 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1294 {
1295 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1296 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1297 int ret;
1298
1299 if (host->clock > CORE_FREQ_100MHZ &&
1300 (msm_host->tuning_done || ios->enhanced_strobe) &&
1301 !msm_host->calibration_done) {
1302 ret = sdhci_msm_hs400_dll_calibration(host);
1303 if (!ret)
1304 msm_host->calibration_done = true;
1305 else
1306 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1307 mmc_hostname(host->mmc), ret);
1308 }
1309 }
1310
sdhci_msm_set_uhs_signaling(struct sdhci_host * host,unsigned int uhs)1311 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1312 unsigned int uhs)
1313 {
1314 struct mmc_host *mmc = host->mmc;
1315 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1316 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1317 u16 ctrl_2;
1318 u32 config;
1319 const struct sdhci_msm_offset *msm_offset =
1320 msm_host->offset;
1321
1322 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1323 /* Select Bus Speed Mode for host */
1324 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1325 switch (uhs) {
1326 case MMC_TIMING_UHS_SDR12:
1327 ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1328 break;
1329 case MMC_TIMING_UHS_SDR25:
1330 ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1331 break;
1332 case MMC_TIMING_UHS_SDR50:
1333 ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1334 break;
1335 case MMC_TIMING_MMC_HS400:
1336 case MMC_TIMING_MMC_HS200:
1337 case MMC_TIMING_UHS_SDR104:
1338 ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1339 break;
1340 case MMC_TIMING_UHS_DDR50:
1341 case MMC_TIMING_MMC_DDR52:
1342 ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1343 break;
1344 }
1345
1346 /*
1347 * When clock frequency is less than 100MHz, the feedback clock must be
1348 * provided and DLL must not be used so that tuning can be skipped. To
1349 * provide feedback clock, the mode selection can be any value less
1350 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1351 */
1352 if (host->clock <= CORE_FREQ_100MHZ) {
1353 if (uhs == MMC_TIMING_MMC_HS400 ||
1354 uhs == MMC_TIMING_MMC_HS200 ||
1355 uhs == MMC_TIMING_UHS_SDR104)
1356 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1357 /*
1358 * DLL is not required for clock <= 100MHz
1359 * Thus, make sure DLL it is disabled when not required
1360 */
1361 config = readl_relaxed(host->ioaddr +
1362 msm_offset->core_dll_config);
1363 config |= CORE_DLL_RST;
1364 writel_relaxed(config, host->ioaddr +
1365 msm_offset->core_dll_config);
1366
1367 config = readl_relaxed(host->ioaddr +
1368 msm_offset->core_dll_config);
1369 config |= CORE_DLL_PDN;
1370 writel_relaxed(config, host->ioaddr +
1371 msm_offset->core_dll_config);
1372
1373 /*
1374 * The DLL needs to be restored and CDCLP533 recalibrated
1375 * when the clock frequency is set back to 400MHz.
1376 */
1377 msm_host->calibration_done = false;
1378 }
1379
1380 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1381 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1382 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1383
1384 if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1385 sdhci_msm_hs400(host, &mmc->ios);
1386 }
1387
sdhci_msm_set_pincfg(struct sdhci_msm_host * msm_host,bool level)1388 static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1389 {
1390 struct platform_device *pdev = msm_host->pdev;
1391 int ret;
1392
1393 if (level)
1394 ret = pinctrl_pm_select_default_state(&pdev->dev);
1395 else
1396 ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1397
1398 return ret;
1399 }
1400
sdhci_msm_set_vmmc(struct mmc_host * mmc)1401 static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1402 {
1403 if (IS_ERR(mmc->supply.vmmc))
1404 return 0;
1405
1406 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1407 }
1408
msm_toggle_vqmmc(struct sdhci_msm_host * msm_host,struct mmc_host * mmc,bool level)1409 static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1410 struct mmc_host *mmc, bool level)
1411 {
1412 int ret;
1413 struct mmc_ios ios;
1414
1415 if (msm_host->vqmmc_enabled == level)
1416 return 0;
1417
1418 if (level) {
1419 /* Set the IO voltage regulator to default voltage level */
1420 if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1421 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1422 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1423 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1424
1425 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1426 ret = mmc_regulator_set_vqmmc(mmc, &ios);
1427 if (ret < 0) {
1428 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1429 mmc_hostname(mmc), ret);
1430 goto out;
1431 }
1432 }
1433 ret = regulator_enable(mmc->supply.vqmmc);
1434 } else {
1435 ret = regulator_disable(mmc->supply.vqmmc);
1436 }
1437
1438 if (ret)
1439 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1440 mmc_hostname(mmc), level ? "en":"dis", ret);
1441 else
1442 msm_host->vqmmc_enabled = level;
1443 out:
1444 return ret;
1445 }
1446
msm_config_vqmmc_mode(struct sdhci_msm_host * msm_host,struct mmc_host * mmc,bool hpm)1447 static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1448 struct mmc_host *mmc, bool hpm)
1449 {
1450 int load, ret;
1451
1452 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1453 ret = regulator_set_load(mmc->supply.vqmmc, load);
1454 if (ret)
1455 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1456 mmc_hostname(mmc), ret);
1457 return ret;
1458 }
1459
sdhci_msm_set_vqmmc(struct sdhci_msm_host * msm_host,struct mmc_host * mmc,bool level)1460 static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1461 struct mmc_host *mmc, bool level)
1462 {
1463 int ret;
1464 bool always_on;
1465
1466 if (IS_ERR(mmc->supply.vqmmc) ||
1467 (mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1468 return 0;
1469 /*
1470 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1471 * and HPM modes by setting the corresponding load.
1472 *
1473 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1474 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1475 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1476 * Vqmmc should remain ON, So just set the load instead of turning it
1477 * off/on.
