1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * ARM PL35X NAND flash controller driver
4 *
5 * Copyright (C) 2017 Xilinx, Inc
6 * Author:
7 * Miquel Raynal <miquel.raynal@bootlin.com>
8 * Original work (rewritten):
9 * Punnaiah Choudary Kalluri <punnaia@xilinx.com>
10 * Naga Sureshkumar Relli <nagasure@xilinx.com>
11 */
12
13 #include <linux/amba/bus.h>
14 #include <linux/err.h>
15 #include <linux/delay.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/ioport.h>
19 #include <linux/iopoll.h>
20 #include <linux/irq.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/mtd/rawnand.h>
25 #include <linux/mtd/partitions.h>
26 #include <linux/of_address.h>
27 #include <linux/of_device.h>
28 #include <linux/of_platform.h>
29 #include <linux/platform_device.h>
30 #include <linux/slab.h>
31 #include <linux/clk.h>
32
33 #define PL35X_NANDC_DRIVER_NAME "pl35x-nand-controller"
34
35 /* SMC controller status register (RO) */
36 #define PL35X_SMC_MEMC_STATUS 0x0
37 #define PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1 BIT(6)
38 /* SMC clear config register (WO) */
39 #define PL35X_SMC_MEMC_CFG_CLR 0xC
40 #define PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1 BIT(1)
41 #define PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 BIT(4)
42 #define PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 BIT(6)
43 /* SMC direct command register (WO) */
44 #define PL35X_SMC_DIRECT_CMD 0x10
45 #define PL35X_SMC_DIRECT_CMD_NAND_CS (0x4 << 23)
46 #define PL35X_SMC_DIRECT_CMD_UPD_REGS (0x2 << 21)
47 /* SMC set cycles register (WO) */
48 #define PL35X_SMC_CYCLES 0x14
49 #define PL35X_SMC_NAND_TRC_CYCLES(x) ((x) << 0)
50 #define PL35X_SMC_NAND_TWC_CYCLES(x) ((x) << 4)
51 #define PL35X_SMC_NAND_TREA_CYCLES(x) ((x) << 8)
52 #define PL35X_SMC_NAND_TWP_CYCLES(x) ((x) << 11)
53 #define PL35X_SMC_NAND_TCLR_CYCLES(x) ((x) << 14)
54 #define PL35X_SMC_NAND_TAR_CYCLES(x) ((x) << 17)
55 #define PL35X_SMC_NAND_TRR_CYCLES(x) ((x) << 20)
56 /* SMC set opmode register (WO) */
57 #define PL35X_SMC_OPMODE 0x18
58 #define PL35X_SMC_OPMODE_BW_8 0
59 #define PL35X_SMC_OPMODE_BW_16 1
60 /* SMC ECC status register (RO) */
61 #define PL35X_SMC_ECC_STATUS 0x400
62 #define PL35X_SMC_ECC_STATUS_ECC_BUSY BIT(6)
63 /* SMC ECC configuration register */
64 #define PL35X_SMC_ECC_CFG 0x404
65 #define PL35X_SMC_ECC_CFG_MODE_MASK 0xC
66 #define PL35X_SMC_ECC_CFG_MODE_BYPASS 0
67 #define PL35X_SMC_ECC_CFG_MODE_APB BIT(2)
68 #define PL35X_SMC_ECC_CFG_MODE_MEM BIT(3)
69 #define PL35X_SMC_ECC_CFG_PGSIZE_MASK 0x3
70 /* SMC ECC command 1 register */
71 #define PL35X_SMC_ECC_CMD1 0x408
72 #define PL35X_SMC_ECC_CMD1_WRITE(x) ((x) << 0)
73 #define PL35X_SMC_ECC_CMD1_READ(x) ((x) << 8)
74 #define PL35X_SMC_ECC_CMD1_READ_END(x) ((x) << 16)
75 #define PL35X_SMC_ECC_CMD1_READ_END_VALID(x) ((x) << 24)
76 /* SMC ECC command 2 register */
77 #define PL35X_SMC_ECC_CMD2 0x40C
78 #define PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(x) ((x) << 0)
79 #define PL35X_SMC_ECC_CMD2_READ_COL_CHG(x) ((x) << 8)
80 #define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(x) ((x) << 16)
81 #define PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(x) ((x) << 24)
82 /* SMC ECC value registers (RO) */
83 #define PL35X_SMC_ECC_VALUE(x) (0x418 + (4 * (x)))
84 #define PL35X_SMC_ECC_VALUE_IS_CORRECTABLE(x) ((x) & BIT(27))
85 #define PL35X_SMC_ECC_VALUE_HAS_FAILED(x) ((x) & BIT(28))
86 #define PL35X_SMC_ECC_VALUE_IS_VALID(x) ((x) & BIT(30))
87
88 /* NAND AXI interface */
89 #define PL35X_SMC_CMD_PHASE 0
90 #define PL35X_SMC_CMD_PHASE_CMD0(x) ((x) << 3)
91 #define PL35X_SMC_CMD_PHASE_CMD1(x) ((x) << 11)
92 #define PL35X_SMC_CMD_PHASE_CMD1_VALID BIT(20)
93 #define PL35X_SMC_CMD_PHASE_ADDR(pos, x) ((x) << (8 * (pos)))
94 #define PL35X_SMC_CMD_PHASE_NADDRS(x) ((x) << 21)
95 #define PL35X_SMC_DATA_PHASE BIT(19)
96 #define PL35X_SMC_DATA_PHASE_ECC_LAST BIT(10)
97 #define PL35X_SMC_DATA_PHASE_CLEAR_CS BIT(21)
98
99 #define PL35X_NAND_MAX_CS 1
100 #define PL35X_NAND_LAST_XFER_SZ 4
101 #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP((ps) / 1000, period_ns))
102
103 #define PL35X_NAND_ECC_BITS_MASK 0xFFF
104 #define PL35X_NAND_ECC_BYTE_OFF_MASK 0x1FF
105 #define PL35X_NAND_ECC_BIT_OFF_MASK 0x7
106
107 struct pl35x_nand_timings {
108 unsigned int t_rc:4;
109 unsigned int t_wc:4;
110 unsigned int t_rea:3;
111 unsigned int t_wp:3;
112 unsigned int t_clr:3;
113 unsigned int t_ar:3;
114 unsigned int t_rr:4;
115 unsigned int rsvd:8;
116 };
117
118 struct pl35x_nand {
119 struct list_head node;
120 struct nand_chip chip;
121 unsigned int cs;
122 unsigned int addr_cycles;
123 u32 ecc_cfg;
124 u32 timings;
125 };
126
127 /**
128 * struct pl35x_nandc - NAND flash controller driver structure
129 * @dev: Kernel device
130 * @conf_regs: SMC configuration registers for command phase
131 * @io_regs: NAND data registers for data phase
132 * @controller: Core NAND controller structure
133 * @chip: NAND chip information structure
