1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Arasan NAND Flash Controller Driver
4 *
5 * Copyright (C) 2014 - 2020 Xilinx, Inc.
6 * Author:
7 * Miquel Raynal <miquel.raynal@bootlin.com>
8 * Original work (fully rewritten):
9 * Punnaiah Choudary Kalluri <punnaia@xilinx.com>
10 * Naga Sureshkumar Relli <nagasure@xilinx.com>
11 */
12
13 #include <linux/bch.h>
14 #include <linux/bitfield.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/interrupt.h>
20 #include <linux/iopoll.h>
21 #include <linux/module.h>
22 #include <linux/mtd/mtd.h>
23 #include <linux/mtd/partitions.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28
29 #define PKT_REG 0x00
30 #define PKT_SIZE(x) FIELD_PREP(GENMASK(10, 0), (x))
31 #define PKT_STEPS(x) FIELD_PREP(GENMASK(23, 12), (x))
32
33 #define MEM_ADDR1_REG 0x04
34
35 #define MEM_ADDR2_REG 0x08
36 #define ADDR2_STRENGTH(x) FIELD_PREP(GENMASK(27, 25), (x))
37 #define ADDR2_CS(x) FIELD_PREP(GENMASK(31, 30), (x))
38
39 #define CMD_REG 0x0C
40 #define CMD_1(x) FIELD_PREP(GENMASK(7, 0), (x))
41 #define CMD_2(x) FIELD_PREP(GENMASK(15, 8), (x))
42 #define CMD_PAGE_SIZE(x) FIELD_PREP(GENMASK(25, 23), (x))
43 #define CMD_DMA_ENABLE BIT(27)
44 #define CMD_NADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
45 #define CMD_ECC_ENABLE BIT(31)
46
47 #define PROG_REG 0x10
48 #define PROG_PGRD BIT(0)
49 #define PROG_ERASE BIT(2)
50 #define PROG_STATUS BIT(3)
51 #define PROG_PGPROG BIT(4)
52 #define PROG_RDID BIT(6)
53 #define PROG_RDPARAM BIT(7)
54 #define PROG_RST BIT(8)
55 #define PROG_GET_FEATURE BIT(9)
56 #define PROG_SET_FEATURE BIT(10)
57 #define PROG_CHG_RD_COL_ENH BIT(14)
58
59 #define INTR_STS_EN_REG 0x14
60 #define INTR_SIG_EN_REG 0x18
61 #define INTR_STS_REG 0x1C
62 #define WRITE_READY BIT(0)
63 #define READ_READY BIT(1)
64 #define XFER_COMPLETE BIT(2)
65 #define DMA_BOUNDARY BIT(6)
66 #define EVENT_MASK GENMASK(7, 0)
67
68 #define READY_STS_REG 0x20
69
70 #define DMA_ADDR0_REG 0x50
71 #define DMA_ADDR1_REG 0x24
72
73 #define FLASH_STS_REG 0x28
74
75 #define TIMING_REG 0x2C
76 #define TCCS_TIME_500NS 0
77 #define TCCS_TIME_300NS 3
78 #define TCCS_TIME_200NS 2
79 #define TCCS_TIME_100NS 1
80 #define FAST_TCAD BIT(2)
81 #define DQS_BUFF_SEL_IN(x) FIELD_PREP(GENMASK(6, 3), (x))
82 #define DQS_BUFF_SEL_OUT(x) FIELD_PREP(GENMASK(18, 15), (x))
83
84 #define DATA_PORT_REG 0x30
85
86 #define ECC_CONF_REG 0x34
87 #define ECC_CONF_COL(x) FIELD_PREP(GENMASK(15, 0), (x))
88 #define ECC_CONF_LEN(x) FIELD_PREP(GENMASK(26, 16), (x))
89 #define ECC_CONF_BCH_EN BIT(27)
90
91 #define ECC_ERR_CNT_REG 0x38
92 #define GET_PKT_ERR_CNT(x) FIELD_GET(GENMASK(7, 0), (x))
93 #define GET_PAGE_ERR_CNT(x) FIELD_GET(GENMASK(16, 8), (x))
94
95 #define ECC_SP_REG 0x3C
96 #define ECC_SP_CMD1(x) FIELD_PREP(GENMASK(7, 0), (x))
97 #define ECC_SP_CMD2(x) FIELD_PREP(GENMASK(15, 8), (x))
98 #define ECC_SP_ADDRS(x) FIELD_PREP(GENMASK(30, 28), (x))
99
100 #define ECC_1ERR_CNT_REG 0x40
101 #define ECC_2ERR_CNT_REG 0x44
102
103 #define DATA_INTERFACE_REG 0x6C
104 #define DIFACE_SDR_MODE(x) FIELD_PREP(GENMASK(2, 0), (x))
105 #define DIFACE_DDR_MODE(x) FIELD_PREP(GENMASK(5, 3), (x))
106 #define DIFACE_SDR 0
107 #define DIFACE_NVDDR BIT(9)
108
109 #define ANFC_MAX_CS 2
110 #define ANFC_DFLT_TIMEOUT_US 1000000
111 #define ANFC_MAX_CHUNK_SIZE SZ_1M
112 #define ANFC_MAX_PARAM_SIZE SZ_4K
113 #define ANFC_MAX_STEPS SZ_2K
114 #define ANFC_MAX_PKT_SIZE (SZ_2K - 1)
115 #define ANFC_MAX_ADDR_CYC 5U
116 #define ANFC_RSVD_ECC_BYTES 21
117
118 #define ANFC_XLNX_SDR_DFLT_CORE_CLK 100000000
119 #define ANFC_XLNX_SDR_HS_CORE_CLK 80000000
120
121 static struct gpio_desc *anfc_default_cs_array[2] = {NULL, NULL};
122
123 /**
124 * struct anfc_op - Defines how to execute an operation
125 * @pkt_reg: Packet register
126 * @addr1_reg: Memory address 1 register
127 * @addr2_reg: Memory address 2 register
128 * @cmd_reg: Command register
129 * @prog_reg: Program register
130 * @steps: Number of "packets" to read/write
131 * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin
132 * @len: Data transfer length
133 * @read: Data transfer direction from the controller point of view
134 * @buf: Data buffer
135 */
136 struct anfc_op {
137 u32 pkt_reg;
138 u32 addr1_reg;
139 u32 addr2_reg;
140 u32 cmd_reg;
141 u32 prog_reg;
142 int steps;
143 unsigned int rdy_timeout_ms;
144 unsigned int len;
145 bool read;
146 u8 *buf;
147 };
148
149 /**
150 * struct anand - Defines the NAND chip related information
151 * @node: Used to store NAND chips into a list
152 * @chip: NAND chip information structure
153 * @rb: Ready-busy line
154 * @page_sz: Register value of the page_sz field to use
155 * @clk: Expected clock frequency to use
156 * @data_iface: Data interface timing mode to use
157 * @timings: NV-DDR specific timings to use
158 * @ecc_conf: Hardware ECC configuration value
159 * @strength: Register value of the ECC strength
160 * @raddr_cycles: Row address cycle information
161 * @caddr_cycles: Column address cycle information
162 * @ecc_bits: Exact number of ECC bits per syndrome
163 * @ecc_total: Total number of ECC bytes
164 * @errloc: Array of errors located with soft BCH
165 * @hw_ecc: Buffer to store syndromes computed by hardware
166 * @bch: BCH structure
167 * @cs_idx: Array of chip-select for this device, values are indexes
168 * of the controller structure @gpio_cs array
169 * @ncs_idx: Size of the @cs_idx array
170 */
171 struct anand {
172 struct list_head node;
173 struct nand_chip chip;
174 unsigned int rb;
175 unsigned int page_sz;
176 unsigned long clk;
177 u32 data_iface;
178 u32 timings;
179 u32 ecc_conf;
180 u32 strength;
181 u16 raddr_cycles;
182 u16 caddr_cycles;
183 unsigned int ecc_bits;
184 unsigned int ecc_total;
185 unsigned int *errloc;
186 u8 *hw_ecc;
187 struct bch_control *bch;
188 int *cs_idx;
189 int ncs_idx;
190 };
191
192 /**
193 * struct arasan_nfc - Defines the Arasan NAND flash controller driver instance
194 * @dev: Pointer to the device structure
195 * @base: Remapped register area
196 * @controller_clk: Pointer to the system clock
197 * @bus_clk: Pointer to the flash clock
198 * @controller: Base controller structure
199 * @chips: List of all NAND chips attached to the controller
200 * @cur_clk: Current clock rate
201 * @cs_array: CS array. Native CS are left empty, the other cells are
202 * populated with their corresponding GPIO descriptor.