1478 */
1479 always_on = !mmc_card_is_removable(mmc) &&
1480 mmc->card && mmc_card_mmc(mmc->card);
1481
1482 if (always_on)
1483 ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1484 else
1485 ret = msm_toggle_vqmmc(msm_host, mmc, level);
1486
1487 return ret;
1488 }
1489
sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host * msm_host)1490 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1491 {
1492 init_waitqueue_head(&msm_host->pwr_irq_wait);
1493 }
1494
sdhci_msm_complete_pwr_irq_wait(struct sdhci_msm_host * msm_host)1495 static inline void sdhci_msm_complete_pwr_irq_wait(
1496 struct sdhci_msm_host *msm_host)
1497 {
1498 wake_up(&msm_host->pwr_irq_wait);
1499 }
1500
1501 /*
1502 * sdhci_msm_check_power_status API should be called when registers writes
1503 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1504 * To what state the register writes will change the IO lines should be passed
1505 * as the argument req_type. This API will check whether the IO line's state
1506 * is already the expected state and will wait for power irq only if
1507 * power irq is expected to be triggered based on the current IO line state
1508 * and expected IO line state.
1509 */
sdhci_msm_check_power_status(struct sdhci_host * host,u32 req_type)1510 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1511 {
1512 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1513 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1514 bool done = false;
1515 u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1516 const struct sdhci_msm_offset *msm_offset =
1517 msm_host->offset;
1518
1519 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1520 mmc_hostname(host->mmc), __func__, req_type,
1521 msm_host->curr_pwr_state, msm_host->curr_io_level);
1522
1523 /*
1524 * The power interrupt will not be generated for signal voltage
1525 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1526 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1527 * it as always set.
1528 */
1529 if (!msm_host->mci_removed)
1530 val = msm_host_readl(msm_host, host,
1531 msm_offset->core_generics);
1532 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1533 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1534 return;
1535 }
1536
1537 /*
1538 * The IRQ for request type IO High/LOW will be generated when -
1539 * there is a state change in 1.8V enable bit (bit 3) of
1540 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1541 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1542 * to set it to 3.3V before card detection happens, the
1543 * IRQ doesn't get triggered as there is no state change in this bit.
1544 * The driver already handles this case by changing the IO voltage
1545 * level to high as part of controller power up sequence. Hence, check
1546 * for host->pwr to handle a case where IO voltage high request is
1547 * issued even before controller power up.
1548 */
1549 if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1550 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1551 mmc_hostname(host->mmc), req_type);
1552 return;
1553 }
1554 if ((req_type & msm_host->curr_pwr_state) ||
1555 (req_type & msm_host->curr_io_level))
1556 done = true;
1557 /*
1558 * This is needed here to handle cases where register writes will
1559 * not change the current bus state or io level of the controller.
1560 * In this case, no power irq will be triggerred and we should
1561 * not wait.
1562 */
1563 if (!done) {
1564 if (!wait_event_timeout(msm_host->pwr_irq_wait,
1565 msm_host->pwr_irq_flag,
1566 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1567 dev_warn(&msm_host->pdev->dev,
1568 "%s: pwr_irq for req: (%d) timed out\n",
1569 mmc_hostname(host->mmc), req_type);
1570 }
1571 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1572 __func__, req_type);
1573 }
1574
sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host * host)1575 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1576 {
1577 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1578 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1579 const struct sdhci_msm_offset *msm_offset =
1580 msm_host->offset;
1581
1582 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1583 mmc_hostname(host->mmc),
1584 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1585 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1586 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1587 }
1588
sdhci_msm_handle_pwr_irq(struct sdhci_host * host,int irq)1589 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1590 {
1591 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1592 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1593 struct mmc_host *mmc = host->mmc;
1594 u32 irq_status, irq_ack = 0;
1595 int retry = 10, ret;
1596 u32 pwr_state = 0, io_level = 0;
1597 u32 config;
1598 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1599
1600 irq_status = msm_host_readl(msm_host, host,
1601 msm_offset->core_pwrctl_status);
1602 irq_status &= INT_MASK;
1603
1604 msm_host_writel(msm_host, irq_status, host,
1605 msm_offset->core_pwrctl_clear);
1606
1607 /*
1608 * There is a rare HW scenario where the first clear pulse could be
1609 * lost when actual reset and clear/read of status register is
1610 * happening at a time. Hence, retry for at least 10 times to make
1611 * sure status register is cleared. Otherwise, this will result in
1612 * a spurious power IRQ resulting in system instability.
1613 */
1614 while (irq_status & msm_host_readl(msm_host, host,
1615 msm_offset->core_pwrctl_status)) {
1616 if (retry == 0) {
1617 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1618 mmc_hostname(host->mmc), irq_status);
1619 sdhci_msm_dump_pwr_ctrl_regs(host);
1620 WARN_ON(1);
1621 break;
1622 }
1623 msm_host_writel(msm_host, irq_status, host,
1624 msm_offset->core_pwrctl_clear);
1625 retry--;
1626 udelay(10);
1627 }
1628
1629 /* Handle BUS ON/OFF*/
1630 if (irq_status & CORE_PWRCTL_BUS_ON) {
1631 pwr_state = REQ_BUS_ON;
1632 io_level = REQ_IO_HIGH;
1633 }
1634 if (irq_status & CORE_PWRCTL_BUS_OFF) {
1635 pwr_state = REQ_BUS_OFF;
1636 io_level = REQ_IO_LOW;
1637 }
1638
1639 if (pwr_state) {
1640 ret = sdhci_msm_set_vmmc(mmc);
1641 if (!ret)
1642 ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1643 pwr_state & REQ_BUS_ON);
1644 if (!ret)
1645 ret = sdhci_msm_set_pincfg(msm_host,
1646 pwr_state & REQ_BUS_ON);
1647 if (!ret)
1648 irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1649 else
1650 irq_ack |= CORE_PWRCTL_BUS_FAIL;
1651 }
1652
1653 /* Handle IO LOW/HIGH */
1654 if (irq_status & CORE_PWRCTL_IO_LOW)
1655 io_level = REQ_IO_LOW;
1656
1657 if (irq_status & CORE_PWRCTL_IO_HIGH)
1658 io_level = REQ_IO_HIGH;
1659
1660 if (io_level)
1661 irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1662
1663 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1664 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1665 if (ret < 0) {
1666 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1667 mmc_hostname(mmc), ret,
1668 mmc->ios.signal_voltage, mmc->ios.vdd,
1669 irq_status);
1670 irq_ack |= CORE_PWRCTL_IO_FAIL;
1671 }
1672 }
1673
1674 /*
1675 * The driver has to acknowledge the interrupt, switch voltages and
1676 * report back if it succeded or not to this register. The voltage
1677 * switches are handled by the sdhci core, so just report success.