134 * @selected_chip: NAND chip currently selected by the controller
135 * @assigned_cs: List of assigned CS
136 * @ecc_buf: Temporary buffer to extract ECC bytes
137 */
138 struct pl35x_nandc {
139 struct device *dev;
140 void __iomem *conf_regs;
141 void __iomem *io_regs;
142 struct nand_controller controller;
143 struct list_head chips;
144 struct nand_chip *selected_chip;
145 unsigned long assigned_cs;
146 u8 *ecc_buf;
147 };
148
to_pl35x_nandc(struct nand_controller * ctrl)149 static inline struct pl35x_nandc *to_pl35x_nandc(struct nand_controller *ctrl)
150 {
151 return container_of(ctrl, struct pl35x_nandc, controller);
152 }
153
to_pl35x_nand(struct nand_chip * chip)154 static inline struct pl35x_nand *to_pl35x_nand(struct nand_chip *chip)
155 {
156 return container_of(chip, struct pl35x_nand, chip);
157 }
158
pl35x_ecc_ooblayout16_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)159 static int pl35x_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
160 struct mtd_oob_region *oobregion)
161 {
162 struct nand_chip *chip = mtd_to_nand(mtd);
163
164 if (section >= chip->ecc.steps)
165 return -ERANGE;
166
167 oobregion->offset = (section * chip->ecc.bytes);
168 oobregion->length = chip->ecc.bytes;
169
170 return 0;
171 }
172
pl35x_ecc_ooblayout16_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)173 static int pl35x_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
174 struct mtd_oob_region *oobregion)
175 {
176 struct nand_chip *chip = mtd_to_nand(mtd);
177
178 if (section >= chip->ecc.steps)
179 return -ERANGE;
180
181 oobregion->offset = (section * chip->ecc.bytes) + 8;
182 oobregion->length = 8;
183
184 return 0;
185 }
186
187 static const struct mtd_ooblayout_ops pl35x_ecc_ooblayout16_ops = {
188 .ecc = pl35x_ecc_ooblayout16_ecc,
189 .free = pl35x_ecc_ooblayout16_free,
190 };
191
192 /* Generic flash bbt decriptors */
193 static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
194 static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };
195
196 static struct nand_bbt_descr bbt_main_descr = {
197 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
198 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
199 .offs = 4,
200 .len = 4,
201 .veroffs = 20,
202 .maxblocks = 4,
203 .pattern = bbt_pattern
204 };
205
206 static struct nand_bbt_descr bbt_mirror_descr = {
207 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
208 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
209 .offs = 4,
210 .len = 4,
211 .veroffs = 20,
212 .maxblocks = 4,
213 .pattern = mirror_pattern
214 };
215
pl35x_smc_update_regs(struct pl35x_nandc * nfc)216 static void pl35x_smc_update_regs(struct pl35x_nandc *nfc)
217 {
218 writel(PL35X_SMC_DIRECT_CMD_NAND_CS |
219 PL35X_SMC_DIRECT_CMD_UPD_REGS,
220 nfc->conf_regs + PL35X_SMC_DIRECT_CMD);
221 }
222
pl35x_smc_set_buswidth(struct pl35x_nandc * nfc,unsigned int bw)223 static int pl35x_smc_set_buswidth(struct pl35x_nandc *nfc, unsigned int bw)
224 {
225 if (bw != PL35X_SMC_OPMODE_BW_8 && bw != PL35X_SMC_OPMODE_BW_16)
226 return -EINVAL;
227
228 writel(bw, nfc->conf_regs + PL35X_SMC_OPMODE);
229 pl35x_smc_update_regs(nfc);
230
231 return 0;
232 }
233
pl35x_smc_clear_irq(struct pl35x_nandc * nfc)234 static void pl35x_smc_clear_irq(struct pl35x_nandc *nfc)
235 {
236 writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1,
237 nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
238 }
239
pl35x_smc_wait_for_irq(struct pl35x_nandc * nfc)240 static int pl35x_smc_wait_for_irq(struct pl35x_nandc *nfc)
241 {
242 u32 reg;
243 int ret;
244
245 ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_MEMC_STATUS, reg,
246 reg & PL35X_SMC_MEMC_STATUS_RAW_INT_STATUS1,
247 10, 1000000);
248 if (ret)
249 dev_err(nfc->dev,
250 "Timeout polling on NAND controller interrupt (0x%x)\n",
251 reg);
252
253 pl35x_smc_clear_irq(nfc);
254
255 return ret;
256 }
257
pl35x_smc_wait_for_ecc_done(struct pl35x_nandc * nfc)258 static int pl35x_smc_wait_for_ecc_done(struct pl35x_nandc *nfc)
259 {
260 u32 reg;
261 int ret;
262
263 ret = readl_poll_timeout(nfc->conf_regs + PL35X_SMC_ECC_STATUS, reg,
264 !(reg & PL35X_SMC_ECC_STATUS_ECC_BUSY),
265 10, 1000000);
266 if (ret)
267 dev_err(nfc->dev,
268 "Timeout polling on ECC controller interrupt\n");
269
270 return ret;
271 }
272
pl35x_smc_set_ecc_mode(struct pl35x_nandc * nfc,struct nand_chip * chip,unsigned int mode)273 static int pl35x_smc_set_ecc_mode(struct pl35x_nandc *nfc,
274 struct nand_chip *chip,
275 unsigned int mode)
276 {
277 struct pl35x_nand *plnand;
278 u32 ecc_cfg;
279
280 ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
281 ecc_cfg &= ~PL35X_SMC_ECC_CFG_MODE_MASK;
282 ecc_cfg |= mode;
283 writel(ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
284
285 if (chip) {
286 plnand = to_pl35x_nand(chip);
287 plnand->ecc_cfg = ecc_cfg;
288 }
289
290 if (mode != PL35X_SMC_ECC_CFG_MODE_BYPASS)
291 return pl35x_smc_wait_for_ecc_done(nfc);
292
293 return 0;
294 }
295