203 * @ncs: Size of @cs_array
204 * @cur_cs: Index in @cs_array of the currently in use CS
205 * @native_cs: Currently selected native CS
206 * @spare_cs: Native CS that is not wired (may be selected when a GPIO
207 * CS is in use)
208 */
209 struct arasan_nfc {
210 struct device *dev;
211 void __iomem *base;
212 struct clk *controller_clk;
213 struct clk *bus_clk;
214 struct nand_controller controller;
215 struct list_head chips;
216 unsigned int cur_clk;
217 struct gpio_desc **cs_array;
218 unsigned int ncs;
219 int cur_cs;
220 unsigned int native_cs;
221 unsigned int spare_cs;
222 };
223
to_anand(struct nand_chip * nand)224 static struct anand *to_anand(struct nand_chip *nand)
225 {
226 return container_of(nand, struct anand, chip);
227 }
228
to_anfc(struct nand_controller * ctrl)229 static struct arasan_nfc *to_anfc(struct nand_controller *ctrl)
230 {
231 return container_of(ctrl, struct arasan_nfc, controller);
232 }
233
anfc_wait_for_event(struct arasan_nfc * nfc,unsigned int event)234 static int anfc_wait_for_event(struct arasan_nfc *nfc, unsigned int event)
235 {
236 u32 val;
237 int ret;
238
239 ret = readl_relaxed_poll_timeout(nfc->base + INTR_STS_REG, val,
240 val & event, 0,
241 ANFC_DFLT_TIMEOUT_US);
242 if (ret) {
243 dev_err(nfc->dev, "Timeout waiting for event 0x%x\n", event);
244 return -ETIMEDOUT;
245 }
246
247 writel_relaxed(event, nfc->base + INTR_STS_REG);
248
249 return 0;
250 }
251
anfc_wait_for_rb(struct arasan_nfc * nfc,struct nand_chip * chip,unsigned int timeout_ms)252 static int anfc_wait_for_rb(struct arasan_nfc *nfc, struct nand_chip *chip,
253 unsigned int timeout_ms)
254 {
255 struct anand *anand = to_anand(chip);
256 u32 val;
257 int ret;
258
259 /* There is no R/B interrupt, we must poll a register */
260 ret = readl_relaxed_poll_timeout(nfc->base + READY_STS_REG, val,
261 val & BIT(anand->rb),
262 1, timeout_ms * 1000);
263 if (ret) {
264 dev_err(nfc->dev, "Timeout waiting for R/B 0x%x\n",
265 readl_relaxed(nfc->base + READY_STS_REG));
266 return -ETIMEDOUT;
267 }
268
269 return 0;
270 }
271
anfc_trigger_op(struct arasan_nfc * nfc,struct anfc_op * nfc_op)272 static void anfc_trigger_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
273 {
274 writel_relaxed(nfc_op->pkt_reg, nfc->base + PKT_REG);
275 writel_relaxed(nfc_op->addr1_reg, nfc->base + MEM_ADDR1_REG);
276 writel_relaxed(nfc_op->addr2_reg, nfc->base + MEM_ADDR2_REG);
277 writel_relaxed(nfc_op->cmd_reg, nfc->base + CMD_REG);
278 writel_relaxed(nfc_op->prog_reg, nfc->base + PROG_REG);
279 }
280
anfc_pkt_len_config(unsigned int len,unsigned int * steps,unsigned int * pktsize)281 static int anfc_pkt_len_config(unsigned int len, unsigned int *steps,
282 unsigned int *pktsize)
283 {
284 unsigned int nb, sz;
285
286 for (nb = 1; nb < ANFC_MAX_STEPS; nb *= 2) {
287 sz = len / nb;
288 if (sz <= ANFC_MAX_PKT_SIZE)
289 break;
290 }
291
292 if (sz * nb != len)
293 return -ENOTSUPP;
294
295 if (steps)
296 *steps = nb;
297
298 if (pktsize)
299 *pktsize = sz;
300
301 return 0;
302 }
303
anfc_is_gpio_cs(struct arasan_nfc * nfc,int nfc_cs)304 static bool anfc_is_gpio_cs(struct arasan_nfc *nfc, int nfc_cs)
305 {
306 return nfc_cs >= 0 && nfc->cs_array[nfc_cs];
307 }
308
anfc_relative_to_absolute_cs(struct anand * anand,int num)309 static int anfc_relative_to_absolute_cs(struct anand *anand, int num)
310 {
311 return anand->cs_idx[num];
312 }
313
anfc_assert_cs(struct arasan_nfc * nfc,unsigned int nfc_cs_idx)314 static void anfc_assert_cs(struct arasan_nfc *nfc, unsigned int nfc_cs_idx)
315 {
316 /* CS did not change: do nothing */
317 if (nfc->cur_cs == nfc_cs_idx)
318 return;
319
320 /* Deassert the previous CS if it was a GPIO */
321 if (anfc_is_gpio_cs(nfc, nfc->cur_cs))
322 gpiod_set_value_cansleep(nfc->cs_array[nfc->cur_cs], 1);
323
324 /* Assert the new one */
325 if (anfc_is_gpio_cs(nfc, nfc_cs_idx)) {
326 nfc->native_cs = nfc->spare_cs;
327 gpiod_set_value_cansleep(nfc->cs_array[nfc_cs_idx], 0);
328 } else {
329 nfc->native_cs = nfc_cs_idx;
330 }
331
332 nfc->cur_cs = nfc_cs_idx;
333 }
334
anfc_select_target(struct nand_chip * chip,int target)335 static int anfc_select_target(struct nand_chip *chip, int target)
336 {
337 struct anand *anand = to_anand(chip);
338 struct arasan_nfc *nfc = to_anfc(chip->controller);
339 unsigned int nfc_cs_idx = anfc_relative_to_absolute_cs(anand, target);
340 int ret;
341
342 anfc_assert_cs(nfc, nfc_cs_idx);
343
344 /* Update the controller timings and the potential ECC configuration */
345 writel_relaxed(anand->data_iface, nfc->base + DATA_INTERFACE_REG);
346 writel_relaxed(anand->timings, nfc->base + TIMING_REG);
347
348 /* Update clock frequency */
349 if (nfc->cur_clk != anand->clk) {
350 clk_disable_unprepare(nfc->controller_clk);
351 ret = clk_set_rate(nfc->controller_clk, anand->clk);
352 if (ret) {
353 dev_err(nfc->dev, "Failed to change clock rate\n");
354 return ret;
355 }
356
357 ret = clk_prepare_enable(nfc->controller_clk);
358 if (ret) {
359 dev_err(nfc->dev,
360 "Failed to re-enable the controller clock\n");
361 return ret;
362 }
363
364 nfc->cur_clk = anand->clk;
365 }
366
367 return 0;
368 }
369
370 /*
371 * When using the embedded hardware ECC engine, the controller is in charge of
372 * feeding the engine with, first, the ECC residue present in the data array.