1678 */
1679 msm_host_writel(msm_host, irq_ack, host,
1680 msm_offset->core_pwrctl_ctl);
1681
1682 /*
1683 * If we don't have info regarding the voltage levels supported by
1684 * regulators, don't change the IO PAD PWR SWITCH.
1685 */
1686 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1687 u32 new_config;
1688 /*
1689 * We should unset IO PAD PWR switch only if the register write
1690 * can set IO lines high and the regulator also switches to 3 V.
1691 * Else, we should keep the IO PAD PWR switch set.
1692 * This is applicable to certain targets where eMMC vccq supply
1693 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1694 * IO PAD PWR switch must be kept set to reflect actual
1695 * regulator voltage. This way, during initialization of
1696 * controllers with only 1.8V, we will set the IO PAD bit
1697 * without waiting for a REQ_IO_LOW.
1698 */
1699 config = readl_relaxed(host->ioaddr +
1700 msm_offset->core_vendor_spec);
1701 new_config = config;
1702
1703 if ((io_level & REQ_IO_HIGH) &&
1704 (msm_host->caps_0 & CORE_3_0V_SUPPORT))
1705 new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1706 else if ((io_level & REQ_IO_LOW) ||
1707 (msm_host->caps_0 & CORE_1_8V_SUPPORT))
1708 new_config |= CORE_IO_PAD_PWR_SWITCH;
1709
1710 if (config ^ new_config)
1711 writel_relaxed(new_config, host->ioaddr +
1712 msm_offset->core_vendor_spec);
1713 }
1714
1715 if (pwr_state)
1716 msm_host->curr_pwr_state = pwr_state;
1717 if (io_level)
1718 msm_host->curr_io_level = io_level;
1719
1720 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1721 mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1722 irq_ack);
1723 }
1724
sdhci_msm_pwr_irq(int irq,void * data)1725 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1726 {
1727 struct sdhci_host *host = (struct sdhci_host *)data;
1728 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1729 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1730
1731 sdhci_msm_handle_pwr_irq(host, irq);
1732 msm_host->pwr_irq_flag = 1;
1733 sdhci_msm_complete_pwr_irq_wait(msm_host);
1734
1735
1736 return IRQ_HANDLED;
1737 }
1738
sdhci_msm_get_max_clock(struct sdhci_host * host)1739 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1740 {
1741 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1742 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1743 struct clk *core_clk = msm_host->bulk_clks[0].clk;
1744
1745 return clk_round_rate(core_clk, ULONG_MAX);
1746 }
1747
sdhci_msm_get_min_clock(struct sdhci_host * host)1748 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1749 {
1750 return SDHCI_MSM_MIN_CLOCK;
1751 }
1752
1753 /*
1754 * __sdhci_msm_set_clock - sdhci_msm clock control.
1755 *
1756 * Description:
1757 * MSM controller does not use internal divider and
1758 * instead directly control the GCC clock as per
1759 * HW recommendation.
1760 **/
__sdhci_msm_set_clock(struct sdhci_host * host,unsigned int clock)1761 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1762 {
1763 u16 clk;
1764
1765 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1766
1767 if (clock == 0)
1768 return;
1769
1770 /*
1771 * MSM controller do not use clock divider.
1772 * Thus read SDHCI_CLOCK_CONTROL and only enable
1773 * clock with no divider value programmed.
1774 */
1775 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1776 sdhci_enable_clk(host, clk);
1777 }
1778
1779 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
sdhci_msm_set_clock(struct sdhci_host * host,unsigned int clock)1780 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1781 {
1782 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1783 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1784
1785 if (!clock) {
1786 host->mmc->actual_clock = msm_host->clk_rate = 0;
1787 goto out;
1788 }
1789
1790 sdhci_msm_hc_select_mode(host);
1791
1792 msm_set_clock_rate_for_bus_mode(host, clock);
1793 out:
1794 __sdhci_msm_set_clock(host, clock);
1795 }
1796
1797 /*****************************************************************************\
1798 * *
1799 * Inline Crypto Engine (ICE) support *
1800 * *
1801 \*****************************************************************************/
1802
1803 #ifdef CONFIG_MMC_CRYPTO
1804
1805 #define AES_256_XTS_KEY_SIZE 64
1806
1807 /* QCOM ICE registers */
1808
1809 #define QCOM_ICE_REG_VERSION 0x0008
1810
1811 #define QCOM_ICE_REG_FUSE_SETTING 0x0010
1812 #define QCOM_ICE_FUSE_SETTING_MASK 0x1
1813 #define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK 0x2
1814 #define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK 0x4
1815
1816 #define QCOM_ICE_REG_BIST_STATUS 0x0070
1817 #define QCOM_ICE_BIST_STATUS_MASK 0xF0000000
1818
1819 #define QCOM_ICE_REG_ADVANCED_CONTROL 0x1000
1820
1821 #define sdhci_msm_ice_writel(host, val, reg) \
1822 writel((val), (host)->ice_mem + (reg))
1823 #define sdhci_msm_ice_readl(host, reg) \
1824 readl((host)->ice_mem + (reg))
1825
sdhci_msm_ice_supported(struct sdhci_msm_host * msm_host)1826 static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
1827 {
1828 struct device *dev = mmc_dev(msm_host->mmc);
1829 u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
1830 int major = regval >> 24;
1831 int minor = (regval >> 16) & 0xFF;
1832 int step = regval & 0xFFFF;
1833
1834 /* For now this driver only supports ICE version 3. */
1835 if (major != 3) {
1836 dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
1837 major, minor, step);
1838 return false;
1839 }
1840
1841 dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
1842 major, minor, step);
1843
1844 /* If fuses are blown, ICE might not work in the standard way. */
1845 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
1846 if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
1847 QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
1848 QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
1849 dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
1850 return false;
1851 }
1852 return true;
1853 }
1854
sdhci_msm_ice_get_clk(struct device * dev)1855 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
1856 {
1857 return devm_clk_get(dev, "ice");
1858 }
1859
sdhci_msm_ice_init(struct sdhci_msm_host * msm_host,struct cqhci_host * cq_host)1860 static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1861 struct cqhci_host *cq_host)
1862 {
1863 struct mmc_host *mmc = msm_host->mmc;
1864 struct device *dev = mmc_dev(mmc);
1865 struct resource *res;
1866
1867 if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1868 return 0;
1869
1870 res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
1871 "ice");
1872 if (!res) {
1873 dev_warn(dev, "ICE registers not found\n");
1874 goto disable;
1875 }
1876
1877 if (!qcom_scm_ice_available()) {
1878 dev_warn(dev, "ICE SCM interface not found\n");
1879 goto disable;
1880 }
1881
1882 msm_host->ice_mem = devm_ioremap_resource(dev, res);
1883 if (IS_ERR(msm_host->ice_mem))
1884 return PTR_ERR(msm_host->ice_mem);
1885
1886 if (!sdhci_msm_ice_supported(msm_host))
1887 goto disable;
1888
1889 mmc->caps2 |= MMC_CAP2_CRYPTO;
1890 return 0;
1891
1892 disable:
1893 dev_warn(dev, "Disabling inline encryption support\n");
1894 return 0;
1895 }
1896
sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host * msm_host)1897 static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
1898 {
1899 u32 regval;
1900
1901 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1902 /*
1903 * Enable low power mode sequence
1904 * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
1905 */
1906 regval |= 0x7000;
1907 sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1908 }
1909
sdhci_msm_ice_optimization_enable(struct sdhci_msm_host * msm_host)1910 static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
1911 {
1912 u32 regval;
1913
1914 /* ICE Optimizations Enable Sequence */
1915 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1916 regval |= 0xD807100;
1917 /* ICE HPG requires delay before writing */
1918 udelay(5);
1919 sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1920 udelay(5);
1921 }
1922
1923 /*
1924 * Wait until the ICE BIST (built-in self-test) has completed.
