1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
4 *
5 * Largely derived from at91_dataflash.c:
6 * Copyright (C) 2003-2005 SAN People (Pty) Ltd
7 */
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/math64.h>
15 #include <linux/of.h>
16 #include <linux/of_device.h>
17
18 #include <linux/spi/spi.h>
19 #include <linux/spi/flash.h>
20
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/partitions.h>
23
24 /*
25 * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
26 * each chip, which may be used for double buffered I/O; but this driver
27 * doesn't (yet) use these for any kind of i/o overlap or prefetching.
28 *
29 * Sometimes DataFlash is packaged in MMC-format cards, although the
30 * MMC stack can't (yet?) distinguish between MMC and DataFlash
31 * protocols during enumeration.
32 */
33
34 /* reads can bypass the buffers */
35 #define OP_READ_CONTINUOUS 0xE8
36 #define OP_READ_PAGE 0xD2
37
38 /* group B requests can run even while status reports "busy" */
39 #define OP_READ_STATUS 0xD7 /* group B */
40
41 /* move data between host and buffer */
42 #define OP_READ_BUFFER1 0xD4 /* group B */
43 #define OP_READ_BUFFER2 0xD6 /* group B */
44 #define OP_WRITE_BUFFER1 0x84 /* group B */
45 #define OP_WRITE_BUFFER2 0x87 /* group B */
46
47 /* erasing flash */
48 #define OP_ERASE_PAGE 0x81
49 #define OP_ERASE_BLOCK 0x50
50
51 /* move data between buffer and flash */
52 #define OP_TRANSFER_BUF1 0x53
53 #define OP_TRANSFER_BUF2 0x55
54 #define OP_MREAD_BUFFER1 0xD4
55 #define OP_MREAD_BUFFER2 0xD6
56 #define OP_MWERASE_BUFFER1 0x83
57 #define OP_MWERASE_BUFFER2 0x86
58 #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
59 #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
60
61 /* write to buffer, then write-erase to flash */
62 #define OP_PROGRAM_VIA_BUF1 0x82
63 #define OP_PROGRAM_VIA_BUF2 0x85
64
65 /* compare buffer to flash */
66 #define OP_COMPARE_BUF1 0x60
67 #define OP_COMPARE_BUF2 0x61
68
69 /* read flash to buffer, then write-erase to flash */
70 #define OP_REWRITE_VIA_BUF1 0x58
71 #define OP_REWRITE_VIA_BUF2 0x59
72
73 /* newer chips report JEDEC manufacturer and device IDs; chip
74 * serial number and OTP bits; and per-sector writeprotect.
75 */
76 #define OP_READ_ID 0x9F
77 #define OP_READ_SECURITY 0x77
78 #define OP_WRITE_SECURITY_REVC 0x9A
79 #define OP_WRITE_SECURITY 0x9B /* revision D */
80
81 #define CFI_MFR_ATMEL 0x1F
82
83 #define DATAFLASH_SHIFT_EXTID 24
84 #define DATAFLASH_SHIFT_ID 40
85
86 struct dataflash {
87 u8 command[4];
88 char name[24];
89
90 unsigned short page_offset; /* offset in flash address */
91 unsigned int page_size; /* of bytes per page */
92
93 struct mutex lock;
94 struct spi_device *spi;
95
96 struct mtd_info mtd;
97 };
98
99 static const struct spi_device_id dataflash_dev_ids[] = {
100 { "at45" },
101 { "dataflash" },
102 { },
103 };
104 MODULE_DEVICE_TABLE(spi, dataflash_dev_ids);
105
106 #ifdef CONFIG_OF
107 static const struct of_device_id dataflash_dt_ids[] = {
108 { .compatible = "atmel,at45", },
109 { .compatible = "atmel,dataflash", },
110 { /* sentinel */ }
111 };
112 MODULE_DEVICE_TABLE(of, dataflash_dt_ids);
113 #endif
114
115 /* ......................................................................... */
116
117 /*
118 * Return the status of the DataFlash device.