373 * A typical read operation is:
374 * 1/ Assert the read operation by sending the relevant command/address cycles
375 * but targeting the column of the first ECC bytes in the OOB area instead of
376 * the main data directly.
377 * 2/ After having read the relevant number of ECC bytes, the controller uses
378 * the RNDOUT/RNDSTART commands which are set into the "ECC Spare Command
379 * Register" to move the pointer back at the beginning of the main data.
380 * 3/ It will read the content of the main area for a given size (pktsize) and
381 * will feed the ECC engine with this buffer again.
382 * 4/ The ECC engine derives the ECC bytes for the given data and compare them
383 * with the ones already received. It eventually trigger status flags and
384 * then set the "Buffer Read Ready" flag.
385 * 5/ The corrected data is then available for reading from the data port
386 * register.
387 *
388 * The hardware BCH ECC engine is known to be inconstent in BCH mode and never
389 * reports uncorrectable errors. Because of this bug, we have to use the
390 * software BCH implementation in the read path.
391 */
anfc_read_page_hw_ecc(struct nand_chip * chip,u8 * buf,int oob_required,int page)392 static int anfc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
393 int oob_required, int page)
394 {
395 struct arasan_nfc *nfc = to_anfc(chip->controller);
396 struct mtd_info *mtd = nand_to_mtd(chip);
397 struct anand *anand = to_anand(chip);
398 unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
399 unsigned int max_bitflips = 0;
400 dma_addr_t dma_addr;
401 int step, ret;
402 struct anfc_op nfc_op = {
403 .pkt_reg =
404 PKT_SIZE(chip->ecc.size) |
405 PKT_STEPS(chip->ecc.steps),
406 .addr1_reg =
407 (page & 0xFF) << (8 * (anand->caddr_cycles)) |
408 (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
409 .addr2_reg =
410 ((page >> 16) & 0xFF) |
411 ADDR2_STRENGTH(anand->strength) |
412 ADDR2_CS(nfc->native_cs),
413 .cmd_reg =
414 CMD_1(NAND_CMD_READ0) |
415 CMD_2(NAND_CMD_READSTART) |
416 CMD_PAGE_SIZE(anand->page_sz) |
417 CMD_DMA_ENABLE |
418 CMD_NADDRS(anand->caddr_cycles +
419 anand->raddr_cycles),
420 .prog_reg = PROG_PGRD,
421 };
422
423 dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_FROM_DEVICE);
424 if (dma_mapping_error(nfc->dev, dma_addr)) {
425 dev_err(nfc->dev, "Buffer mapping error");
426 return -EIO;
427 }
428
429 writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
430 writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
431
432 anfc_trigger_op(nfc, &nfc_op);
433
434 ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
435 dma_unmap_single(nfc->dev, dma_addr, len, DMA_FROM_DEVICE);
436 if (ret) {
437 dev_err(nfc->dev, "Error reading page %d\n", page);
438 return ret;
439 }
440
441 /* Store the raw OOB bytes as well */
442 ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi,
443 mtd->oobsize, 0);
444 if (ret)
445 return ret;
446
447 /*
448 * For each step, compute by softare the BCH syndrome over the raw data.
449 * Compare the theoretical amount of errors and compare with the
450 * hardware engine feedback.
451 */
452 for (step = 0; step < chip->ecc.steps; step++) {
453 u8 *raw_buf = &buf[step * chip->ecc.size];
454 unsigned int bit, byte;
455 int bf, i;
456
457 /* Extract the syndrome, it is not necessarily aligned */
458 memset(anand->hw_ecc, 0, chip->ecc.bytes);
459 nand_extract_bits(anand->hw_ecc, 0,
460 &chip->oob_poi[mtd->oobsize - anand->ecc_total],
461 anand->ecc_bits * step, anand->ecc_bits);
462
463 bf = bch_decode(anand->bch, raw_buf, chip->ecc.size,
464 anand->hw_ecc, NULL, NULL, anand->errloc);
465 if (!bf) {
466 continue;
467 } else if (bf > 0) {
468 for (i = 0; i < bf; i++) {
469 /* Only correct the data, not the syndrome */
470 if (anand->errloc[i] < (chip->ecc.size * 8)) {
471 bit = BIT(anand->errloc[i] & 7);
472 byte = anand->errloc[i] >> 3;
473 raw_buf[byte] ^= bit;
474 }
475 }
476
477 mtd->ecc_stats.corrected += bf;
478 max_bitflips = max_t(unsigned int, max_bitflips, bf);
479
480 continue;
481 }
482
483 bf = nand_check_erased_ecc_chunk(raw_buf, chip->ecc.size,
484 NULL, 0, NULL, 0,
485 chip->ecc.strength);
486 if (bf > 0) {
487 mtd->ecc_stats.corrected += bf;
488 max_bitflips = max_t(unsigned int, max_bitflips, bf);
489 memset(raw_buf, 0xFF, chip->ecc.size);
490 } else if (bf < 0) {
491 mtd->ecc_stats.failed++;
492 }
493 }
494
495 return 0;
496 }
497
anfc_sel_read_page_hw_ecc(struct nand_chip * chip,u8 * buf,int oob_required,int page)498 static int anfc_sel_read_page_hw_ecc(struct nand_chip *chip, u8 *buf,
499 int oob_required, int page)
500 {
501 int ret;
502
503 ret = anfc_select_target(chip, chip->cur_cs);
504 if (ret)
505 return ret;
506
507 return anfc_read_page_hw_ecc(chip, buf, oob_required, page);
508 };
509
anfc_write_page_hw_ecc(struct nand_chip * chip,const u8 * buf,int oob_required,int page)510 static int anfc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
511 int oob_required, int page)
512 {
513 struct anand *anand = to_anand(chip);
514 struct arasan_nfc *nfc = to_anfc(chip->controller);
515 struct mtd_info *mtd = nand_to_mtd(chip);
516 unsigned int len = mtd->writesize + (oob_required ? mtd->oobsize : 0);
517 dma_addr_t dma_addr;
518 int ret;
519 struct anfc_op nfc_op = {
520 .pkt_reg =
521 PKT_SIZE(chip->ecc.size) |
522 PKT_STEPS(chip->ecc.steps),
523 .addr1_reg =
524 (page & 0xFF) << (8 * (anand->caddr_cycles)) |
525 (((page >> 8) & 0xFF) << (8 * (1 + anand->caddr_cycles))),
526 .addr2_reg =
527 ((page >> 16) & 0xFF) |
528 ADDR2_STRENGTH(anand->strength) |
529 ADDR2_CS(nfc->native_cs),
530 .cmd_reg =
531 CMD_1(NAND_CMD_SEQIN) |
532 CMD_2(NAND_CMD_PAGEPROG) |
533 CMD_PAGE_SIZE(anand->page_sz) |
534 CMD_DMA_ENABLE |
535 CMD_NADDRS(anand->caddr_cycles +
536 anand->raddr_cycles) |
537 CMD_ECC_ENABLE,
538 .prog_reg = PROG_PGPROG,
539 };
540
541 writel_relaxed(anand->ecc_conf, nfc->base + ECC_CONF_REG);
542 writel_relaxed(ECC_SP_CMD1(NAND_CMD_RNDIN) |
543 ECC_SP_ADDRS(anand->caddr_cycles),
544 nfc->base + ECC_SP_REG);
545
546 dma_addr = dma_map_single(nfc->dev, (void *)buf, len, DMA_TO_DEVICE);
547 if (dma_mapping_error(nfc->dev, dma_addr)) {
548 dev_err(nfc->dev, "Buffer mapping error");
549 return -EIO;
550 }
551
552 writel_relaxed(lower_32_bits(dma_addr), nfc->base + DMA_ADDR0_REG);
553 writel_relaxed(upper_32_bits(dma_addr), nfc->base + DMA_ADDR1_REG);
554
555 anfc_trigger_op(nfc, &nfc_op);