1925 *
1926 * This may be necessary before ICE can be used.
1927 *
1928 * Note that we don't really care whether the BIST passed or failed; we really
1929 * just want to make sure that it isn't still running. This is because (a) the
1930 * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
1931 * documented to reject crypto requests if the BIST fails, so we needn't do it
1932 * in software too, and (c) properly testing storage encryption requires testing
1933 * the full storage stack anyway, and not relying on hardware-level self-tests.
1934 */
sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host * msm_host)1935 static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
1936 {
1937 u32 regval;
1938 int err;
1939
1940 err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
1941 regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
1942 50, 5000);
1943 if (err)
1944 dev_err(mmc_dev(msm_host->mmc),
1945 "Timed out waiting for ICE self-test to complete\n");
1946 return err;
1947 }
1948
sdhci_msm_ice_enable(struct sdhci_msm_host * msm_host)1949 static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1950 {
1951 if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1952 return;
1953 sdhci_msm_ice_low_power_mode_enable(msm_host);
1954 sdhci_msm_ice_optimization_enable(msm_host);
1955 sdhci_msm_ice_wait_bist_status(msm_host);
1956 }
1957
sdhci_msm_ice_resume(struct sdhci_msm_host * msm_host)1958 static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1959 {
1960 if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1961 return 0;
1962 return sdhci_msm_ice_wait_bist_status(msm_host);
1963 }
1964
1965 /*
1966 * Program a key into a QC ICE keyslot, or evict a keyslot. QC ICE requires
1967 * vendor-specific SCM calls for this; it doesn't support the standard way.
1968 */
sdhci_msm_program_key(struct cqhci_host * cq_host,const union cqhci_crypto_cfg_entry * cfg,int slot)1969 static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1970 const union cqhci_crypto_cfg_entry *cfg,
1971 int slot)
1972 {
1973 struct device *dev = mmc_dev(cq_host->mmc);
1974 union cqhci_crypto_cap_entry cap;
1975 union {
1976 u8 bytes[AES_256_XTS_KEY_SIZE];
1977 u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
1978 } key;
1979 int i;
1980 int err;
1981
1982 if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
1983 return qcom_scm_ice_invalidate_key(slot);
1984
1985 /* Only AES-256-XTS has been tested so far. */
1986 cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1987 if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1988 cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
1989 dev_err_ratelimited(dev,
1990 "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
1991 cap.algorithm_id, cap.key_size);
1992 return -EINVAL;
1993 }
1994
1995 memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
1996
1997 /*
1998 * The SCM call byte-swaps the 32-bit words of the key. So we have to
1999 * do the same, in order for the final key be correct.
2000 */
2001 for (i = 0; i < ARRAY_SIZE(key.words); i++)
2002 __cpu_to_be32s(&key.words[i]);
2003
2004 err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
2005 QCOM_SCM_ICE_CIPHER_AES_256_XTS,
2006 cfg->data_unit_size);
2007 memzero_explicit(&key, sizeof(key));
2008 return err;
2009 }
2010 #else /* CONFIG_MMC_CRYPTO */
sdhci_msm_ice_get_clk(struct device * dev)2011 static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
2012 {
2013 return NULL;
2014 }
2015
sdhci_msm_ice_init(struct sdhci_msm_host * msm_host,struct cqhci_host * cq_host)2016 static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
2017 struct cqhci_host *cq_host)
2018 {
2019 return 0;
2020 }
2021
sdhci_msm_ice_enable(struct sdhci_msm_host * msm_host)2022 static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
2023 {
2024 }
2025
2026 static inline int __maybe_unused
sdhci_msm_ice_resume(struct sdhci_msm_host * msm_host)2027 sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
2028 {
2029 return 0;
2030 }
2031 #endif /* !CONFIG_MMC_CRYPTO */
2032
2033 /*****************************************************************************\
2034 * *
2035 * MSM Command Queue Engine (CQE) *
2036 * *
2037 \*****************************************************************************/
2038
sdhci_msm_cqe_irq(struct sdhci_host * host,u32 intmask)2039 static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
2040 {
2041 int cmd_error = 0;
2042 int data_error = 0;
2043
2044 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
2045 return intmask;
2046
2047 cqhci_irq(host->mmc, intmask, cmd_error, data_error);
2048 return 0;
2049 }
2050
sdhci_msm_cqe_enable(struct mmc_host * mmc)2051 static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
2052 {
2053 struct sdhci_host *host = mmc_priv(mmc);
2054 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2055 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2056
2057 sdhci_cqe_enable(mmc);
2058 sdhci_msm_ice_enable(msm_host);
2059 }
2060
sdhci_msm_cqe_disable(struct mmc_host * mmc,bool recovery)2061 static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
2062 {
2063 struct sdhci_host *host = mmc_priv(mmc);
2064 unsigned long flags;
2065 u32 ctrl;
2066
2067 /*
2068 * When CQE is halted, the legacy SDHCI path operates only
2069 * on 16-byte descriptors in 64bit mode.