pl35x_smc_force_byte_access(struct nand_chip * chip,bool force_8bit)296 static void pl35x_smc_force_byte_access(struct nand_chip *chip,
297 bool force_8bit)
298 {
299 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
300 int ret;
301
302 if (!(chip->options & NAND_BUSWIDTH_16))
303 return;
304
305 if (force_8bit)
306 ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
307 else
308 ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_16);
309
310 if (ret)
311 dev_err(nfc->dev, "Error in Buswidth\n");
312 }
313
pl35x_nand_select_target(struct nand_chip * chip,unsigned int die_nr)314 static void pl35x_nand_select_target(struct nand_chip *chip,
315 unsigned int die_nr)
316 {
317 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
318 struct pl35x_nand *plnand = to_pl35x_nand(chip);
319
320 if (chip == nfc->selected_chip)
321 return;
322
323 /* Setup the timings */
324 writel(plnand->timings, nfc->conf_regs + PL35X_SMC_CYCLES);
325 pl35x_smc_update_regs(nfc);
326
327 /* Configure the ECC engine */
328 writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
329
330 nfc->selected_chip = chip;
331 }
332
pl35x_nand_read_data_op(struct nand_chip * chip,u8 * in,unsigned int len,bool force_8bit,unsigned int flags,unsigned int last_flags)333 static void pl35x_nand_read_data_op(struct nand_chip *chip, u8 *in,
334 unsigned int len, bool force_8bit,
335 unsigned int flags, unsigned int last_flags)
336 {
337 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
338 unsigned int buf_end = len / 4;
339 unsigned int in_start = round_down(len, 4);
340 unsigned int data_phase_addr;
341 u32 *buf32 = (u32 *)in;
342 u8 *buf8 = (u8 *)in;
343 int i;
344
345 if (force_8bit)
346 pl35x_smc_force_byte_access(chip, true);
347
348 for (i = 0; i < buf_end; i++) {
349 data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
350 if (i + 1 == buf_end)
351 data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
352
353 buf32[i] = readl(nfc->io_regs + data_phase_addr);
354 }
355
356 /* No working extra flags on unaligned data accesses */
357 for (i = in_start; i < len; i++)
358 buf8[i] = readb(nfc->io_regs + PL35X_SMC_DATA_PHASE);
359
360 if (force_8bit)
361 pl35x_smc_force_byte_access(chip, false);
362 }
363
pl35x_nand_write_data_op(struct nand_chip * chip,const u8 * out,int len,bool force_8bit,unsigned int flags,unsigned int last_flags)364 static void pl35x_nand_write_data_op(struct nand_chip *chip, const u8 *out,
365 int len, bool force_8bit,
366 unsigned int flags,
367 unsigned int last_flags)
368 {
369 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
370 unsigned int buf_end = len / 4;
371 unsigned int in_start = round_down(len, 4);
372 const u32 *buf32 = (const u32 *)out;
373 const u8 *buf8 = (const u8 *)out;
374 unsigned int data_phase_addr;
375 int i;
376
377 if (force_8bit)
378 pl35x_smc_force_byte_access(chip, true);
379
380 for (i = 0; i < buf_end; i++) {
381 data_phase_addr = PL35X_SMC_DATA_PHASE + flags;
382 if (i + 1 == buf_end)
383 data_phase_addr = PL35X_SMC_DATA_PHASE + last_flags;
384
385 writel(buf32[i], nfc->io_regs + data_phase_addr);
386 }
387
388 /* No working extra flags on unaligned data accesses */
389 for (i = in_start; i < len; i++)
390 writeb(buf8[i], nfc->io_regs + PL35X_SMC_DATA_PHASE);
391
392 if (force_8bit)
393 pl35x_smc_force_byte_access(chip, false);
394 }
395
pl35x_nand_correct_data(struct pl35x_nandc * nfc,unsigned char * buf,unsigned char * read_ecc,unsigned char * calc_ecc)396 static int pl35x_nand_correct_data(struct pl35x_nandc *nfc, unsigned char *buf,
397 unsigned char *read_ecc,
398 unsigned char *calc_ecc)
399 {
400 unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
401 unsigned short calc_ecc_lower, calc_ecc_upper;
402 unsigned short byte_addr, bit_addr;
403
404 read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
405 PL35X_NAND_ECC_BITS_MASK;
406 read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
407 PL35X_NAND_ECC_BITS_MASK;
408
409 calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
410 PL35X_NAND_ECC_BITS_MASK;
411 calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
412 PL35X_NAND_ECC_BITS_MASK;
413
414 ecc_odd = read_ecc_lower ^ calc_ecc_lower;
415 ecc_even = read_ecc_upper ^ calc_ecc_upper;
416
417 /* No error */
418 if (likely(!ecc_odd && !ecc_even))
419 return 0;
420
421 /* One error in the main data; to be corrected */
422 if (ecc_odd == (~ecc_even & PL35X_NAND_ECC_BITS_MASK)) {
423 /* Bits [11:3] of error code give the byte offset */
424 byte_addr = (ecc_odd >> 3) & PL35X_NAND_ECC_BYTE_OFF_MASK;
425 /* Bits [2:0] of error code give the bit offset */
426 bit_addr = ecc_odd & PL35X_NAND_ECC_BIT_OFF_MASK;
427 /* Toggle the faulty bit */
428 buf[byte_addr] ^= (BIT(bit_addr));
429
430 return 1;
431 }
432
433 /* One error in the ECC data; no action needed */
434 if (hweight32(ecc_odd | ecc_even) == 1)
435 return 1;
436
437 return -EBADMSG;
438 }
439