556 ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
557 dma_unmap_single(nfc->dev, dma_addr, len, DMA_TO_DEVICE);
558 if (ret) {
559 dev_err(nfc->dev, "Error writing page %d\n", page);
560 return ret;
561 }
562
563 /* Spare data is not protected */
564 if (oob_required)
565 ret = nand_write_oob_std(chip, page);
566
567 return ret;
568 }
569
anfc_sel_write_page_hw_ecc(struct nand_chip * chip,const u8 * buf,int oob_required,int page)570 static int anfc_sel_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf,
571 int oob_required, int page)
572 {
573 int ret;
574
575 ret = anfc_select_target(chip, chip->cur_cs);
576 if (ret)
577 return ret;
578
579 return anfc_write_page_hw_ecc(chip, buf, oob_required, page);
580 };
581
582 /* NAND framework ->exec_op() hooks and related helpers */
anfc_parse_instructions(struct nand_chip * chip,const struct nand_subop * subop,struct anfc_op * nfc_op)583 static int anfc_parse_instructions(struct nand_chip *chip,
584 const struct nand_subop *subop,
585 struct anfc_op *nfc_op)
586 {
587 struct arasan_nfc *nfc = to_anfc(chip->controller);
588 struct anand *anand = to_anand(chip);
589 const struct nand_op_instr *instr = NULL;
590 bool first_cmd = true;
591 unsigned int op_id;
592 int ret, i;
593
594 memset(nfc_op, 0, sizeof(*nfc_op));
595 nfc_op->addr2_reg = ADDR2_CS(nfc->native_cs);
596 nfc_op->cmd_reg = CMD_PAGE_SIZE(anand->page_sz);
597
598 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
599 unsigned int offset, naddrs, pktsize;
600 const u8 *addrs;
601 u8 *buf;
602
603 instr = &subop->instrs[op_id];
604
605 switch (instr->type) {
606 case NAND_OP_CMD_INSTR:
607 if (first_cmd)
608 nfc_op->cmd_reg |= CMD_1(instr->ctx.cmd.opcode);
609 else
610 nfc_op->cmd_reg |= CMD_2(instr->ctx.cmd.opcode);
611
612 first_cmd = false;
613 break;
614
615 case NAND_OP_ADDR_INSTR:
616 offset = nand_subop_get_addr_start_off(subop, op_id);
617 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
618 addrs = &instr->ctx.addr.addrs[offset];
619 nfc_op->cmd_reg |= CMD_NADDRS(naddrs);
620
621 for (i = 0; i < min(ANFC_MAX_ADDR_CYC, naddrs); i++) {
622 if (i < 4)
623 nfc_op->addr1_reg |= (u32)addrs[i] << i * 8;
624 else
625 nfc_op->addr2_reg |= addrs[i];
626 }
627
628 break;
629 case NAND_OP_DATA_IN_INSTR:
630 nfc_op->read = true;
631 fallthrough;
632 case NAND_OP_DATA_OUT_INSTR:
633 offset = nand_subop_get_data_start_off(subop, op_id);
634 buf = instr->ctx.data.buf.in;
635 nfc_op->buf = &buf[offset];
636 nfc_op->len = nand_subop_get_data_len(subop, op_id);
637 ret = anfc_pkt_len_config(nfc_op->len, &nfc_op->steps,
638 &pktsize);
639 if (ret)
640 return ret;
641
642 /*
643 * Number of DATA cycles must be aligned on 4, this
644 * means the controller might read/write more than
645 * requested. This is harmless most of the time as extra
646 * DATA are discarded in the write path and read pointer
647 * adjusted in the read path.
648 *
649 * FIXME: The core should mark operations where
650 * reading/writing more is allowed so the exec_op()
651 * implementation can take the right decision when the
652 * alignment constraint is not met: adjust the number of
653 * DATA cycles when it's allowed, reject the operation
654 * otherwise.
655 */
656 nfc_op->pkt_reg |= PKT_SIZE(round_up(pktsize, 4)) |
657 PKT_STEPS(nfc_op->steps);
658 break;
659 case NAND_OP_WAITRDY_INSTR:
660 nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
661 break;
662 }
663 }
664
665 return 0;
666 }
667
anfc_rw_pio_op(struct arasan_nfc * nfc,struct anfc_op * nfc_op)668 static int anfc_rw_pio_op(struct arasan_nfc *nfc, struct anfc_op *nfc_op)
669 {
670 unsigned int dwords = (nfc_op->len / 4) / nfc_op->steps;
671 unsigned int last_len = nfc_op->len % 4;
672 unsigned int offset, dir;
673 u8 *buf = nfc_op->buf;
674 int ret, i;
675
676 for (i = 0; i < nfc_op->steps; i++) {
677 dir = nfc_op->read ? READ_READY : WRITE_READY;
678 ret = anfc_wait_for_event(nfc, dir);
679 if (ret) {
680 dev_err(nfc->dev, "PIO %s ready signal not received\n",
681 nfc_op->read ? "Read" : "Write");
682 return ret;
683 }
684
685 offset = i * (dwords * 4);
686 if (nfc_op->read)
687 ioread32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
688 dwords);
689 else
690 iowrite32_rep(nfc->base + DATA_PORT_REG, &buf[offset],
691 dwords);
692 }
693
694 if (last_len) {
695 u32 remainder;
696
697 offset = nfc_op->len - last_len;
698
699 if (nfc_op->read) {
700 remainder = readl_relaxed(nfc->base + DATA_PORT_REG);
701 memcpy(&buf[offset], &remainder, last_len);
702 } else {
703 memcpy(&remainder, &buf[offset], last_len);
704 writel_relaxed(remainder, nfc->base + DATA_PORT_REG);
705 }
706 }
707
708 return anfc_wait_for_event(nfc, XFER_COMPLETE);
709 }
710
anfc_misc_data_type_exec(struct nand_chip * chip,const struct nand_subop * subop,u32 prog_reg)711 static int anfc_misc_data_type_exec(struct nand_chip *chip,
712 const struct nand_subop *subop,
713 u32 prog_reg)
714 {
715 struct arasan_nfc *nfc = to_anfc(chip->controller);
716 struct anfc_op nfc_op = {};
717 int ret;
718
719 ret = anfc_parse_instructions(chip, subop, &nfc_op);
720 if (ret)
721 return ret;
722
723 nfc_op.prog_reg = prog_reg;
724 anfc_trigger_op(nfc, &nfc_op);
725
726 if (nfc_op.rdy_timeout_ms) {
727 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
728 if (ret)
729 return ret;
730 }
731
732 return anfc_rw_pio_op(nfc, &nfc_op);
733 }
734
anfc_param_read_type_exec(struct nand_chip * chip,const struct nand_subop * subop)735 static int anfc_param_read_type_exec(struct nand_chip *chip,
736 const struct nand_subop *subop)
737 {
738 return anfc_misc_data_type_exec(chip, subop, PROG_RDPARAM);
739 }
740
anfc_data_read_type_exec(struct nand_chip * chip,const struct nand_subop * subop)741 static int anfc_data_read_type_exec(struct nand_chip *chip,
742 const struct nand_subop *subop)
743 {
744 u32 prog_reg = PROG_PGRD;
745
746 /*
747 * Experience shows that while in SDR mode sending a CHANGE READ COLUMN
748 * command through the READ PAGE "type" always works fine, when in
749 * NV-DDR mode the same command simply fails. However, it was also
750 * spotted that any CHANGE READ COLUMN command sent through the CHANGE
751 * READ COLUMN ENHANCED "type" would correctly work in both cases (SDR
752 * and NV-DDR). So, for simplicity, let's program the controller with
753 * the CHANGE READ COLUMN ENHANCED "type" whenever we are requested to
754 * perform a CHANGE READ COLUMN operation.