119 */
dataflash_status(struct spi_device * spi)120 static inline int dataflash_status(struct spi_device *spi)
121 {
122 /* NOTE: at45db321c over 25 MHz wants to write
123 * a dummy byte after the opcode...
124 */
125 return spi_w8r8(spi, OP_READ_STATUS);
126 }
127
128 /*
129 * Poll the DataFlash device until it is READY.
130 * This usually takes 5-20 msec or so; more for sector erase.
131 */
dataflash_waitready(struct spi_device * spi)132 static int dataflash_waitready(struct spi_device *spi)
133 {
134 int status;
135
136 for (;;) {
137 status = dataflash_status(spi);
138 if (status < 0) {
139 dev_dbg(&spi->dev, "status %d?\n", status);
140 status = 0;
141 }
142
143 if (status & (1 << 7)) /* RDY/nBSY */
144 return status;
145
146 usleep_range(3000, 4000);
147 }
148 }
149
150 /* ......................................................................... */
151
152 /*
153 * Erase pages of flash.
154 */
dataflash_erase(struct mtd_info * mtd,struct erase_info * instr)155 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
156 {
157 struct dataflash *priv = mtd->priv;
158 struct spi_device *spi = priv->spi;
159 struct spi_transfer x = { };
160 struct spi_message msg;
161 unsigned blocksize = priv->page_size << 3;
162 u8 *command;
163 u32 rem;
164
165 dev_dbg(&spi->dev, "erase addr=0x%llx len 0x%llx\n",
166 (long long)instr->addr, (long long)instr->len);
167
168 div_u64_rem(instr->len, priv->page_size, &rem);
169 if (rem)
170 return -EINVAL;
171 div_u64_rem(instr->addr, priv->page_size, &rem);
172 if (rem)
173 return -EINVAL;
174
175 spi_message_init(&msg);
176
177 x.tx_buf = command = priv->command;
178 x.len = 4;
179 spi_message_add_tail(&x, &msg);
180
181 mutex_lock(&priv->lock);
182 while (instr->len > 0) {
183 unsigned int pageaddr;
184 int status;
185 int do_block;
186
187 /* Calculate flash page address; use block erase (for speed) if
188 * we're at a block boundary and need to erase the whole block.
189 */
190 pageaddr = div_u64(instr->addr, priv->page_size);
191 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
192 pageaddr = pageaddr << priv->page_offset;
193
194 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
195 command[1] = (u8)(pageaddr >> 16);
196 command[2] = (u8)(pageaddr >> 8);
197 command[3] = 0;
198
199 dev_dbg(&spi->dev, "ERASE %s: (%x) %x %x %x [%i]\n",
200 do_block ? "block" : "page",
201 command[0], command[1], command[2], command[3],
202 pageaddr);
203
204 status = spi_sync(spi, &msg);
205 (void) dataflash_waitready(spi);
206
207 if (status < 0) {
208 dev_err(&spi->dev, "erase %x, err %d\n",
209 pageaddr, status);
210 /* REVISIT: can retry instr->retries times; or
211 * giveup and instr->fail_addr = instr->addr;
212 */
213 continue;
214 }
215
216 if (do_block) {
217 instr->addr += blocksize;
218 instr->len -= blocksize;
219 } else {
220 instr->addr += priv->page_size;
221 instr->len -= priv->page_size;
222 }
223 }
224 mutex_unlock(&priv->lock);
225
226 return 0;
227 }
228
229 /*
230 * Read from the DataFlash device.