pl35x_nand_ecc_reg_to_array(struct nand_chip * chip,u32 ecc_reg,u8 * ecc_array)440 static void pl35x_nand_ecc_reg_to_array(struct nand_chip *chip, u32 ecc_reg,
441 u8 *ecc_array)
442 {
443 u32 ecc_value = ~ecc_reg;
444 unsigned int ecc_byte;
445
446 for (ecc_byte = 0; ecc_byte < chip->ecc.bytes; ecc_byte++)
447 ecc_array[ecc_byte] = ecc_value >> (8 * ecc_byte);
448 }
449
pl35x_nand_read_eccbytes(struct pl35x_nandc * nfc,struct nand_chip * chip,u8 * read_ecc)450 static int pl35x_nand_read_eccbytes(struct pl35x_nandc *nfc,
451 struct nand_chip *chip, u8 *read_ecc)
452 {
453 u32 ecc_value;
454 int chunk;
455
456 for (chunk = 0; chunk < chip->ecc.steps;
457 chunk++, read_ecc += chip->ecc.bytes) {
458 ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
459 if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
460 return -EINVAL;
461
462 pl35x_nand_ecc_reg_to_array(chip, ecc_value, read_ecc);
463 }
464
465 return 0;
466 }
467
pl35x_nand_recover_data_hwecc(struct pl35x_nandc * nfc,struct nand_chip * chip,u8 * data,u8 * read_ecc)468 static int pl35x_nand_recover_data_hwecc(struct pl35x_nandc *nfc,
469 struct nand_chip *chip, u8 *data,
470 u8 *read_ecc)
471 {
472 struct mtd_info *mtd = nand_to_mtd(chip);
473 unsigned int max_bitflips = 0, chunk;
474 u8 calc_ecc[3];
475 u32 ecc_value;
476 int stats;
477
478 for (chunk = 0; chunk < chip->ecc.steps;
479 chunk++, data += chip->ecc.size, read_ecc += chip->ecc.bytes) {
480 /* Read ECC value for each chunk */
481 ecc_value = readl(nfc->conf_regs + PL35X_SMC_ECC_VALUE(chunk));
482
483 if (!PL35X_SMC_ECC_VALUE_IS_VALID(ecc_value))
484 return -EINVAL;
485
486 if (PL35X_SMC_ECC_VALUE_HAS_FAILED(ecc_value)) {
487 mtd->ecc_stats.failed++;
488 continue;
489 }
490
491 pl35x_nand_ecc_reg_to_array(chip, ecc_value, calc_ecc);
492 stats = pl35x_nand_correct_data(nfc, data, read_ecc, calc_ecc);
493 if (stats < 0) {
494 mtd->ecc_stats.failed++;
495 } else {
496 mtd->ecc_stats.corrected += stats;
497 max_bitflips = max_t(unsigned int, max_bitflips, stats);
498 }
499 }
500
501 return max_bitflips;
502 }
503
pl35x_nand_write_page_hwecc(struct nand_chip * chip,const u8 * buf,int oob_required,int page)504 static int pl35x_nand_write_page_hwecc(struct nand_chip *chip,
505 const u8 *buf, int oob_required,
506 int page)
507 {
508 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
509 struct pl35x_nand *plnand = to_pl35x_nand(chip);
510 struct mtd_info *mtd = nand_to_mtd(chip);
511 unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
512 unsigned int nrows = plnand->addr_cycles;
513 u32 addr1 = 0, addr2 = 0, row;
514 u32 cmd_addr;
515 int i, ret;
516
517 ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
518 if (ret)
519 return ret;
520
521 cmd_addr = PL35X_SMC_CMD_PHASE |
522 PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
523 PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_SEQIN);
524
525 for (i = 0, row = first_row; row < nrows; i++, row++) {
526 u8 addr = page >> ((i * 8) & 0xFF);
527
528 if (row < 4)
529 addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
530 else
531 addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
532 }
533
534 /* Send the command and address cycles */
535 writel(addr1, nfc->io_regs + cmd_addr);
536 if (plnand->addr_cycles > 4)
537 writel(addr2, nfc->io_regs + cmd_addr);
538
539 /* Write the data with the engine enabled */
540 pl35x_nand_write_data_op(chip, buf, mtd->writesize, false,
541 0, PL35X_SMC_DATA_PHASE_ECC_LAST);
542 ret = pl35x_smc_wait_for_ecc_done(nfc);
543 if (ret)
544 goto disable_ecc_engine;
545
546 /* Copy the HW calculated ECC bytes in the OOB buffer */
547 ret = pl35x_nand_read_eccbytes(nfc, chip, nfc->ecc_buf);
548 if (ret)
549 goto disable_ecc_engine;
550
551 if (!oob_required)
552 memset(chip->oob_poi, 0xFF, mtd->oobsize);
553
554 ret = mtd_ooblayout_set_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi,
555 0, chip->ecc.total);
556 if (ret)
557 goto disable_ecc_engine;
558
559 /* Write the spare area with ECC bytes */
560 pl35x_nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false, 0,
561 PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_PAGEPROG) |
562 PL35X_SMC_CMD_PHASE_CMD1_VALID |
563 PL35X_SMC_DATA_PHASE_CLEAR_CS);
564 ret = pl35x_smc_wait_for_irq(nfc);
565 if (ret)
566 goto disable_ecc_engine;
567
568 disable_ecc_engine:
569 pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
570
571 return ret;
572 }
573
574 /*
575 * This functions reads data and checks the data integrity by comparing hardware
576 * generated ECC values and read ECC values from spare area.
577 *
578 * There is a limitation with SMC controller: ECC_LAST must be set on the
579 * last data access to tell the ECC engine not to expect any further data.
580 * In practice, this implies to shrink the last data transfert by eg. 4 bytes,
581 * and doing a last 4-byte transfer with the additional bit set. The last block
582 * should be aligned with the end of an ECC block. Because of this limitation,
583 * it is not possible to use the core routines.