755 */
756 if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_RNDOUT &&
757 subop->instrs[2].ctx.cmd.opcode == NAND_CMD_RNDOUTSTART)
758 prog_reg = PROG_CHG_RD_COL_ENH;
759
760 return anfc_misc_data_type_exec(chip, subop, prog_reg);
761 }
762
anfc_param_write_type_exec(struct nand_chip * chip,const struct nand_subop * subop)763 static int anfc_param_write_type_exec(struct nand_chip *chip,
764 const struct nand_subop *subop)
765 {
766 return anfc_misc_data_type_exec(chip, subop, PROG_SET_FEATURE);
767 }
768
anfc_data_write_type_exec(struct nand_chip * chip,const struct nand_subop * subop)769 static int anfc_data_write_type_exec(struct nand_chip *chip,
770 const struct nand_subop *subop)
771 {
772 return anfc_misc_data_type_exec(chip, subop, PROG_PGPROG);
773 }
774
anfc_misc_zerolen_type_exec(struct nand_chip * chip,const struct nand_subop * subop,u32 prog_reg)775 static int anfc_misc_zerolen_type_exec(struct nand_chip *chip,
776 const struct nand_subop *subop,
777 u32 prog_reg)
778 {
779 struct arasan_nfc *nfc = to_anfc(chip->controller);
780 struct anfc_op nfc_op = {};
781 int ret;
782
783 ret = anfc_parse_instructions(chip, subop, &nfc_op);
784 if (ret)
785 return ret;
786
787 nfc_op.prog_reg = prog_reg;
788 anfc_trigger_op(nfc, &nfc_op);
789
790 ret = anfc_wait_for_event(nfc, XFER_COMPLETE);
791 if (ret)
792 return ret;
793
794 if (nfc_op.rdy_timeout_ms)
795 ret = anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
796
797 return ret;
798 }
799
anfc_status_type_exec(struct nand_chip * chip,const struct nand_subop * subop)800 static int anfc_status_type_exec(struct nand_chip *chip,
801 const struct nand_subop *subop)
802 {
803 struct arasan_nfc *nfc = to_anfc(chip->controller);
804 u32 tmp;
805 int ret;
806
807 /* See anfc_check_op() for details about this constraint */
808 if (subop->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS)
809 return -ENOTSUPP;
810
811 ret = anfc_misc_zerolen_type_exec(chip, subop, PROG_STATUS);
812 if (ret)
813 return ret;
814
815 tmp = readl_relaxed(nfc->base + FLASH_STS_REG);
816 memcpy(subop->instrs[1].ctx.data.buf.in, &tmp, 1);
817
818 return 0;
819 }
820
anfc_reset_type_exec(struct nand_chip * chip,const struct nand_subop * subop)821 static int anfc_reset_type_exec(struct nand_chip *chip,
822 const struct nand_subop *subop)
823 {
824 return anfc_misc_zerolen_type_exec(chip, subop, PROG_RST);
825 }
826
anfc_erase_type_exec(struct nand_chip * chip,const struct nand_subop * subop)827 static int anfc_erase_type_exec(struct nand_chip *chip,
828 const struct nand_subop *subop)
829 {
830 return anfc_misc_zerolen_type_exec(chip, subop, PROG_ERASE);
831 }
832
anfc_wait_type_exec(struct nand_chip * chip,const struct nand_subop * subop)833 static int anfc_wait_type_exec(struct nand_chip *chip,
834 const struct nand_subop *subop)
835 {
836 struct arasan_nfc *nfc = to_anfc(chip->controller);
837 struct anfc_op nfc_op = {};
838 int ret;
839
840 ret = anfc_parse_instructions(chip, subop, &nfc_op);
841 if (ret)
842 return ret;
843
844 return anfc_wait_for_rb(nfc, chip, nfc_op.rdy_timeout_ms);
845 }
846
847 static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER(
848 NAND_OP_PARSER_PATTERN(
849 anfc_param_read_type_exec,
850 NAND_OP_PARSER_PAT_CMD_ELEM(false),
851 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
852 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
853 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
854 NAND_OP_PARSER_PATTERN(
855 anfc_param_write_type_exec,
856 NAND_OP_PARSER_PAT_CMD_ELEM(false),
857 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
858 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_PARAM_SIZE)),
859 NAND_OP_PARSER_PATTERN(
860 anfc_data_read_type_exec,
861 NAND_OP_PARSER_PAT_CMD_ELEM(false),
862 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
863 NAND_OP_PARSER_PAT_CMD_ELEM(false),
864 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
865 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, ANFC_MAX_CHUNK_SIZE)),
866 NAND_OP_PARSER_PATTERN(
867 anfc_data_write_type_exec,
868 NAND_OP_PARSER_PAT_CMD_ELEM(false),
869 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
870 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, ANFC_MAX_CHUNK_SIZE),
871 NAND_OP_PARSER_PAT_CMD_ELEM(false)),
872 NAND_OP_PARSER_PATTERN(
873 anfc_reset_type_exec,
874 NAND_OP_PARSER_PAT_CMD_ELEM(false),
875 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
876 NAND_OP_PARSER_PATTERN(
877 anfc_erase_type_exec,
878 NAND_OP_PARSER_PAT_CMD_ELEM(false),
879 NAND_OP_PARSER_PAT_ADDR_ELEM(false, ANFC_MAX_ADDR_CYC),
880 NAND_OP_PARSER_PAT_CMD_ELEM(false),
881 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
882 NAND_OP_PARSER_PATTERN(
883 anfc_status_type_exec,
884 NAND_OP_PARSER_PAT_CMD_ELEM(false),
885 NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, ANFC_MAX_CHUNK_SIZE)),
886 NAND_OP_PARSER_PATTERN(
887 anfc_wait_type_exec,
888 NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
889 );
890
anfc_check_op(struct nand_chip * chip,const struct nand_operation * op)891 static int anfc_check_op(struct nand_chip *chip,
892 const struct nand_operation *op)
893 {
894 const struct nand_op_instr *instr;
895 int op_id;
896
897 /*
898 * The controller abstracts all the NAND operations and do not support
899 * data only operations.
900 *
901 * TODO: The nand_op_parser framework should be extended to
902 * support custom checks on DATA instructions.