231 * from : Start offset in flash device
232 * len : Amount to read
233 * retlen : About of data actually read
234 * buf : Buffer containing the data
235 */
dataflash_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)236 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
237 size_t *retlen, u_char *buf)
238 {
239 struct dataflash *priv = mtd->priv;
240 struct spi_transfer x[2] = { };
241 struct spi_message msg;
242 unsigned int addr;
243 u8 *command;
244 int status;
245
246 dev_dbg(&priv->spi->dev, "read 0x%x..0x%x\n",
247 (unsigned int)from, (unsigned int)(from + len));
248
249 /* Calculate flash page/byte address */
250 addr = (((unsigned)from / priv->page_size) << priv->page_offset)
251 + ((unsigned)from % priv->page_size);
252
253 command = priv->command;
254
255 dev_dbg(&priv->spi->dev, "READ: (%x) %x %x %x\n",
256 command[0], command[1], command[2], command[3]);
257
258 spi_message_init(&msg);
259
260 x[0].tx_buf = command;
261 x[0].len = 8;
262 spi_message_add_tail(&x[0], &msg);
263
264 x[1].rx_buf = buf;
265 x[1].len = len;
266 spi_message_add_tail(&x[1], &msg);
267
268 mutex_lock(&priv->lock);
269
270 /* Continuous read, max clock = f(car) which may be less than
271 * the peak rate available. Some chips support commands with
272 * fewer "don't care" bytes. Both buffers stay unchanged.
273 */
274 command[0] = OP_READ_CONTINUOUS;
275 command[1] = (u8)(addr >> 16);
276 command[2] = (u8)(addr >> 8);
277 command[3] = (u8)(addr >> 0);
278 /* plus 4 "don't care" bytes */
279
280 status = spi_sync(priv->spi, &msg);
281 mutex_unlock(&priv->lock);
282
283 if (status >= 0) {
284 *retlen = msg.actual_length - 8;
285 status = 0;
286 } else
287 dev_dbg(&priv->spi->dev, "read %x..%x --> %d\n",
288 (unsigned)from, (unsigned)(from + len),
289 status);
290 return status;
291 }
292
293 /*
294 * Write to the DataFlash device.
295 * to : Start offset in flash device
296 * len : Amount to write
297 * retlen : Amount of data actually written
298 * buf : Buffer containing the data
299 */
dataflash_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)300 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
301 size_t * retlen, const u_char * buf)
302 {
303 struct dataflash *priv = mtd->priv;
304 struct spi_device *spi = priv->spi;
305 struct spi_transfer x[2] = { };
306 struct spi_message msg;
307 unsigned int pageaddr, addr, offset, writelen;
308 size_t remaining = len;
309 u_char *writebuf = (u_char *) buf;
310 int status = -EINVAL;
311 u8 *command;
312
313 dev_dbg(&spi->dev, "write 0x%x..0x%x\n",
314 (unsigned int)to, (unsigned int)(to + len));
315
316 spi_message_init(&msg);
317
318 x[0].tx_buf = command = priv->command;
319 x[0].len = 4;
320 spi_message_add_tail(&x[0], &msg);
321
322 pageaddr = ((unsigned)to / priv->page_size);
323 offset = ((unsigned)to % priv->page_size);
324 if (offset + len > priv->page_size)
325 writelen = priv->page_size - offset;
326 else
327 writelen = len;
328
329 mutex_lock(&priv->lock);
330 while (remaining > 0) {
331 dev_dbg(&spi->dev, "write @ %i:%i len=%i\n",
332 pageaddr, offset, writelen);
333
334 /* REVISIT:
335 * (a) each page in a sector must be rewritten at least
336 * once every 10K sibling erase/program operations.
337 * (b) for pages that are already erased, we could
338 * use WRITE+MWRITE not PROGRAM for ~30% speedup.
339 * (c) WRITE to buffer could be done while waiting for
340 * a previous MWRITE/MWERASE to complete ...
341 * (d) error handling here seems to be mostly missing.
342 *
343 * Two persistent bits per page, plus a per-sector counter,
344 * could support (a) and (b) ... we might consider using
345 * the second half of sector zero, which is just one block,
346 * to track that state. (On AT91, that sector should also
347 * support boot-from-DataFlash.)
