1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* The driver transmit and receive code */
5
6 #include <linux/prefetch.h>
7 #include <linux/mm.h>
8 #include <linux/bpf_trace.h>
9 #include <net/dsfield.h>
10 #include <net/xdp.h>
11 #include "ice_txrx_lib.h"
12 #include "ice_lib.h"
13 #include "ice.h"
14 #include "ice_trace.h"
15 #include "ice_dcb_lib.h"
16 #include "ice_xsk.h"
17 #include "ice_eswitch.h"
18
19 #define ICE_RX_HDR_SIZE 256
20
21 #define FDIR_DESC_RXDID 0x40
22 #define ICE_FDIR_CLEAN_DELAY 10
23
24 /**
25 * ice_prgm_fdir_fltr - Program a Flow Director filter
26 * @vsi: VSI to send dummy packet
27 * @fdir_desc: flow director descriptor
28 * @raw_packet: allocated buffer for flow director
29 */
30 int
ice_prgm_fdir_fltr(struct ice_vsi * vsi,struct ice_fltr_desc * fdir_desc,u8 * raw_packet)31 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
32 u8 *raw_packet)
33 {
34 struct ice_tx_buf *tx_buf, *first;
35 struct ice_fltr_desc *f_desc;
36 struct ice_tx_desc *tx_desc;
37 struct ice_tx_ring *tx_ring;
38 struct device *dev;
39 dma_addr_t dma;
40 u32 td_cmd;
41 u16 i;
42
43 /* VSI and Tx ring */
44 if (!vsi)
45 return -ENOENT;
46 tx_ring = vsi->tx_rings[0];
47 if (!tx_ring || !tx_ring->desc)
48 return -ENOENT;
49 dev = tx_ring->dev;
50
51 /* we are using two descriptors to add/del a filter and we can wait */
52 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
53 if (!i)
54 return -EAGAIN;
55 msleep_interruptible(1);
56 }
57
58 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
59 DMA_TO_DEVICE);
60
61 if (dma_mapping_error(dev, dma))
62 return -EINVAL;
63
64 /* grab the next descriptor */
65 i = tx_ring->next_to_use;
66 first = &tx_ring->tx_buf[i];
67 f_desc = ICE_TX_FDIRDESC(tx_ring, i);
68 memcpy(f_desc, fdir_desc, sizeof(*f_desc));
69
70 i++;
71 i = (i < tx_ring->count) ? i : 0;
72 tx_desc = ICE_TX_DESC(tx_ring, i);
73 tx_buf = &tx_ring->tx_buf[i];
74
75 i++;
76 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
77
78 memset(tx_buf, 0, sizeof(*tx_buf));
79 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
80 dma_unmap_addr_set(tx_buf, dma, dma);
81
82 tx_desc->buf_addr = cpu_to_le64(dma);
83 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
84 ICE_TX_DESC_CMD_RE;
85
86 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
87 tx_buf->raw_buf = raw_packet;
88
89 tx_desc->cmd_type_offset_bsz =
90 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
91
92 /* Force memory write to complete before letting h/w know
93 * there are new descriptors to fetch.