2070 */
2071 if (host->flags & SDHCI_USE_64_BIT_DMA)
2072 host->desc_sz = 16;
2073
2074 spin_lock_irqsave(&host->lock, flags);
2075
2076 /*
2077 * During CQE command transfers, command complete bit gets latched.
2078 * So s/w should clear command complete interrupt status when CQE is
2079 * either halted or disabled. Otherwise unexpected SDCHI legacy
2080 * interrupt gets triggered when CQE is halted/disabled.
2081 */
2082 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2083 ctrl |= SDHCI_INT_RESPONSE;
2084 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE);
2085 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2086
2087 spin_unlock_irqrestore(&host->lock, flags);
2088
2089 sdhci_cqe_disable(mmc, recovery);
2090 }
2091
sdhci_msm_set_timeout(struct sdhci_host * host,struct mmc_command * cmd)2092 static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
2093 {
2094 u32 count, start = 15;
2095
2096 __sdhci_set_timeout(host, cmd);
2097 count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
2098 /*
2099 * Update software timeout value if its value is less than hardware data
2100 * timeout value. Qcom SoC hardware data timeout value was calculated
2101 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
2102 */
2103 if (cmd && cmd->data && host->clock > 400000 &&
2104 host->clock <= 50000000 &&
2105 ((1 << (count + start)) > (10 * host->clock)))
2106 host->data_timeout = 22LL * NSEC_PER_SEC;
2107 }
2108
2109 static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2110 .enable = sdhci_msm_cqe_enable,
2111 .disable = sdhci_msm_cqe_disable,
2112 #ifdef CONFIG_MMC_CRYPTO
2113 .program_key = sdhci_msm_program_key,
2114 #endif
2115 };
2116
sdhci_msm_cqe_add_host(struct sdhci_host * host,struct platform_device * pdev)2117 static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2118 struct platform_device *pdev)
2119 {
2120 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2121 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2122 struct cqhci_host *cq_host;
2123 bool dma64;
2124 u32 cqcfg;
2125 int ret;
2126
2127 /*
2128 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2129 * So ensure ADMA table is allocated for 16byte descriptors.
2130 */
2131 if (host->caps & SDHCI_CAN_64BIT)
2132 host->alloc_desc_sz = 16;
2133
2134 ret = sdhci_setup_host(host);
2135 if (ret)
2136 return ret;
2137
2138 cq_host = cqhci_pltfm_init(pdev);
2139 if (IS_ERR(cq_host)) {
2140 ret = PTR_ERR(cq_host);
2141 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2142 goto cleanup;
2143 }
2144
2145 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2146 cq_host->ops = &sdhci_msm_cqhci_ops;
2147
2148 dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2149
2150 ret = sdhci_msm_ice_init(msm_host, cq_host);
2151 if (ret)
2152 goto cleanup;
2153
2154 ret = cqhci_init(cq_host, host->mmc, dma64);
2155 if (ret) {
2156 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2157 mmc_hostname(host->mmc), ret);
2158 goto cleanup;
2159 }
2160
2161 /* Disable cqe reset due to cqe enable signal */
2162 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2163 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2164 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2165
2166 /*
2167 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2168 * So limit desc_sz to 12 so that the data commands that are sent
2169 * during card initialization (before CQE gets enabled) would
2170 * get executed without any issues.
2171 */
2172 if (host->flags & SDHCI_USE_64_BIT_DMA)
2173 host->desc_sz = 12;
2174
2175 ret = __sdhci_add_host(host);
2176 if (ret)
2177 goto cleanup;
2178
2179 dev_info(&pdev->dev, "%s: CQE init: success\n",
2180 mmc_hostname(host->mmc));
2181 return ret;
2182
2183 cleanup:
2184 sdhci_cleanup_host(host);
2185 return ret;
2186 }
2187
2188 /*
2189 * Platform specific register write functions. This is so that, if any
2190 * register write needs to be followed up by platform specific actions,
2191 * they can be added here. These functions can go to sleep when writes
2192 * to certain registers are done.
2193 * These functions are relying on sdhci_set_ios not using spinlock.
2194 */
__sdhci_msm_check_write(struct sdhci_host * host,u16 val,int reg)2195 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2196 {
2197 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2198 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2199 u32 req_type = 0;
2200
2201 switch (reg) {
2202 case SDHCI_HOST_CONTROL2:
2203 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2204 REQ_IO_HIGH;
2205 break;
2206 case SDHCI_SOFTWARE_RESET:
2207 if (host->pwr && (val & SDHCI_RESET_ALL))
2208 req_type = REQ_BUS_OFF;
2209 break;
2210 case SDHCI_POWER_CONTROL:
2211 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2212 break;
2213 case SDHCI_TRANSFER_MODE:
2214 msm_host->transfer_mode = val;
2215 break;
2216 case SDHCI_COMMAND:
2217 if (!msm_host->use_cdr)
2218 break;
2219 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2220 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
2221 SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
2222 sdhci_msm_set_cdr(host, true);
2223 else
2224 sdhci_msm_set_cdr(host, false);
2225 break;
2226 }
2227
2228 if (req_type) {
2229 msm_host->pwr_irq_flag = 0;
2230 /*
2231 * Since this register write may trigger a power irq, ensure
2232 * all previous register writes are complete by this point.