348 */
349
350 addr = pageaddr << priv->page_offset;
351
352 /* (1) Maybe transfer partial page to Buffer1 */
353 if (writelen != priv->page_size) {
354 command[0] = OP_TRANSFER_BUF1;
355 command[1] = (addr & 0x00FF0000) >> 16;
356 command[2] = (addr & 0x0000FF00) >> 8;
357 command[3] = 0;
358
359 dev_dbg(&spi->dev, "TRANSFER: (%x) %x %x %x\n",
360 command[0], command[1], command[2], command[3]);
361
362 status = spi_sync(spi, &msg);
363 if (status < 0)
364 dev_dbg(&spi->dev, "xfer %u -> %d\n",
365 addr, status);
366
367 (void) dataflash_waitready(priv->spi);
368 }
369
370 /* (2) Program full page via Buffer1 */
371 addr += offset;
372 command[0] = OP_PROGRAM_VIA_BUF1;
373 command[1] = (addr & 0x00FF0000) >> 16;
374 command[2] = (addr & 0x0000FF00) >> 8;
375 command[3] = (addr & 0x000000FF);
376
377 dev_dbg(&spi->dev, "PROGRAM: (%x) %x %x %x\n",
378 command[0], command[1], command[2], command[3]);
379
380 x[1].tx_buf = writebuf;
381 x[1].len = writelen;
382 spi_message_add_tail(x + 1, &msg);
383 status = spi_sync(spi, &msg);
384 spi_transfer_del(x + 1);
385 if (status < 0)
386 dev_dbg(&spi->dev, "pgm %u/%u -> %d\n",
387 addr, writelen, status);
388
389 (void) dataflash_waitready(priv->spi);
390
391
392 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
393
394 /* (3) Compare to Buffer1 */
395 addr = pageaddr << priv->page_offset;
396 command[0] = OP_COMPARE_BUF1;
397 command[1] = (addr & 0x00FF0000) >> 16;
398 command[2] = (addr & 0x0000FF00) >> 8;
399 command[3] = 0;
400
401 dev_dbg(&spi->dev, "COMPARE: (%x) %x %x %x\n",
402 command[0], command[1], command[2], command[3]);
403
404 status = spi_sync(spi, &msg);
405 if (status < 0)
406 dev_dbg(&spi->dev, "compare %u -> %d\n",
407 addr, status);
408
409 status = dataflash_waitready(priv->spi);
410
411 /* Check result of the compare operation */
412 if (status & (1 << 6)) {
413 dev_err(&spi->dev, "compare page %u, err %d\n",
414 pageaddr, status);
415 remaining = 0;
416 status = -EIO;
417 break;
418 } else
419 status = 0;
420
421 #endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
422
423 remaining = remaining - writelen;
424 pageaddr++;
425 offset = 0;
426 writebuf += writelen;
427 *retlen += writelen;
428
429 if (remaining > priv->page_size)
430 writelen = priv->page_size;
431 else
432 writelen = remaining;
433 }
434 mutex_unlock(&priv->lock);
435
436 return status;
437 }
438
439 /* ......................................................................... */
440
441 #ifdef CONFIG_MTD_DATAFLASH_OTP
442
dataflash_get_otp_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * info)443 static int dataflash_get_otp_info(struct mtd_info *mtd, size_t len,
444 size_t *retlen, struct otp_info *info)
445 {
446 /* Report both blocks as identical: bytes 0..64, locked.
447 * Unless the user block changed from all-ones, we can't
448 * tell whether it's still writable; so we assume it isn't.