584 */
pl35x_nand_read_page_hwecc(struct nand_chip * chip,u8 * buf,int oob_required,int page)585 static int pl35x_nand_read_page_hwecc(struct nand_chip *chip,
586 u8 *buf, int oob_required, int page)
587 {
588 const struct nand_sdr_timings *sdr =
589 nand_get_sdr_timings(nand_get_interface_config(chip));
590 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
591 struct pl35x_nand *plnand = to_pl35x_nand(chip);
592 struct mtd_info *mtd = nand_to_mtd(chip);
593 unsigned int first_row = (mtd->writesize <= 512) ? 1 : 2;
594 unsigned int nrows = plnand->addr_cycles;
595 unsigned int addr1 = 0, addr2 = 0, row;
596 u32 cmd_addr;
597 int i, ret;
598
599 ret = pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_APB);
600 if (ret)
601 return ret;
602
603 cmd_addr = PL35X_SMC_CMD_PHASE |
604 PL35X_SMC_CMD_PHASE_NADDRS(plnand->addr_cycles) |
605 PL35X_SMC_CMD_PHASE_CMD0(NAND_CMD_READ0) |
606 PL35X_SMC_CMD_PHASE_CMD1(NAND_CMD_READSTART) |
607 PL35X_SMC_CMD_PHASE_CMD1_VALID;
608
609 for (i = 0, row = first_row; row < nrows; i++, row++) {
610 u8 addr = page >> ((i * 8) & 0xFF);
611
612 if (row < 4)
613 addr1 |= PL35X_SMC_CMD_PHASE_ADDR(row, addr);
614 else
615 addr2 |= PL35X_SMC_CMD_PHASE_ADDR(row - 4, addr);
616 }
617
618 /* Send the command and address cycles */
619 writel(addr1, nfc->io_regs + cmd_addr);
620 if (plnand->addr_cycles > 4)
621 writel(addr2, nfc->io_regs + cmd_addr);
622
623 /* Wait the data to be available in the NAND cache */
624 ndelay(PSEC_TO_NSEC(sdr->tRR_min));
625 ret = pl35x_smc_wait_for_irq(nfc);
626 if (ret)
627 goto disable_ecc_engine;
628
629 /* Retrieve the raw data with the engine enabled */
630 pl35x_nand_read_data_op(chip, buf, mtd->writesize, false,
631 0, PL35X_SMC_DATA_PHASE_ECC_LAST);
632 ret = pl35x_smc_wait_for_ecc_done(nfc);
633 if (ret)
634 goto disable_ecc_engine;
635
636 /* Retrieve the stored ECC bytes */
637 pl35x_nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
638 0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
639 ret = mtd_ooblayout_get_eccbytes(mtd, nfc->ecc_buf, chip->oob_poi, 0,
640 chip->ecc.total);
641 if (ret)
642 goto disable_ecc_engine;
643
644 pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
645
646 /* Correct the data and report failures */
647 return pl35x_nand_recover_data_hwecc(nfc, chip, buf, nfc->ecc_buf);
648
649 disable_ecc_engine:
650 pl35x_smc_set_ecc_mode(nfc, chip, PL35X_SMC_ECC_CFG_MODE_BYPASS);
651
652 return ret;
653 }
654
pl35x_nand_exec_op(struct nand_chip * chip,const struct nand_subop * subop)655 static int pl35x_nand_exec_op(struct nand_chip *chip,
656 const struct nand_subop *subop)
657 {
658 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
659 const struct nand_op_instr *instr, *data_instr = NULL;
660 unsigned int rdy_tim_ms = 0, naddrs = 0, cmds = 0, last_flags = 0;
661 u32 addr1 = 0, addr2 = 0, cmd0 = 0, cmd1 = 0, cmd_addr = 0;
662 unsigned int op_id, len, offset, rdy_del_ns;
663 int last_instr_type = -1;
664 bool cmd1_valid = false;
665 const u8 *addrs;
666 int i, ret;
667
668 for (op_id = 0; op_id < subop->ninstrs; op_id++) {
669 instr = &subop->instrs[op_id];
670
671 switch (instr->type) {
672 case NAND_OP_CMD_INSTR:
673 if (!cmds) {
674 cmd0 = PL35X_SMC_CMD_PHASE_CMD0(instr->ctx.cmd.opcode);
675 } else {
676 cmd1 = PL35X_SMC_CMD_PHASE_CMD1(instr->ctx.cmd.opcode);
677 if (last_instr_type != NAND_OP_DATA_OUT_INSTR)
678 cmd1_valid = true;
679 }
680 cmds++;
681 break;
682
683 case NAND_OP_ADDR_INSTR:
684 offset = nand_subop_get_addr_start_off(subop, op_id);
685 naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
686 addrs = &instr->ctx.addr.addrs[offset];
687 cmd_addr |= PL35X_SMC_CMD_PHASE_NADDRS(naddrs);
688
689 for (i = offset; i < naddrs; i++) {
690 if (i < 4)
691 addr1 |= PL35X_SMC_CMD_PHASE_ADDR(i, addrs[i]);
692 else
693 addr2 |= PL35X_SMC_CMD_PHASE_ADDR(i - 4, addrs[i]);
694 }
695 break;
696
697 case NAND_OP_DATA_IN_INSTR:
698 case NAND_OP_DATA_OUT_INSTR:
699 data_instr = instr;
700 len = nand_subop_get_data_len(subop, op_id);
701 break;
702
703 case NAND_OP_WAITRDY_INSTR:
704 rdy_tim_ms = instr->ctx.waitrdy.timeout_ms;
705 rdy_del_ns = instr->delay_ns;
706 break;
707 }
708
709 last_instr_type = instr->type;
710 }
711
712 /* Command phase */
713 cmd_addr |= PL35X_SMC_CMD_PHASE | cmd0 | cmd1 |
714 (cmd1_valid ? PL35X_SMC_CMD_PHASE_CMD1_VALID : 0);
715 writel(addr1, nfc->io_regs + cmd_addr);
716 if (naddrs > 4)
717 writel(addr2, nfc->io_regs + cmd_addr);
718
719 /* Data phase */
720 if (data_instr && data_instr->type == NAND_OP_DATA_OUT_INSTR) {
721 last_flags = PL35X_SMC_DATA_PHASE_CLEAR_CS;