903 */
904 for (op_id = 0; op_id < op->ninstrs; op_id++) {
905 instr = &op->instrs[op_id];
906
907 switch (instr->type) {
908 case NAND_OP_ADDR_INSTR:
909 if (instr->ctx.addr.naddrs > ANFC_MAX_ADDR_CYC)
910 return -ENOTSUPP;
911
912 break;
913 case NAND_OP_DATA_IN_INSTR:
914 case NAND_OP_DATA_OUT_INSTR:
915 if (instr->ctx.data.len > ANFC_MAX_CHUNK_SIZE)
916 return -ENOTSUPP;
917
918 if (anfc_pkt_len_config(instr->ctx.data.len, 0, 0))
919 return -ENOTSUPP;
920
921 break;
922 default:
923 break;
924 }
925 }
926
927 /*
928 * The controller does not allow to proceed with a CMD+DATA_IN cycle
929 * manually on the bus by reading data from the data register. Instead,
930 * the controller abstract a status read operation with its own status
931 * register after ordering a read status operation. Hence, we cannot
932 * support any CMD+DATA_IN operation other than a READ STATUS.
933 *
934 * TODO: The nand_op_parser() framework should be extended to describe
935 * fixed patterns instead of open-coding this check here.
936 */
937 if (op->ninstrs == 2 &&
938 op->instrs[0].type == NAND_OP_CMD_INSTR &&
939 op->instrs[0].ctx.cmd.opcode != NAND_CMD_STATUS &&
940 op->instrs[1].type == NAND_OP_DATA_IN_INSTR)
941 return -ENOTSUPP;
942
943 return nand_op_parser_exec_op(chip, &anfc_op_parser, op, true);
944 }
945
anfc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)946 static int anfc_exec_op(struct nand_chip *chip,
947 const struct nand_operation *op,
948 bool check_only)
949 {
950 int ret;
951
952 if (check_only)
953 return anfc_check_op(chip, op);
954
955 ret = anfc_select_target(chip, op->cs);
956 if (ret)
957 return ret;
958
959 return nand_op_parser_exec_op(chip, &anfc_op_parser, op, check_only);
960 }
961
anfc_setup_interface(struct nand_chip * chip,int target,const struct nand_interface_config * conf)962 static int anfc_setup_interface(struct nand_chip *chip, int target,
963 const struct nand_interface_config *conf)
964 {
965 struct anand *anand = to_anand(chip);
966 struct arasan_nfc *nfc = to_anfc(chip->controller);
967 struct device_node *np = nfc->dev->of_node;
968 const struct nand_sdr_timings *sdr;
969 const struct nand_nvddr_timings *nvddr;
970 unsigned int tccs_min, dqs_mode, fast_tcad;
971
972 if (nand_interface_is_nvddr(conf)) {
973 nvddr = nand_get_nvddr_timings(conf);
974 if (IS_ERR(nvddr))
975 return PTR_ERR(nvddr);
976
977 /*
978 * The controller only supports data payload requests which are
979 * a multiple of 4. In practice, most data accesses are 4-byte
980 * aligned and this is not an issue. However, rounding up will
981 * simply be refused by the controller if we reached the end of
982 * the device *and* we are using the NV-DDR interface(!). In
983 * this situation, unaligned data requests ending at the device
984 * boundary will confuse the controller and cannot be performed.
985 *
986 * This is something that happens in nand_read_subpage() when
987 * selecting software ECC support and must be avoided.
988 */
989 if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT)
990 return -ENOTSUPP;
991 } else {
992 sdr = nand_get_sdr_timings(conf);
993 if (IS_ERR(sdr))
994 return PTR_ERR(sdr);
995 }
996
997 if (target < 0)
998 return 0;
999
1000 if (nand_interface_is_sdr(conf)) {
1001 anand->data_iface = DIFACE_SDR |
1002 DIFACE_SDR_MODE(conf->timings.mode);
1003 anand->timings = 0;
1004 } else {
1005 anand->data_iface = DIFACE_NVDDR |
1006 DIFACE_DDR_MODE(conf->timings.mode);
1007
1008 if (conf->timings.nvddr.tCCS_min <= 100000)
1009 tccs_min = TCCS_TIME_100NS;
1010 else if (conf->timings.nvddr.tCCS_min <= 200000)
1011 tccs_min = TCCS_TIME_200NS;
1012 else if (conf->timings.nvddr.tCCS_min <= 300000)
1013 tccs_min = TCCS_TIME_300NS;
1014 else
1015 tccs_min = TCCS_TIME_500NS;
1016
1017 fast_tcad = 0;
1018 if (conf->timings.nvddr.tCAD_min < 45000)
1019 fast_tcad = FAST_TCAD;
1020
1021 switch (conf->timings.mode) {
1022 case 5:
1023 case 4:
1024 dqs_mode = 2;
1025 break;
1026 case 3:
1027 dqs_mode = 3;
1028 break;
1029 case 2:
1030 dqs_mode = 4;
1031 break;
1032 case 1:
1033 dqs_mode = 5;
1034 break;
1035 case 0:
1036 default:
1037 dqs_mode = 6;
1038 break;
1039 }
1040
1041 anand->timings = tccs_min | fast_tcad |
1042 DQS_BUFF_SEL_IN(dqs_mode) |
1043 DQS_BUFF_SEL_OUT(dqs_mode);
1044 }
1045
1046 anand->clk = ANFC_XLNX_SDR_DFLT_CORE_CLK;
1047
1048 /*
1049 * Due to a hardware bug in the ZynqMP SoC, SDR timing modes 0-1 work
1050 * with f > 90MHz (default clock is 100MHz) but signals are unstable
1051 * with higher modes. Hence we decrease a little bit the clock rate to
1052 * 80MHz when using SDR modes 2-5 with this SoC.
1053 */
1054 if (of_device_is_compatible(np, "xlnx,zynqmp-nand-controller") &&
1055 nand_interface_is_sdr(conf) && conf->timings.mode >= 2)
1056 anand->clk = ANFC_XLNX_SDR_HS_CORE_CLK;
1057
1058 return 0;
1059 }
1060
anfc_calc_hw_ecc_bytes(int step_size,int strength)1061 static int anfc_calc_hw_ecc_bytes(int step_size, int strength)
1062 {
1063 unsigned int bch_gf_mag, ecc_bits;
1064
1065 switch (step_size) {
1066 case SZ_512:
1067 bch_gf_mag = 13;
1068 break;
1069 case SZ_1K:
1070 bch_gf_mag = 14;
1071 break;
1072 default:
1073 return -EINVAL;
1074 }
1075
1076 ecc_bits = bch_gf_mag * strength;
1077
1078 return DIV_ROUND_UP(ecc_bits, 8);
1079 }
1080
1081 static const int anfc_hw_ecc_512_strengths[] = {4, 8, 12};
1082
1083 static const int anfc_hw_ecc_1024_strengths[] = {24};
1084
1085 static const struct nand_ecc_step_info anfc_hw_ecc_step_infos[] = {
1086 {
1087 .stepsize = SZ_512,
1088 .strengths = anfc_hw_ecc_512_strengths,
1089 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_512_strengths),
1090 },
1091 {
1092 .stepsize = SZ_1K,
1093 .strengths = anfc_hw_ecc_1024_strengths,
1094 .nstrengths = ARRAY_SIZE(anfc_hw_ecc_1024_strengths),
1095 },
1096 };
1097
1098 static const struct nand_ecc_caps anfc_hw_ecc_caps = {