449 */
450 info->start = 0;
451 info->length = 64;
452 info->locked = 1;
453 *retlen = sizeof(*info);
454 return 0;
455 }
456
otp_read(struct spi_device * spi,unsigned base,u8 * buf,loff_t off,size_t len)457 static ssize_t otp_read(struct spi_device *spi, unsigned base,
458 u8 *buf, loff_t off, size_t len)
459 {
460 struct spi_message m;
461 size_t l;
462 u8 *scratch;
463 struct spi_transfer t;
464 int status;
465
466 if (off > 64)
467 return -EINVAL;
468
469 if ((off + len) > 64)
470 len = 64 - off;
471
472 spi_message_init(&m);
473
474 l = 4 + base + off + len;
475 scratch = kzalloc(l, GFP_KERNEL);
476 if (!scratch)
477 return -ENOMEM;
478
479 /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
480 * IN: ignore 4 bytes, data bytes 0..N (max 127)
481 */
482 scratch[0] = OP_READ_SECURITY;
483
484 memset(&t, 0, sizeof t);
485 t.tx_buf = scratch;
486 t.rx_buf = scratch;
487 t.len = l;
488 spi_message_add_tail(&t, &m);
489
490 dataflash_waitready(spi);
491
492 status = spi_sync(spi, &m);
493 if (status >= 0) {
494 memcpy(buf, scratch + 4 + base + off, len);
495 status = len;
496 }
497
498 kfree(scratch);
499 return status;
500 }
501
dataflash_read_fact_otp(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)502 static int dataflash_read_fact_otp(struct mtd_info *mtd,
503 loff_t from, size_t len, size_t *retlen, u_char *buf)
504 {
505 struct dataflash *priv = mtd->priv;
506 int status;
507
508 /* 64 bytes, from 0..63 ... start at 64 on-chip */
509 mutex_lock(&priv->lock);
510 status = otp_read(priv->spi, 64, buf, from, len);
511 mutex_unlock(&priv->lock);
512
513 if (status < 0)
514 return status;
515 *retlen = status;
516 return 0;
517 }
518
dataflash_read_user_otp(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)519 static int dataflash_read_user_otp(struct mtd_info *mtd,
520 loff_t from, size_t len, size_t *retlen, u_char *buf)
521 {
522 struct dataflash *priv = mtd->priv;
523 int status;
524
525 /* 64 bytes, from 0..63 ... start at 0 on-chip */
526 mutex_lock(&priv->lock);
527 status = otp_read(priv->spi, 0, buf, from, len);
528 mutex_unlock(&priv->lock);
529
530 if (status < 0)
531 return status;
532 *retlen = status;
533 return 0;
534 }
535
dataflash_write_user_otp(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,const u_char * buf)536 static int dataflash_write_user_otp(struct mtd_info *mtd,
537 loff_t from, size_t len, size_t *retlen, const u_char *buf)
538 {
539 struct spi_message m;
540 const size_t l = 4 + 64;
541 u8 *scratch;
542 struct spi_transfer t;
543 struct dataflash *priv = mtd->priv;
544 int status;
545
546 if (from >= 64) {
547 /*
548 * Attempting to write beyond the end of OTP memory,
549 * no data can be written.
550 */
551 *retlen = 0;
552 return 0;
553 }
554
555 /* Truncate the write to fit into OTP memory. */
556 if ((from + len) > 64)
557 len = 64 - from;
558
559 /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
560 * IN: ignore all
561 */
562 scratch = kzalloc(l, GFP_KERNEL);
563 if (!scratch)
564 return -ENOMEM;
565 scratch[0] = OP_WRITE_SECURITY;
566 memcpy(scratch + 4 + from, buf, len);
567
568 spi_message_init(&m);
569
570 memset(&t, 0, sizeof t);
571 t.tx_buf = scratch;
572 t.len = l;
573 spi_message_add_tail(&t, &m);
574
575 /* Write the OTP bits, if they've not yet been written.
576 * This modifies SRAM buffer1.