722 if (cmds == 2)
723 last_flags |= cmd1 | PL35X_SMC_CMD_PHASE_CMD1_VALID;
724
725 pl35x_nand_write_data_op(chip, data_instr->ctx.data.buf.out,
726 len, data_instr->ctx.data.force_8bit,
727 0, last_flags);
728 }
729
730 if (rdy_tim_ms) {
731 ndelay(rdy_del_ns);
732 ret = pl35x_smc_wait_for_irq(nfc);
733 if (ret)
734 return ret;
735 }
736
737 if (data_instr && data_instr->type == NAND_OP_DATA_IN_INSTR)
738 pl35x_nand_read_data_op(chip, data_instr->ctx.data.buf.in,
739 len, data_instr->ctx.data.force_8bit,
740 0, PL35X_SMC_DATA_PHASE_CLEAR_CS);
741
742 return 0;
743 }
744
745 static const struct nand_op_parser pl35x_nandc_op_parser = NAND_OP_PARSER(
746 NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
747 NAND_OP_PARSER_PAT_CMD_ELEM(true),
748 NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
749 NAND_OP_PARSER_PAT_CMD_ELEM(true),
750 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
751 NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2112)),
752 NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
753 NAND_OP_PARSER_PAT_CMD_ELEM(false),
754 NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
755 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
756 NAND_OP_PARSER_PAT_CMD_ELEM(false),
757 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
758 NAND_OP_PARSER_PATTERN(pl35x_nand_exec_op,
759 NAND_OP_PARSER_PAT_CMD_ELEM(false),
760 NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
761 NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2112),
762 NAND_OP_PARSER_PAT_CMD_ELEM(true),
763 NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
764 );
765
pl35x_nfc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)766 static int pl35x_nfc_exec_op(struct nand_chip *chip,
767 const struct nand_operation *op,
768 bool check_only)
769 {
770 if (!check_only)
771 pl35x_nand_select_target(chip, op->cs);
772
773 return nand_op_parser_exec_op(chip, &pl35x_nandc_op_parser,
774 op, check_only);
775 }
776
pl35x_nfc_setup_interface(struct nand_chip * chip,int cs,const struct nand_interface_config * conf)777 static int pl35x_nfc_setup_interface(struct nand_chip *chip, int cs,
778 const struct nand_interface_config *conf)
779 {
780 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
781 struct pl35x_nand *plnand = to_pl35x_nand(chip);
782 struct pl35x_nand_timings tmgs = {};
783 const struct nand_sdr_timings *sdr;
784 unsigned int period_ns, val;
785 struct clk *mclk;
786
787 sdr = nand_get_sdr_timings(conf);
788 if (IS_ERR(sdr))
789 return PTR_ERR(sdr);
790
791 mclk = of_clk_get_by_name(nfc->dev->parent->of_node, "memclk");
792 if (IS_ERR(mclk)) {
793 dev_err(nfc->dev, "Failed to retrieve SMC memclk\n");
794 return PTR_ERR(mclk);
795 }
796
797 /*
798 * SDR timings are given in pico-seconds while NFC timings must be
799 * expressed in NAND controller clock cycles. We use the TO_CYCLE()
800 * macro to convert from one to the other.
801 */
802 period_ns = NSEC_PER_SEC / clk_get_rate(mclk);
803
804 /*
805 * PL35X SMC needs one extra read cycle in SDR Mode 5. This is not
806 * written anywhere in the datasheet but is an empirical observation.
807 */
808 val = TO_CYCLES(sdr->tRC_min, period_ns);
809 if (sdr->tRC_min <= 20000)
810 val++;
811
812 tmgs.t_rc = val;
813 if (tmgs.t_rc != val || tmgs.t_rc < 2)
814 return -EINVAL;
815
816 val = TO_CYCLES(sdr->tWC_min, period_ns);
817 tmgs.t_wc = val;
818 if (tmgs.t_wc != val || tmgs.t_wc < 2)
819 return -EINVAL;
820
821 /*
822 * For all SDR modes, PL35X SMC needs tREA_max being 1,
823 * this is also an empirical result.
824 */
825 tmgs.t_rea = 1;
826
827 val = TO_CYCLES(sdr->tWP_min, period_ns);
828 tmgs.t_wp = val;
829 if (tmgs.t_wp != val || tmgs.t_wp < 1)
830 return -EINVAL;
831
832 val = TO_CYCLES(sdr->tCLR_min, period_ns);
833 tmgs.t_clr = val;
834 if (tmgs.t_clr != val)
835 return -EINVAL;
836
837 val = TO_CYCLES(sdr->tAR_min, period_ns);
838 tmgs.t_ar = val;
839 if (tmgs.t_ar != val)
840 return -EINVAL;
841
842 val = TO_CYCLES(sdr->tRR_min, period_ns);
843 tmgs.t_rr = val;
844 if (tmgs.t_rr != val)
845 return -EINVAL;
846
847 if (cs == NAND_DATA_IFACE_CHECK_ONLY)
848 return 0;
849
850 plnand->timings = PL35X_SMC_NAND_TRC_CYCLES(tmgs.t_rc) |
851 PL35X_SMC_NAND_TWC_CYCLES(tmgs.t_wc) |
852 PL35X_SMC_NAND_TREA_CYCLES(tmgs.t_rea) |
853 PL35X_SMC_NAND_TWP_CYCLES(tmgs.t_wp) |
854 PL35X_SMC_NAND_TCLR_CYCLES(tmgs.t_clr) |
855 PL35X_SMC_NAND_TAR_CYCLES(tmgs.t_ar) |
856 PL35X_SMC_NAND_TRR_CYCLES(tmgs.t_rr);
857
858 return 0;
859 }
860
pl35x_smc_set_ecc_pg_size(struct pl35x_nandc * nfc,struct nand_chip * chip,unsigned int pg_sz)861 static void pl35x_smc_set_ecc_pg_size(struct pl35x_nandc *nfc,