2233 */
2234 mb();
2235 }
2236 return req_type;
2237 }
2238
2239 /* This function may sleep*/
sdhci_msm_writew(struct sdhci_host * host,u16 val,int reg)2240 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2241 {
2242 u32 req_type = 0;
2243
2244 req_type = __sdhci_msm_check_write(host, val, reg);
2245 writew_relaxed(val, host->ioaddr + reg);
2246
2247 if (req_type)
2248 sdhci_msm_check_power_status(host, req_type);
2249 }
2250
2251 /* This function may sleep*/
sdhci_msm_writeb(struct sdhci_host * host,u8 val,int reg)2252 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2253 {
2254 u32 req_type = 0;
2255
2256 req_type = __sdhci_msm_check_write(host, val, reg);
2257
2258 writeb_relaxed(val, host->ioaddr + reg);
2259
2260 if (req_type)
2261 sdhci_msm_check_power_status(host, req_type);
2262 }
2263
sdhci_msm_set_regulator_caps(struct sdhci_msm_host * msm_host)2264 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2265 {
2266 struct mmc_host *mmc = msm_host->mmc;
2267 struct regulator *supply = mmc->supply.vqmmc;
2268 u32 caps = 0, config;
2269 struct sdhci_host *host = mmc_priv(mmc);
2270 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2271
2272 if (!IS_ERR(mmc->supply.vqmmc)) {
2273 if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2274 caps |= CORE_1_8V_SUPPORT;
2275 if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2276 caps |= CORE_3_0V_SUPPORT;
2277
2278 if (!caps)
2279 pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2280 mmc_hostname(mmc));
2281 }
2282
2283 if (caps) {
2284 /*
2285 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2286 * bit can be used as required later on.
2287 */
2288 u32 io_level = msm_host->curr_io_level;
2289
2290 config = readl_relaxed(host->ioaddr +
2291 msm_offset->core_vendor_spec);
2292 config |= CORE_IO_PAD_PWR_SWITCH_EN;
2293
2294 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT))
2295 config &= ~CORE_IO_PAD_PWR_SWITCH;
2296 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2297 config |= CORE_IO_PAD_PWR_SWITCH;
2298
2299 writel_relaxed(config,
2300 host->ioaddr + msm_offset->core_vendor_spec);
2301 }
2302 msm_host->caps_0 |= caps;
2303 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2304 }
2305
sdhci_msm_reset(struct sdhci_host * host,u8 mask)2306 static void sdhci_msm_reset(struct sdhci_host *host, u8 mask)
2307 {
2308 if ((host->mmc->caps2 & MMC_CAP2_CQE) && (mask & SDHCI_RESET_ALL))
2309 cqhci_deactivate(host->mmc);
2310 sdhci_reset(host, mask);
2311 }
2312
sdhci_msm_register_vreg(struct sdhci_msm_host * msm_host)2313 static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2314 {
2315 int ret;
2316
2317 ret = mmc_regulator_get_supply(msm_host->mmc);
2318 if (ret)
2319 return ret;
2320
2321 sdhci_msm_set_regulator_caps(msm_host);
2322
2323 return 0;
2324 }
2325
sdhci_msm_start_signal_voltage_switch(struct mmc_host * mmc,struct mmc_ios * ios)2326 static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2327 struct mmc_ios *ios)
2328 {
2329 struct sdhci_host *host = mmc_priv(mmc);
2330 u16 ctrl, status;
2331
2332 /*
2333 * Signal Voltage Switching is only applicable for Host Controllers
2334 * v3.00 and above.
2335 */
2336 if (host->version < SDHCI_SPEC_300)
2337 return 0;
2338
2339 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2340
2341 switch (ios->signal_voltage) {
2342 case MMC_SIGNAL_VOLTAGE_330:
2343 if (!(host->flags & SDHCI_SIGNALING_330))
2344 return -EINVAL;
2345
2346 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2347 ctrl &= ~SDHCI_CTRL_VDD_180;
2348 break;
2349 case MMC_SIGNAL_VOLTAGE_180:
2350 if (!(host->flags & SDHCI_SIGNALING_180))
2351 return -EINVAL;
2352
2353 /* Enable 1.8V Signal Enable in the Host Control2 register */
2354 ctrl |= SDHCI_CTRL_VDD_180;
2355 break;
2356
2357 default:
2358 return -EINVAL;
2359 }
2360
2361 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2362
2363 /* Wait for 5ms */
2364 usleep_range(5000, 5500);
2365
2366 /* regulator output should be stable within 5 ms */
2367 status = ctrl & SDHCI_CTRL_VDD_180;
2368 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2369 if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2370 return 0;
2371
2372 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2373 mmc_hostname(mmc));
2374
2375 return -EAGAIN;
2376 }
2377
2378 #define DRIVER_NAME "sdhci_msm"
2379 #define SDHCI_MSM_DUMP(f, x...) \
2380 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2381
sdhci_msm_dump_vendor_regs(struct sdhci_host * host)2382 static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2383 {
2384 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2385 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2386 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2387
2388 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2389
2390 SDHCI_MSM_DUMP(
2391 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n",
2392 readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2393 readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2394 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2395 SDHCI_MSM_DUMP(
2396 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n",
2397 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2398 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2399 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2400 SDHCI_MSM_DUMP(
2401 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2402 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2403 readl_relaxed(host->ioaddr +
2404 msm_offset->core_vendor_spec_func2),
2405 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2406 }
2407
2408 static const struct sdhci_msm_variant_ops mci_var_ops = {
2409 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2410 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2411 };
2412
2413 static const struct sdhci_msm_variant_ops v5_var_ops = {
2414 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2415 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2416 };
2417
2418 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2419 .var_ops = &mci_var_ops,
2420 .offset = &sdhci_msm_mci_offset,
2421 };
2422
2423 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2424 .mci_removed = true,
2425 .var_ops = &v5_var_ops,
2426 .offset = &sdhci_msm_v5_offset,
2427 };
2428
2429 static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2430 .mci_removed = true,
2431 .restore_dll_config = true,
2432 .var_ops = &v5_var_ops,
2433 .offset = &sdhci_msm_v5_offset,
2434 };
2435
2436 static const struct of_device_id sdhci_msm_dt_match[] = {
2437 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2438 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2439 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2440 {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2441 {},
2442 };
2443
2444 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2445
2446 static const struct sdhci_ops sdhci_msm_ops = {
2447 .reset = sdhci_msm_reset,
2448 .set_clock = sdhci_msm_set_clock,
2449 .get_min_clock = sdhci_msm_get_min_clock,
2450 .get_max_clock = sdhci_msm_get_max_clock,
2451 .set_bus_width = sdhci_set_bus_width,
2452 .set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2453 .write_w = sdhci_msm_writew,
2454 .write_b = sdhci_msm_writeb,
2455 .irq = sdhci_msm_cqe_irq,
2456 .dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2457 .set_power = sdhci_set_power_noreg,
2458 .set_timeout = sdhci_msm_set_timeout,
2459 };
2460
2461 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2462 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2463 SDHCI_QUIRK_SINGLE_POWER_WRITE |
2464 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2465 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2466
2467 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2468 .ops = &sdhci_msm_ops,
2469 };
2470
sdhci_msm_get_of_property(struct platform_device * pdev,struct sdhci_host * host)2471 static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2472 struct sdhci_host *host)
2473 {
2474 struct device_node *node = pdev->dev.of_node;
2475 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2476 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2477
2478 if (of_property_read_u32(node, "qcom,ddr-config",
2479 &msm_host->ddr_config))
2480 msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2481
2482 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2483 }
2484
2485
sdhci_msm_probe(struct platform_device * pdev)2486 static int sdhci_msm_probe(struct platform_device *pdev)
2487 {
2488 struct sdhci_host *host;
2489 struct sdhci_pltfm_host *pltfm_host;
2490 struct sdhci_msm_host *msm_host;
2491 struct clk *clk;
2492 int ret;
2493 u16 host_version, core_minor;
2494 u32 core_version, config;
2495 u8 core_major;
2496 const struct sdhci_msm_offset *msm_offset;
2497 const struct sdhci_msm_variant_info *var_info;
2498 struct device_node *node = pdev->dev.of_node;
2499
2500 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2501 if (IS_ERR(host))
2502 return PTR_ERR(host);
2503
2504 host->sdma_boundary = 0;
2505 pltfm_host = sdhci_priv(host);
2506 msm_host = sdhci_pltfm_priv(pltfm_host);
2507 msm_host->mmc = host->mmc;
2508 msm_host->pdev = pdev;
2509
2510 ret = mmc_of_parse(host->mmc);
2511 if (ret)
2512 goto pltfm_free;
2513
2514 /*
2515 * Based on the compatible string, load the required msm host info from
2516 * the data associated with the version info.