577 */
578 mutex_lock(&priv->lock);
579 dataflash_waitready(priv->spi);
580 status = spi_sync(priv->spi, &m);
581 mutex_unlock(&priv->lock);
582
583 kfree(scratch);
584
585 if (status >= 0) {
586 status = 0;
587 *retlen = len;
588 }
589 return status;
590 }
591
otp_setup(struct mtd_info * device,char revision)592 static char *otp_setup(struct mtd_info *device, char revision)
593 {
594 device->_get_fact_prot_info = dataflash_get_otp_info;
595 device->_read_fact_prot_reg = dataflash_read_fact_otp;
596 device->_get_user_prot_info = dataflash_get_otp_info;
597 device->_read_user_prot_reg = dataflash_read_user_otp;
598
599 /* rev c parts (at45db321c and at45db1281 only!) use a
600 * different write procedure; not (yet?) implemented.
601 */
602 if (revision > 'c')
603 device->_write_user_prot_reg = dataflash_write_user_otp;
604
605 return ", OTP";
606 }
607
608 #else
609
otp_setup(struct mtd_info * device,char revision)610 static char *otp_setup(struct mtd_info *device, char revision)
611 {
612 return " (OTP)";
613 }
614
615 #endif
616
617 /* ......................................................................... */
618
619 /*
620 * Register DataFlash device with MTD subsystem.
621 */
add_dataflash_otp(struct spi_device * spi,char * name,int nr_pages,int pagesize,int pageoffset,char revision)622 static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages,
623 int pagesize, int pageoffset, char revision)
624 {
625 struct dataflash *priv;
626 struct mtd_info *device;
627 struct flash_platform_data *pdata = dev_get_platdata(&spi->dev);
628 char *otp_tag = "";
629 int err = 0;
630
631 priv = kzalloc(sizeof *priv, GFP_KERNEL);
632 if (!priv)
633 return -ENOMEM;
634
635 mutex_init(&priv->lock);
636 priv->spi = spi;
637 priv->page_size = pagesize;
638 priv->page_offset = pageoffset;
639
640 /* name must be usable with cmdlinepart */
641 sprintf(priv->name, "spi%d.%d-%s",
642 spi->master->bus_num, spi->chip_select,
643 name);
644
645 device = &priv->mtd;
646 device->name = (pdata && pdata->name) ? pdata->name : priv->name;
647 device->size = nr_pages * pagesize;
648 device->erasesize = pagesize;
649 device->writesize = pagesize;
650 device->type = MTD_DATAFLASH;
651 device->flags = MTD_WRITEABLE;
652 device->_erase = dataflash_erase;
653 device->_read = dataflash_read;
654 device->_write = dataflash_write;
655 device->priv = priv;
656
657 device->dev.parent = &spi->dev;
658 mtd_set_of_node(device, spi->dev.of_node);
659
660 if (revision >= 'c')
661 otp_tag = otp_setup(device, revision);
662
663 dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
664 name, (long long)((device->size + 1023) >> 10),
665 pagesize, otp_tag);
666 spi_set_drvdata(spi, priv);
667
668 err = mtd_device_register(device,
669 pdata ? pdata->parts : NULL,
670 pdata ? pdata->nr_parts : 0);
671
672 if (!err)
673 return 0;
674
675 kfree(priv);
676 return err;
677 }
678
add_dataflash(struct spi_device * spi,char * name,int nr_pages,int pagesize,int pageoffset)679 static inline int add_dataflash(struct spi_device *spi, char *name,
680 int nr_pages, int pagesize, int pageoffset)
681 {
682 return add_dataflash_otp(spi, name, nr_pages, pagesize,
683 pageoffset, 0);
684 }
685
686 struct flash_info {
687 char *name;
688
689 /* JEDEC id has a high byte of zero plus three data bytes:
690 * the manufacturer id, then a two byte device id.