862 struct nand_chip *chip,
863 unsigned int pg_sz)
864 {
865 struct pl35x_nand *plnand = to_pl35x_nand(chip);
866 u32 sz;
867
868 switch (pg_sz) {
869 case SZ_512:
870 sz = 1;
871 break;
872 case SZ_1K:
873 sz = 2;
874 break;
875 case SZ_2K:
876 sz = 3;
877 break;
878 default:
879 sz = 0;
880 break;
881 }
882
883 plnand->ecc_cfg = readl(nfc->conf_regs + PL35X_SMC_ECC_CFG);
884 plnand->ecc_cfg &= ~PL35X_SMC_ECC_CFG_PGSIZE_MASK;
885 plnand->ecc_cfg |= sz;
886 writel(plnand->ecc_cfg, nfc->conf_regs + PL35X_SMC_ECC_CFG);
887 }
888
pl35x_nand_init_hw_ecc_controller(struct pl35x_nandc * nfc,struct nand_chip * chip)889 static int pl35x_nand_init_hw_ecc_controller(struct pl35x_nandc *nfc,
890 struct nand_chip *chip)
891 {
892 struct mtd_info *mtd = nand_to_mtd(chip);
893 int ret = 0;
894
895 if (mtd->writesize < SZ_512 || mtd->writesize > SZ_2K) {
896 dev_err(nfc->dev,
897 "The hardware ECC engine is limited to pages up to 2kiB\n");
898 return -EOPNOTSUPP;
899 }
900
901 chip->ecc.strength = 1;
902 chip->ecc.bytes = 3;
903 chip->ecc.size = SZ_512;
904 chip->ecc.steps = mtd->writesize / chip->ecc.size;
905 chip->ecc.read_page = pl35x_nand_read_page_hwecc;
906 chip->ecc.write_page = pl35x_nand_write_page_hwecc;
907 chip->ecc.write_page_raw = nand_monolithic_write_page_raw;
908 pl35x_smc_set_ecc_pg_size(nfc, chip, mtd->writesize);
909
910 nfc->ecc_buf = devm_kmalloc(nfc->dev, chip->ecc.bytes * chip->ecc.steps,
911 GFP_KERNEL);
912 if (!nfc->ecc_buf)
913 return -ENOMEM;
914
915 switch (mtd->oobsize) {
916 case 16:
917 /* Legacy Xilinx layout */
918 mtd_set_ooblayout(mtd, &pl35x_ecc_ooblayout16_ops);
919 chip->bbt_options |= NAND_BBT_NO_OOB_BBM;
920 break;
921 case 64:
922 mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());
923 break;
924 default:
925 dev_err(nfc->dev, "Unsupported OOB size\n");
926 return -EOPNOTSUPP;
927 }
928
929 return ret;
930 }
931
pl35x_nand_attach_chip(struct nand_chip * chip)932 static int pl35x_nand_attach_chip(struct nand_chip *chip)
933 {
934 const struct nand_ecc_props *requirements =
935 nanddev_get_ecc_requirements(&chip->base);
936 struct pl35x_nandc *nfc = to_pl35x_nandc(chip->controller);
937 struct pl35x_nand *plnand = to_pl35x_nand(chip);
938 struct mtd_info *mtd = nand_to_mtd(chip);
939 int ret;
940
941 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
942 (!chip->ecc.size || !chip->ecc.strength)) {
943 if (requirements->step_size && requirements->strength) {
944 chip->ecc.size = requirements->step_size;
945 chip->ecc.strength = requirements->strength;
946 } else {
947 dev_info(nfc->dev,
948 "No minimum ECC strength, using 1b/512B\n");
949 chip->ecc.size = 512;
950 chip->ecc.strength = 1;
951 }
952 }
953
954 if (mtd->writesize <= SZ_512)
955 plnand->addr_cycles = 1;
956 else
957 plnand->addr_cycles = 2;
958
959 if (chip->options & NAND_ROW_ADDR_3)
960 plnand->addr_cycles += 3;
961 else
962 plnand->addr_cycles += 2;
963
964 switch (chip->ecc.engine_type) {
965 case NAND_ECC_ENGINE_TYPE_ON_DIE:
966 /* Keep these legacy BBT descriptors for ON_DIE situations */
967 chip->bbt_td = &bbt_main_descr;
968 chip->bbt_md = &bbt_mirror_descr;
969 fallthrough;
970 case NAND_ECC_ENGINE_TYPE_NONE:
971 case NAND_ECC_ENGINE_TYPE_SOFT:
972 break;
973 case NAND_ECC_ENGINE_TYPE_ON_HOST:
974 ret = pl35x_nand_init_hw_ecc_controller(nfc, chip);
975 if (ret)
976 return ret;
977 break;
978 default:
979 dev_err(nfc->dev, "Unsupported ECC mode: %d\n",
980 chip->ecc.engine_type);
981 return -EINVAL;
982 }
983
984 return 0;
985 }
986
987 static const struct nand_controller_ops pl35x_nandc_ops = {
988 .attach_chip = pl35x_nand_attach_chip,
989 .exec_op = pl35x_nfc_exec_op,
990 .setup_interface = pl35x_nfc_setup_interface,
991 };
992
pl35x_nand_reset_state(struct pl35x_nandc * nfc)993 static int pl35x_nand_reset_state(struct pl35x_nandc *nfc)
994 {
995 int ret;
996
997 /* Disable interrupts and clear their status */
998 writel(PL35X_SMC_MEMC_CFG_CLR_INT_CLR_1 |
999 PL35X_SMC_MEMC_CFG_CLR_ECC_INT_DIS_1 |
1000 PL35X_SMC_MEMC_CFG_CLR_INT_DIS_1,
1001 nfc->conf_regs + PL35X_SMC_MEMC_CFG_CLR);
1002
1003 /* Set default bus width to 8-bit */
1004 ret = pl35x_smc_set_buswidth(nfc, PL35X_SMC_OPMODE_BW_8);
1005 if (ret)
1006 return ret;
1007
1008 /* Ensure the ECC controller is bypassed by default */
1009 ret = pl35x_smc_set_ecc_mode(nfc, NULL, PL35X_SMC_ECC_CFG_MODE_BYPASS);
1010 if (ret)
1011 return ret;
1012
1013 /*
1014 * Configure the commands that the ECC block uses to detect the
1015 * operations it should start/end.