2517 */
2518 var_info = of_device_get_match_data(&pdev->dev);
2519
2520 msm_host->mci_removed = var_info->mci_removed;
2521 msm_host->restore_dll_config = var_info->restore_dll_config;
2522 msm_host->var_ops = var_info->var_ops;
2523 msm_host->offset = var_info->offset;
2524
2525 msm_offset = msm_host->offset;
2526
2527 sdhci_get_of_property(pdev);
2528 sdhci_msm_get_of_property(pdev, host);
2529
2530 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2531
2532 /* Setup SDCC bus voter clock. */
2533 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2534 if (!IS_ERR(msm_host->bus_clk)) {
2535 /* Vote for max. clk rate for max. performance */
2536 ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2537 if (ret)
2538 goto pltfm_free;
2539 ret = clk_prepare_enable(msm_host->bus_clk);
2540 if (ret)
2541 goto pltfm_free;
2542 }
2543
2544 /* Setup main peripheral bus clock */
2545 clk = devm_clk_get(&pdev->dev, "iface");
2546 if (IS_ERR(clk)) {
2547 ret = PTR_ERR(clk);
2548 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2549 goto bus_clk_disable;
2550 }
2551 msm_host->bulk_clks[1].clk = clk;
2552
2553 /* Setup SDC MMC clock */
2554 clk = devm_clk_get(&pdev->dev, "core");
2555 if (IS_ERR(clk)) {
2556 ret = PTR_ERR(clk);
2557 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2558 goto bus_clk_disable;
2559 }
2560 msm_host->bulk_clks[0].clk = clk;
2561
2562 /* Check for optional interconnect paths */
2563 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2564 if (ret)
2565 goto bus_clk_disable;
2566
2567 ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2568 if (ret)
2569 goto bus_clk_disable;
2570
2571 /* OPP table is optional */
2572 ret = devm_pm_opp_of_add_table(&pdev->dev);
2573 if (ret && ret != -ENODEV) {
2574 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2575 goto bus_clk_disable;
2576 }
2577
2578 /* Vote for maximum clock rate for maximum performance */
2579 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2580 if (ret)
2581 dev_warn(&pdev->dev, "core clock boost failed\n");
2582
2583 clk = devm_clk_get(&pdev->dev, "cal");
2584 if (IS_ERR(clk))
2585 clk = NULL;
2586 msm_host->bulk_clks[2].clk = clk;
2587
2588 clk = devm_clk_get(&pdev->dev, "sleep");
2589 if (IS_ERR(clk))
2590 clk = NULL;
2591 msm_host->bulk_clks[3].clk = clk;
2592
2593 clk = sdhci_msm_ice_get_clk(&pdev->dev);
2594 if (IS_ERR(clk))
2595 clk = NULL;
2596 msm_host->bulk_clks[4].clk = clk;
2597
2598 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2599 msm_host->bulk_clks);
2600 if (ret)
2601 goto bus_clk_disable;
2602
2603 /*
2604 * xo clock is needed for FLL feature of cm_dll.
2605 * In case if xo clock is not mentioned in DT, warn and proceed.
2606 */
2607 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2608 if (IS_ERR(msm_host->xo_clk)) {
2609 ret = PTR_ERR(msm_host->xo_clk);
2610 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2611 }
2612
2613 if (!msm_host->mci_removed) {
2614 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2615 if (IS_ERR(msm_host->core_mem)) {
2616 ret = PTR_ERR(msm_host->core_mem);
2617 goto clk_disable;
2618 }
2619 }
2620
2621 /* Reset the vendor spec register to power on reset state */
2622 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2623 host->ioaddr + msm_offset->core_vendor_spec);
2624
2625 if (!msm_host->mci_removed) {
2626 /* Set HC_MODE_EN bit in HC_MODE register */
2627 msm_host_writel(msm_host, HC_MODE_EN, host,
2628 msm_offset->core_hc_mode);
2629 config = msm_host_readl(msm_host, host,
2630 msm_offset->core_hc_mode);
2631 config |= FF_CLK_SW_RST_DIS;
2632 msm_host_writel(msm_host, config, host,
2633 msm_offset->core_hc_mode);
2634 }
2635
2636 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2637 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2638 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2639 SDHCI_VENDOR_VER_SHIFT));
2640
2641 core_version = msm_host_readl(msm_host, host,
2642 msm_offset->core_mci_version);
2643 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2644 CORE_VERSION_MAJOR_SHIFT;
2645 core_minor = core_version & CORE_VERSION_MINOR_MASK;
2646 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2647 core_version, core_major, core_minor);
2648
2649 if (core_major == 1 && core_minor >= 0x42)
2650 msm_host->use_14lpp_dll_reset = true;
2651
2652 /*
2653 * SDCC 5 controller with major version 1, minor version 0x34 and later
2654 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2655 */
2656 if (core_major == 1 && core_minor < 0x34)
2657 msm_host->use_cdclp533 = true;
2658
2659 /*
2660 * Support for some capabilities is not advertised by newer
2661 * controller versions and must be explicitly enabled.