1099 .stepinfos = anfc_hw_ecc_step_infos,
1100 .nstepinfos = ARRAY_SIZE(anfc_hw_ecc_step_infos),
1101 .calc_ecc_bytes = anfc_calc_hw_ecc_bytes,
1102 };
1103
anfc_init_hw_ecc_controller(struct arasan_nfc * nfc,struct nand_chip * chip)1104 static int anfc_init_hw_ecc_controller(struct arasan_nfc *nfc,
1105 struct nand_chip *chip)
1106 {
1107 struct anand *anand = to_anand(chip);
1108 struct mtd_info *mtd = nand_to_mtd(chip);
1109 struct nand_ecc_ctrl *ecc = &chip->ecc;
1110 unsigned int bch_prim_poly = 0, bch_gf_mag = 0, ecc_offset;
1111 int ret;
1112
1113 switch (mtd->writesize) {
1114 case SZ_512:
1115 case SZ_2K:
1116 case SZ_4K:
1117 case SZ_8K:
1118 case SZ_16K:
1119 break;
1120 default:
1121 dev_err(nfc->dev, "Unsupported page size %d\n", mtd->writesize);
1122 return -EINVAL;
1123 }
1124
1125 ret = nand_ecc_choose_conf(chip, &anfc_hw_ecc_caps, mtd->oobsize);
1126 if (ret)
1127 return ret;
1128
1129 switch (ecc->strength) {
1130 case 12:
1131 anand->strength = 0x1;
1132 break;
1133 case 8:
1134 anand->strength = 0x2;
1135 break;
1136 case 4:
1137 anand->strength = 0x3;
1138 break;
1139 case 24:
1140 anand->strength = 0x4;
1141 break;
1142 default:
1143 dev_err(nfc->dev, "Unsupported strength %d\n", ecc->strength);
1144 return -EINVAL;
1145 }
1146
1147 switch (ecc->size) {
1148 case SZ_512:
1149 bch_gf_mag = 13;
1150 bch_prim_poly = 0x201b;
1151 break;
1152 case SZ_1K:
1153 bch_gf_mag = 14;
1154 bch_prim_poly = 0x4443;
1155 break;
1156 default:
1157 dev_err(nfc->dev, "Unsupported step size %d\n", ecc->strength);
1158 return -EINVAL;
1159 }
1160
1161 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
1162
1163 ecc->steps = mtd->writesize / ecc->size;
1164 ecc->algo = NAND_ECC_ALGO_BCH;
1165 anand->ecc_bits = bch_gf_mag * ecc->strength;
1166 ecc->bytes = DIV_ROUND_UP(anand->ecc_bits, 8);
1167 anand->ecc_total = DIV_ROUND_UP(anand->ecc_bits * ecc->steps, 8);
1168 ecc_offset = mtd->writesize + mtd->oobsize - anand->ecc_total;
1169 anand->ecc_conf = ECC_CONF_COL(ecc_offset) |
1170 ECC_CONF_LEN(anand->ecc_total) |
1171 ECC_CONF_BCH_EN;
1172
1173 anand->errloc = devm_kmalloc_array(nfc->dev, ecc->strength,
1174 sizeof(*anand->errloc), GFP_KERNEL);
1175 if (!anand->errloc)
1176 return -ENOMEM;
1177
1178 anand->hw_ecc = devm_kmalloc(nfc->dev, ecc->bytes, GFP_KERNEL);
1179 if (!anand->hw_ecc)
1180 return -ENOMEM;
1181
1182 /* Enforce bit swapping to fit the hardware */
1183 anand->bch = bch_init(bch_gf_mag, ecc->strength, bch_prim_poly, true);
1184 if (!anand->bch)
1185 return -EINVAL;
1186
1187 ecc->read_page = anfc_sel_read_page_hw_ecc;
1188 ecc->write_page = anfc_sel_write_page_hw_ecc;
1189
1190 return 0;
1191 }
1192
anfc_attach_chip(struct nand_chip * chip)1193 static int anfc_attach_chip(struct nand_chip *chip)
1194 {
1195 struct anand *anand = to_anand(chip);
1196 struct arasan_nfc *nfc = to_anfc(chip->controller);
1197 struct mtd_info *mtd = nand_to_mtd(chip);
1198 int ret = 0;
1199
1200 if (mtd->writesize <= SZ_512)
1201 anand->caddr_cycles = 1;
1202 else
1203 anand->caddr_cycles = 2;
1204
1205 if (chip->options & NAND_ROW_ADDR_3)
1206 anand->raddr_cycles = 3;
1207 else
1208 anand->raddr_cycles = 2;
1209
1210 switch (mtd->writesize) {
1211 case 512:
1212 anand->page_sz = 0;
1213 break;
1214 case 1024:
1215 anand->page_sz = 5;
1216 break;
1217 case 2048:
1218 anand->page_sz = 1;
1219 break;
1220 case 4096:
1221 anand->page_sz = 2;
1222 break;
1223 case 8192:
1224 anand->page_sz = 3;
1225 break;
1226 case 16384:
1227 anand->page_sz = 4;
1228 break;
1229 default:
1230 return -EINVAL;
1231 }
1232
1233 /* These hooks are valid for all ECC providers */
1234 chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
1235 chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
1236
1237 switch (chip->ecc.engine_type) {
1238 case NAND_ECC_ENGINE_TYPE_NONE:
1239 case NAND_ECC_ENGINE_TYPE_SOFT:
1240 case NAND_ECC_ENGINE_TYPE_ON_DIE:
1241 break;
1242 case NAND_ECC_ENGINE_TYPE_ON_HOST:
1243 ret = anfc_init_hw_ecc_controller(nfc, chip);
1244 break;
1245 default:
1246 dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
1247 chip->ecc.engine_type);
1248 return -EINVAL;
1249 }
1250
1251 return ret;
1252 }
1253
anfc_detach_chip(struct nand_chip * chip)1254 static void anfc_detach_chip(struct nand_chip *chip)
1255 {
1256 struct anand *anand = to_anand(chip);
1257
1258 if (anand->bch)
1259 bch_free(anand->bch);
1260 }
1261
1262 static const struct nand_controller_ops anfc_ops = {
1263 .exec_op = anfc_exec_op,
1264 .setup_interface = anfc_setup_interface,
1265 .attach_chip = anfc_attach_chip,
1266 .detach_chip = anfc_detach_chip,
1267 };
1268
anfc_chip_init(struct arasan_nfc * nfc,struct device_node * np)1269 static int anfc_chip_init(struct arasan_nfc *nfc, struct device_node *np)
1270 {
1271 struct anand *anand;
1272 struct nand_chip *chip;
1273 struct mtd_info *mtd;
1274 int rb, ret, i;
1275
1276 anand = devm_kzalloc(nfc->dev, sizeof(*anand), GFP_KERNEL);
1277 if (!anand)
1278 return -ENOMEM;
1279
1280 /* Chip-select init */
1281 anand->ncs_idx = of_property_count_elems_of_size(np, "reg", sizeof(u32));
1282 if (anand->ncs_idx <= 0 || anand->ncs_idx > nfc->ncs) {
1283 dev_err(nfc->dev, "Invalid reg property\n");
1284 return -EINVAL;
1285 }
1286
1287 anand->cs_idx = devm_kcalloc(nfc->dev, anand->ncs_idx,
1288 sizeof(*anand->cs_idx), GFP_KERNEL);
1289 if (!anand->cs_idx)
1290 return -ENOMEM;
1291
1292 for (i = 0; i < anand->ncs_idx; i++) {
1293 ret = of_property_read_u32_index(np, "reg", i,
1294 &anand->cs_idx[i]);
1295 if (ret) {
1296 dev_err(nfc->dev, "invalid CS property: %d\n", ret);
1297 return ret;
1298 }
1299 }
1300
1301 /* Ready-busy init */
1302 ret = of_property_read_u32(np, "nand-rb", &rb);
1303 if (ret)
1304 return ret;
1305
1306 if (rb >= ANFC_MAX_CS) {
1307 dev_err(nfc->dev, "Wrong RB %d\n", rb);
1308 return -EINVAL;
1309 }
1310