1016 */
1017 writel(PL35X_SMC_ECC_CMD1_WRITE(NAND_CMD_SEQIN) |
1018 PL35X_SMC_ECC_CMD1_READ(NAND_CMD_READ0) |
1019 PL35X_SMC_ECC_CMD1_READ_END(NAND_CMD_READSTART) |
1020 PL35X_SMC_ECC_CMD1_READ_END_VALID(NAND_CMD_READ1),
1021 nfc->conf_regs + PL35X_SMC_ECC_CMD1);
1022 writel(PL35X_SMC_ECC_CMD2_WRITE_COL_CHG(NAND_CMD_RNDIN) |
1023 PL35X_SMC_ECC_CMD2_READ_COL_CHG(NAND_CMD_RNDOUT) |
1024 PL35X_SMC_ECC_CMD2_READ_COL_CHG_END(NAND_CMD_RNDOUTSTART) |
1025 PL35X_SMC_ECC_CMD2_READ_COL_CHG_END_VALID(NAND_CMD_READ1),
1026 nfc->conf_regs + PL35X_SMC_ECC_CMD2);
1027
1028 return 0;
1029 }
1030
pl35x_nand_chip_init(struct pl35x_nandc * nfc,struct device_node * np)1031 static int pl35x_nand_chip_init(struct pl35x_nandc *nfc,
1032 struct device_node *np)
1033 {
1034 struct pl35x_nand *plnand;
1035 struct nand_chip *chip;
1036 struct mtd_info *mtd;
1037 int cs, ret;
1038
1039 plnand = devm_kzalloc(nfc->dev, sizeof(*plnand), GFP_KERNEL);
1040 if (!plnand)
1041 return -ENOMEM;
1042
1043 ret = of_property_read_u32(np, "reg", &cs);
1044 if (ret)
1045 return ret;
1046
1047 if (cs >= PL35X_NAND_MAX_CS) {
1048 dev_err(nfc->dev, "Wrong CS %d\n", cs);
1049 return -EINVAL;
1050 }
1051
1052 if (test_and_set_bit(cs, &nfc->assigned_cs)) {
1053 dev_err(nfc->dev, "Already assigned CS %d\n", cs);
1054 return -EINVAL;
1055 }
1056
1057 plnand->cs = cs;
1058
1059 chip = &plnand->chip;
1060 chip->options = NAND_BUSWIDTH_AUTO | NAND_USES_DMA | NAND_NO_SUBPAGE_WRITE;
1061 chip->bbt_options = NAND_BBT_USE_FLASH;
1062 chip->controller = &nfc->controller;
1063 mtd = nand_to_mtd(chip);
1064 mtd->dev.parent = nfc->dev;
1065 nand_set_flash_node(chip, nfc->dev->of_node);
1066 if (!mtd->name) {
1067 mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL,
1068 "%s", PL35X_NANDC_DRIVER_NAME);
1069 if (!mtd->name) {
1070 dev_err(nfc->dev, "Failed to allocate mtd->name\n");
1071 return -ENOMEM;
1072 }
1073 }
1074
1075 ret = nand_scan(chip, 1);
1076 if (ret)
1077 return ret;
1078
1079 ret = mtd_device_register(mtd, NULL, 0);
1080 if (ret) {
1081 nand_cleanup(chip);
1082 return ret;
1083 }
1084
1085 list_add_tail(&plnand->node, &nfc->chips);
1086
1087 return ret;
1088 }
1089
pl35x_nand_chips_cleanup(struct pl35x_nandc * nfc)1090 static void pl35x_nand_chips_cleanup(struct pl35x_nandc *nfc)
1091 {
1092 struct pl35x_nand *plnand, *tmp;
1093 struct nand_chip *chip;
1094 int ret;
1095
1096 list_for_each_entry_safe(plnand, tmp, &nfc->chips, node) {
1097 chip = &plnand->chip;
1098 ret = mtd_device_unregister(nand_to_mtd(chip));
1099 WARN_ON(ret);
1100 nand_cleanup(chip);
1101 list_del(&plnand->node);
1102 }
1103 }
1104
pl35x_nand_chips_init(struct pl35x_nandc * nfc)1105 static int pl35x_nand_chips_init(struct pl35x_nandc *nfc)
1106 {
1107 struct device_node *np = nfc->dev->of_node, *nand_np;
1108 int nchips = of_get_child_count(np);
1109 int ret;
1110
1111 if (!nchips || nchips > PL35X_NAND_MAX_CS) {
1112 dev_err(nfc->dev, "Incorrect number of NAND chips (%d)\n",
1113 nchips);
1114 return -EINVAL;
1115 }
1116
1117 for_each_child_of_node(np, nand_np) {
1118 ret = pl35x_nand_chip_init(nfc, nand_np);
1119 if (ret) {
1120 of_node_put(nand_np);
1121 pl35x_nand_chips_cleanup(nfc);
1122 break;
1123 }
1124 }
1125
1126 return ret;
1127 }
1128
pl35x_nand_probe(struct platform_device * pdev)1129 static int pl35x_nand_probe(struct platform_device *pdev)
1130 {
1131 struct device *smc_dev = pdev->dev.parent;
1132 struct amba_device *smc_amba = to_amba_device(smc_dev);
1133 struct pl35x_nandc *nfc;
1134 u32 ret;
1135
1136 nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
1137 if (!nfc)
1138 return -ENOMEM;
1139
1140 nfc->dev = &pdev->dev;
1141 nand_controller_init(&nfc->controller);
1142 nfc->controller.ops = &pl35x_nandc_ops;
1143 INIT_LIST_HEAD(&nfc->chips);
1144
1145 nfc->conf_regs = devm_ioremap_resource(&smc_amba->dev, &smc_amba->res);
1146 if (IS_ERR(nfc->conf_regs))
1147 return PTR_ERR(nfc->conf_regs);
1148
1149 nfc->io_regs = devm_platform_ioremap_resource(pdev, 0);
1150 if (IS_ERR(nfc->io_regs))
1151 return PTR_ERR(nfc->io_regs);
1152
1153 ret = pl35x_nand_reset_state(nfc);
1154 if (ret)
1155 return ret;
1156
1157 ret = pl35x_nand_chips_init(nfc);
1158 if (ret)
1159 return ret;
1160
1161 platform_set_drvdata(pdev, nfc);
1162
1163 return 0;
1164 }
1165
pl35x_nand_remove(struct platform_device * pdev)1166 static int pl35x_nand_remove(struct platform_device *pdev)
1167 {
1168 struct pl35x_nandc *nfc = platform_get_drvdata(pdev);
1169
1170 pl35x_nand_chips_cleanup(nfc);
1171
1172 return 0;
1173 }
1174
1175 static const struct of_device_id pl35x_nand_of_match[] = {
1176 { .compatible = "arm,pl353-nand-r2p1" },
1177 {},
1178 };
1179 MODULE_DEVICE_TABLE(of, pl35x_nand_of_match);
1180
1181 static struct platform_driver pl35x_nandc_driver = {
1182 .probe = pl35x_nand_probe,
1183 .remove = pl35x_nand_remove,
1184 .driver = {
1185 .name = PL35X_NANDC_DRIVER_NAME,
1186 .of_match_table = pl35x_nand_of_match,
1187 },
1188 };
1189 module_platform_driver(pl35x_nandc_driver);
1190
1191 MODULE_AUTHOR("Xilinx, Inc.");
1192 MODULE_ALIAS("platform:" PL35X_NANDC_DRIVER_NAME);
1193 MODULE_DESCRIPTION("ARM PL35X NAND controller driver");
1194 MODULE_LICENSE("GPL");
1195