691 */
692 u64 jedec_id;
693
694 /* The size listed here is what works with OP_ERASE_PAGE. */
695 unsigned nr_pages;
696 u16 pagesize;
697 u16 pageoffset;
698
699 u16 flags;
700 #define SUP_EXTID 0x0004 /* supports extended ID data */
701 #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
702 #define IS_POW2PS 0x0001 /* uses 2^N byte pages */
703 };
704
705 static struct flash_info dataflash_data[] = {
706
707 /*
708 * NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
709 * one with IS_POW2PS and the other without. The entry with the
710 * non-2^N byte page size can't name exact chip revisions without
711 * losing backwards compatibility for cmdlinepart.
712 *
713 * These newer chips also support 128-byte security registers (with
714 * 64 bytes one-time-programmable) and software write-protection.
715 */
716 { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
717 { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
718
719 { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
720 { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
721
722 { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
723 { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
724
725 { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
726 { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
727
728 { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
729 { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
730
731 { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
732
733 { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
734 { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
735
736 { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
737 { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
738
739 { "AT45DB641E", 0x1f28000100ULL, 32768, 264, 9, SUP_EXTID | SUP_POW2PS},
740 { "at45db641e", 0x1f28000100ULL, 32768, 256, 8, SUP_EXTID | SUP_POW2PS | IS_POW2PS},
741 };
742
jedec_lookup(struct spi_device * spi,u64 jedec,bool use_extid)743 static struct flash_info *jedec_lookup(struct spi_device *spi,
744 u64 jedec, bool use_extid)
745 {
746 struct flash_info *info;
747 int status;
748
749 for (info = dataflash_data;
750 info < dataflash_data + ARRAY_SIZE(dataflash_data);
751 info++) {
752 if (use_extid && !(info->flags & SUP_EXTID))
753 continue;
754
755 if (info->jedec_id == jedec) {
756 dev_dbg(&spi->dev, "OTP, sector protect%s\n",
757 (info->flags & SUP_POW2PS) ?
758 ", binary pagesize" : "");
759 if (info->flags & SUP_POW2PS) {
760 status = dataflash_status(spi);
761 if (status < 0) {
762 dev_dbg(&spi->dev, "status error %d\n",
763 status);
764 return ERR_PTR(status);
765 }
766 if (status & 0x1) {
767 if (info->flags & IS_POW2PS)
768 return info;
769 } else {
770 if (!(info->flags & IS_POW2PS))
771 return info;
772 }
773 } else
774 return info;
775 }
776 }
777
778 return ERR_PTR(-ENODEV);
779 }
780
jedec_probe(struct spi_device * spi)781 static struct flash_info *jedec_probe(struct spi_device *spi)
782 {
783 int ret;
784 u8 code = OP_READ_ID;
785 u64 jedec;
786 u8 id[sizeof(jedec)] = {0};
787 const unsigned int id_size = 5;
788 struct flash_info *info;
789
790 /*
791 * JEDEC also defines an optional "extended device information"
792 * string for after vendor-specific data, after the three bytes
793 * we use here. Supporting some chips might require using it.
794 *
795 * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
796 * That's not an error; only rev C and newer chips handle it, and
797 * only Atmel sells these chips.
798 */
799 ret = spi_write_then_read(spi, &code, 1, id, id_size);
800 if (ret < 0) {
801 dev_dbg(&spi->dev, "error %d reading JEDEC ID\n", ret);
802 return ERR_PTR(ret);
803 }
804
805 if (id[0] != CFI_MFR_ATMEL)
806 return NULL;
807
808 jedec = be64_to_cpup((__be64 *)id);
809
810 /*
811 * First, try to match device using extended device
812 * information
813 */
814 info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_EXTID, true);
815 if (!IS_ERR(info))
816 return info;
817 /*
818 * If that fails, make another pass using regular ID
819 * information
820 */
821 info = jedec_lookup(spi, jedec >> DATAFLASH_SHIFT_ID, false);
822 if (!IS_ERR(info))
823 return info;
824 /*
825 * Treat other chips as errors ... we won't know the right page
826 * size (it might be binary) even when we can tell which density
827 * class is involved (legacy chip id scheme).