2662 */
2663 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2664 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2665 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2666 writel_relaxed(config, host->ioaddr +
2667 msm_offset->core_vendor_spec_capabilities0);
2668 }
2669
2670 if (core_major == 1 && core_minor >= 0x49)
2671 msm_host->updated_ddr_cfg = true;
2672
2673 if (core_major == 1 && core_minor >= 0x71)
2674 msm_host->uses_tassadar_dll = true;
2675
2676 ret = sdhci_msm_register_vreg(msm_host);
2677 if (ret)
2678 goto clk_disable;
2679
2680 /*
2681 * Power on reset state may trigger power irq if previous status of
2682 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2683 * interrupt in GIC, any pending power irq interrupt should be
2684 * acknowledged. Otherwise power irq interrupt handler would be
2685 * fired prematurely.
2686 */
2687 sdhci_msm_handle_pwr_irq(host, 0);
2688
2689 /*
2690 * Ensure that above writes are propogated before interrupt enablement
2691 * in GIC.
2692 */
2693 mb();
2694
2695 /* Setup IRQ for handling power/voltage tasks with PMIC */
2696 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2697 if (msm_host->pwr_irq < 0) {
2698 ret = msm_host->pwr_irq;
2699 goto clk_disable;
2700 }
2701
2702 sdhci_msm_init_pwr_irq_wait(msm_host);
2703 /* Enable pwr irq interrupts */
2704 msm_host_writel(msm_host, INT_MASK, host,
2705 msm_offset->core_pwrctl_mask);
2706
2707 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2708 sdhci_msm_pwr_irq, IRQF_ONESHOT,
2709 dev_name(&pdev->dev), host);
2710 if (ret) {
2711 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2712 goto clk_disable;
2713 }
2714
2715 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2716
2717 /* Set the timeout value to max possible */
2718 host->max_timeout_count = 0xF;
2719
2720 pm_runtime_get_noresume(&pdev->dev);
2721 pm_runtime_set_active(&pdev->dev);
2722 pm_runtime_enable(&pdev->dev);
2723 pm_runtime_set_autosuspend_delay(&pdev->dev,
2724 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2725 pm_runtime_use_autosuspend(&pdev->dev);
2726
2727 host->mmc_host_ops.start_signal_voltage_switch =
2728 sdhci_msm_start_signal_voltage_switch;
2729 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2730 if (of_property_read_bool(node, "supports-cqe"))
2731 ret = sdhci_msm_cqe_add_host(host, pdev);
2732 else
2733 ret = sdhci_add_host(host);
2734 if (ret)
2735 goto pm_runtime_disable;
2736
2737 pm_runtime_mark_last_busy(&pdev->dev);
2738 pm_runtime_put_autosuspend(&pdev->dev);
2739
2740 return 0;
2741
2742 pm_runtime_disable:
2743 pm_runtime_disable(&pdev->dev);
2744 pm_runtime_set_suspended(&pdev->dev);
2745 pm_runtime_put_noidle(&pdev->dev);
2746 clk_disable:
2747 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2748 msm_host->bulk_clks);
2749 bus_clk_disable:
2750 if (!IS_ERR(msm_host->bus_clk))
2751 clk_disable_unprepare(msm_host->bus_clk);
2752 pltfm_free:
2753 sdhci_pltfm_free(pdev);
2754 return ret;
2755 }
2756
sdhci_msm_remove(struct platform_device * pdev)2757 static int sdhci_msm_remove(struct platform_device *pdev)
2758 {
2759 struct sdhci_host *host = platform_get_drvdata(pdev);
2760 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2761 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2762 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2763 0xffffffff);
2764
2765 sdhci_remove_host(host, dead);
2766
2767 pm_runtime_get_sync(&pdev->dev);
2768 pm_runtime_disable(&pdev->dev);
2769 pm_runtime_put_noidle(&pdev->dev);
2770
2771 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2772 msm_host->bulk_clks);
2773 if (!IS_ERR(msm_host->bus_clk))
2774 clk_disable_unprepare(msm_host->bus_clk);
2775 sdhci_pltfm_free(pdev);
2776 return 0;
2777 }
2778
sdhci_msm_runtime_suspend(struct device * dev)2779 static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2780 {
2781 struct sdhci_host *host = dev_get_drvdata(dev);
2782 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2783 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2784
2785 /* Drop the performance vote */
2786 dev_pm_opp_set_rate(dev, 0);
2787 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2788 msm_host->bulk_clks);
2789
2790 return 0;
2791 }
2792
sdhci_msm_runtime_resume(struct device * dev)2793 static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2794 {
2795 struct sdhci_host *host = dev_get_drvdata(dev);
2796 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2797 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2798 int ret;
2799
2800 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2801 msm_host->bulk_clks);
2802 if (ret)
2803 return ret;
2804 /*
2805 * Whenever core-clock is gated dynamically, it's needed to
2806 * restore the SDR DLL settings when the clock is ungated.
2807 */
2808 if (msm_host->restore_dll_config && msm_host->clk_rate) {
2809 ret = sdhci_msm_restore_sdr_dll_config(host);
2810 if (ret)
2811 return ret;
2812 }
2813
2814 dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2815
2816 return sdhci_msm_ice_resume(msm_host);
2817 }
2818
2819 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2820 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2821 pm_runtime_force_resume)
2822 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2823 sdhci_msm_runtime_resume,
2824 NULL)
2825 };
2826
2827 static struct platform_driver sdhci_msm_driver = {
2828 .probe = sdhci_msm_probe,
2829 .remove = sdhci_msm_remove,
2830 .driver = {
2831 .name = "sdhci_msm",
2832 .of_match_table = sdhci_msm_dt_match,
2833 .pm = &sdhci_msm_pm_ops,
2834 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2835 },
2836 };
2837
2838 module_platform_driver(sdhci_msm_driver);
2839
2840 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2841 MODULE_LICENSE("GPL v2");
2842