1311 anand->rb = rb;
1312
1313 chip = &anand->chip;
1314 mtd = nand_to_mtd(chip);
1315 mtd->dev.parent = nfc->dev;
1316 chip->controller = &nfc->controller;
1317 chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1318 NAND_USES_DMA;
1319
1320 nand_set_flash_node(chip, np);
1321 if (!mtd->name) {
1322 dev_err(nfc->dev, "NAND label property is mandatory\n");
1323 return -EINVAL;
1324 }
1325
1326 ret = nand_scan(chip, anand->ncs_idx);
1327 if (ret) {
1328 dev_err(nfc->dev, "Scan operation failed\n");
1329 return ret;
1330 }
1331
1332 ret = mtd_device_register(mtd, NULL, 0);
1333 if (ret) {
1334 nand_cleanup(chip);
1335 return ret;
1336 }
1337
1338 list_add_tail(&anand->node, &nfc->chips);
1339
1340 return 0;
1341 }
1342
anfc_chips_cleanup(struct arasan_nfc * nfc)1343 static void anfc_chips_cleanup(struct arasan_nfc *nfc)
1344 {
1345 struct anand *anand, *tmp;
1346 struct nand_chip *chip;
1347 int ret;
1348
1349 list_for_each_entry_safe(anand, tmp, &nfc->chips, node) {
1350 chip = &anand->chip;
1351 ret = mtd_device_unregister(nand_to_mtd(chip));
1352 WARN_ON(ret);
1353 nand_cleanup(chip);
1354 list_del(&anand->node);
1355 }
1356 }
1357
anfc_chips_init(struct arasan_nfc * nfc)1358 static int anfc_chips_init(struct arasan_nfc *nfc)
1359 {
1360 struct device_node *np = nfc->dev->of_node, *nand_np;
1361 int nchips = of_get_child_count(np);
1362 int ret;
1363
1364 if (!nchips) {
1365 dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1366 nchips);
1367 return -EINVAL;
1368 }
1369
1370 for_each_child_of_node(np, nand_np) {
1371 ret = anfc_chip_init(nfc, nand_np);
1372 if (ret) {
1373 of_node_put(nand_np);
1374 anfc_chips_cleanup(nfc);
1375 break;
1376 }
1377 }
1378
1379 return ret;
1380 }
1381
anfc_reset(struct arasan_nfc * nfc)1382 static void anfc_reset(struct arasan_nfc *nfc)
1383 {
1384 /* Disable interrupt signals */
1385 writel_relaxed(0, nfc->base + INTR_SIG_EN_REG);
1386
1387 /* Enable interrupt status */
1388 writel_relaxed(EVENT_MASK, nfc->base + INTR_STS_EN_REG);
1389
1390 nfc->cur_cs = -1;
1391 }
1392
anfc_parse_cs(struct arasan_nfc * nfc)1393 static int anfc_parse_cs(struct arasan_nfc *nfc)
1394 {
1395 int ret;
1396
1397 /* Check the gpio-cs property */
1398 ret = rawnand_dt_parse_gpio_cs(nfc->dev, &nfc->cs_array, &nfc->ncs);
1399 if (ret)
1400 return ret;
1401
1402 /*
1403 * The controller native CS cannot be both disabled at the same time.
1404 * Hence, only one native CS can be used if GPIO CS are needed, so that
1405 * the other is selected when a non-native CS must be asserted (not
1406 * wired physically or configured as GPIO instead of NAND CS). In this
1407 * case, the "not" chosen CS is assigned to nfc->spare_cs and selected
1408 * whenever a GPIO CS must be asserted.
1409 */
1410 if (nfc->cs_array && nfc->ncs > 2) {
1411 if (!nfc->cs_array[0] && !nfc->cs_array[1]) {
1412 dev_err(nfc->dev,
1413 "Assign a single native CS when using GPIOs\n");
1414 return -EINVAL;
1415 }
1416
1417 if (nfc->cs_array[0])
1418 nfc->spare_cs = 0;
1419 else
1420 nfc->spare_cs = 1;
1421 }
1422
1423 if (!nfc->cs_array) {
1424 nfc->cs_array = anfc_default_cs_array;
1425 nfc->ncs = ANFC_MAX_CS;
1426 return 0;
1427 }
1428
1429 return 0;
1430 }
1431
anfc_probe(struct platform_device * pdev)1432 static int anfc_probe(struct platform_device *pdev)
1433 {
1434 struct arasan_nfc *nfc;
1435 int ret;
1436
1437 nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1438 if (!nfc)
1439 return -ENOMEM;
1440
1441 nfc->dev = &pdev->dev;
1442 nand_controller_init(&nfc->controller);
1443 nfc->controller.ops = &anfc_ops;
1444 INIT_LIST_HEAD(&nfc->chips);
1445
1446 nfc->base = devm_platform_ioremap_resource(pdev, 0);
1447 if (IS_ERR(nfc->base))
1448 return PTR_ERR(nfc->base);
1449
1450 anfc_reset(nfc);
1451
1452 nfc->controller_clk = devm_clk_get(&pdev->dev, "controller");
1453 if (IS_ERR(nfc->controller_clk))
1454 return PTR_ERR(nfc->controller_clk);
1455
1456 nfc->bus_clk = devm_clk_get(&pdev->dev, "bus");
1457 if (IS_ERR(nfc->bus_clk))
1458 return PTR_ERR(nfc->bus_clk);
1459
1460 ret = clk_prepare_enable(nfc->controller_clk);
1461 if (ret)
1462 return ret;
1463
1464 ret = clk_prepare_enable(nfc->bus_clk);
1465 if (ret)
1466 goto disable_controller_clk;
1467
1468 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1469 if (ret)
1470 goto disable_bus_clk;
1471
1472 ret = anfc_parse_cs(nfc);
1473 if (ret)
1474 goto disable_bus_clk;
1475
1476 ret = anfc_chips_init(nfc);
1477 if (ret)
1478 goto disable_bus_clk;
1479
1480 platform_set_drvdata(pdev, nfc);
1481
1482 return 0;
1483
1484 disable_bus_clk:
1485 clk_disable_unprepare(nfc->bus_clk);
1486
1487 disable_controller_clk:
1488 clk_disable_unprepare(nfc->controller_clk);
1489
1490 return ret;
1491 }
1492
anfc_remove(struct platform_device * pdev)1493 static int anfc_remove(struct platform_device *pdev)
1494 {
1495 struct arasan_nfc *nfc = platform_get_drvdata(pdev);
1496
1497 anfc_chips_cleanup(nfc);
1498
1499 clk_disable_unprepare(nfc->bus_clk);
1500 clk_disable_unprepare(nfc->controller_clk);
1501
1502 return 0;
1503 }
1504
1505 static const struct of_device_id anfc_ids[] = {
1506 {
1507 .compatible = "xlnx,zynqmp-nand-controller",
1508 },
1509 {
1510 .compatible = "arasan,nfc-v3p10",
1511 },
1512 {}
1513 };
1514 MODULE_DEVICE_TABLE(of, anfc_ids);
1515
1516 static struct platform_driver anfc_driver = {
1517 .driver = {
1518 .name = "arasan-nand-controller",
1519 .of_match_table = anfc_ids,
1520 },
1521 .probe = anfc_probe,
1522 .remove = anfc_remove,
1523 };
1524 module_platform_driver(anfc_driver);
1525
1526 MODULE_LICENSE("GPL v2");
1527 MODULE_AUTHOR("Punnaiah Choudary Kalluri <punnaia@xilinx.com>");
1528 MODULE_AUTHOR("Naga Sureshkumar Relli <nagasure@xilinx.com>");
1529 MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>");
1530 MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");
1531