828 */
829 dev_warn(&spi->dev, "JEDEC id %016llx not handled\n", jedec);
830 return ERR_PTR(-ENODEV);
831 }
832
833 /*
834 * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
835 * or else the ID code embedded in the status bits:
836 *
837 * Device Density ID code #Pages PageSize Offset
838 * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
839 * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
840 * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
841 * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
842 * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
843 * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
844 * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
845 * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
846 */
dataflash_probe(struct spi_device * spi)847 static int dataflash_probe(struct spi_device *spi)
848 {
849 int status;
850 struct flash_info *info;
851
852 /*
853 * Try to detect dataflash by JEDEC ID.
854 * If it succeeds we know we have either a C or D part.
855 * D will support power of 2 pagesize option.
856 * Both support the security register, though with different
857 * write procedures.
858 */
859 info = jedec_probe(spi);
860 if (IS_ERR(info))
861 return PTR_ERR(info);
862 if (info != NULL)
863 return add_dataflash_otp(spi, info->name, info->nr_pages,
864 info->pagesize, info->pageoffset,
865 (info->flags & SUP_POW2PS) ? 'd' : 'c');
866
867 /*
868 * Older chips support only legacy commands, identifing
869 * capacity using bits in the status byte.
870 */
871 status = dataflash_status(spi);
872 if (status <= 0 || status == 0xff) {
873 dev_dbg(&spi->dev, "status error %d\n", status);
874 if (status == 0 || status == 0xff)
875 status = -ENODEV;
876 return status;
877 }
878
879 /* if there's a device there, assume it's dataflash.
880 * board setup should have set spi->max_speed_max to
881 * match f(car) for continuous reads, mode 0 or 3.
882 */
883 switch (status & 0x3c) {
884 case 0x0c: /* 0 0 1 1 x x */
885 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
886 break;
887 case 0x14: /* 0 1 0 1 x x */
888 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
889 break;
890 case 0x1c: /* 0 1 1 1 x x */
891 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
892 break;
893 case 0x24: /* 1 0 0 1 x x */
894 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
895 break;
896 case 0x2c: /* 1 0 1 1 x x */
897 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
898 break;
899 case 0x34: /* 1 1 0 1 x x */
900 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
901 break;
902 case 0x38: /* 1 1 1 x x x */
903 case 0x3c:
904 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
905 break;
906 /* obsolete AT45DB1282 not (yet?) supported */
907 default:
908 dev_info(&spi->dev, "unsupported device (%x)\n",
909 status & 0x3c);
910 status = -ENODEV;
911 }
912
913 if (status < 0)
914 dev_dbg(&spi->dev, "add_dataflash --> %d\n", status);
915
916 return status;
917 }
918
dataflash_remove(struct spi_device * spi)919 static int dataflash_remove(struct spi_device *spi)
920 {
921 struct dataflash *flash = spi_get_drvdata(spi);
922 int status;
923
924 dev_dbg(&spi->dev, "remove\n");
925
926 status = mtd_device_unregister(&flash->mtd);
927 if (status == 0)
928 kfree(flash);
929 return status;
930 }
931
932 static struct spi_driver dataflash_driver = {
933 .driver = {
934 .name = "mtd_dataflash",
935 .of_match_table = of_match_ptr(dataflash_dt_ids),
936 },
937 .id_table = dataflash_dev_ids,
938
939 .probe = dataflash_probe,
940 .remove = dataflash_remove,
941
942 /* FIXME: investigate suspend and resume... */
943 };
944
945 module_spi_driver(dataflash_driver);
946
947 MODULE_LICENSE("GPL");
948 MODULE_AUTHOR("Andrew Victor, David Brownell");
949 MODULE_DESCRIPTION("MTD DataFlash driver");
950 MODULE_ALIAS("spi:mtd_dataflash");
951