94 */
95 wmb();
96
97 /* mark the data descriptor to be watched */
98 first->next_to_watch = tx_desc;
99
100 writel(tx_ring->next_to_use, tx_ring->tail);
101
102 return 0;
103 }
104
105 /**
106 * ice_unmap_and_free_tx_buf - Release a Tx buffer
107 * @ring: the ring that owns the buffer
108 * @tx_buf: the buffer to free
109 */
110 static void
ice_unmap_and_free_tx_buf(struct ice_tx_ring * ring,struct ice_tx_buf * tx_buf)111 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
112 {
113 if (tx_buf->skb) {
114 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
115 devm_kfree(ring->dev, tx_buf->raw_buf);
116 else if (ice_ring_is_xdp(ring))
117 page_frag_free(tx_buf->raw_buf);
118 else
119 dev_kfree_skb_any(tx_buf->skb);
120 if (dma_unmap_len(tx_buf, len))
121 dma_unmap_single(ring->dev,
122 dma_unmap_addr(tx_buf, dma),
123 dma_unmap_len(tx_buf, len),
124 DMA_TO_DEVICE);
125 } else if (dma_unmap_len(tx_buf, len)) {
126 dma_unmap_page(ring->dev,
127 dma_unmap_addr(tx_buf, dma),
128 dma_unmap_len(tx_buf, len),
129 DMA_TO_DEVICE);
130 }
131
132 tx_buf->next_to_watch = NULL;
133 tx_buf->skb = NULL;
134 dma_unmap_len_set(tx_buf, len, 0);
135 /* tx_buf must be completely set up in the transmit path */
136 }
137
txring_txq(const struct ice_tx_ring * ring)138 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
139 {
140 return netdev_get_tx_queue(ring->netdev, ring->q_index);
141 }
142
143 /**
144 * ice_clean_tx_ring - Free any empty Tx buffers
145 * @tx_ring: ring to be cleaned
146 */
ice_clean_tx_ring(struct ice_tx_ring * tx_ring)147 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
148 {
149 u32 size;
150 u16 i;
151
152 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
153 ice_xsk_clean_xdp_ring(tx_ring);
154 goto tx_skip_free;
155 }
156
157 /* ring already cleared, nothing to do */
158 if (!tx_ring->tx_buf)
159 return;
160
161 /* Free all the Tx ring sk_buffs */
162 for (i = 0; i < tx_ring->count; i++)
163 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
164
165 tx_skip_free:
166 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
167
168 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
169 PAGE_SIZE);
170 /* Zero out the descriptor ring */
171 memset(tx_ring->desc, 0, size);
172
173 tx_ring->next_to_use = 0;
174 tx_ring->next_to_clean = 0;
175
176 if (!tx_ring->netdev)
177 return;
178
179 /* cleanup Tx queue statistics */
180 netdev_tx_reset_queue(txring_txq(tx_ring));
181 }
182
183 /**
184 * ice_free_tx_ring - Free Tx resources per queue
185 * @tx_ring: Tx descriptor ring for a specific queue
186 *
187 * Free all transmit software resources
188 */
ice_free_tx_ring(struct ice_tx_ring * tx_ring)189 void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
190 {
191 u32 size;
192
193 ice_clean_tx_ring(tx_ring);
194 devm_kfree(tx_ring->dev, tx_ring->tx_buf);
195 tx_ring->tx_buf = NULL;
196
197 if (tx_ring->desc) {
198 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
199 PAGE_SIZE);
200 dmam_free_coherent(tx_ring->dev, size,
201 tx_ring->desc, tx_ring->dma);
202 tx_ring->desc = NULL;
203 }
204 }
205
206 /**
207 * ice_clean_tx_irq - Reclaim resources after transmit completes
208 * @tx_ring: Tx ring to clean
209 * @napi_budget: Used to determine if we are in netpoll
210 *
211 * Returns true if there's any budget left (e.g. the clean is finished)
212 */
ice_clean_tx_irq(struct ice_tx_ring * tx_ring,int napi_budget)213 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
214 {
215 unsigned int total_bytes = 0, total_pkts = 0;
216 unsigned int budget = ICE_DFLT_IRQ_WORK;
217 struct ice_vsi *vsi = tx_ring->vsi;
218 s16 i = tx_ring->next_to_clean;
219 struct ice_tx_desc *tx_desc;
220 struct ice_tx_buf *tx_buf;
221
222 tx_buf = &tx_ring->tx_buf[i];
223 tx_desc = ICE_TX_DESC(tx_ring, i);
224 i -= tx_ring->count;
225
226 prefetch(&vsi->state);
227
228 do {
229 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
230
231 /* if next_to_watch is not set then there is no work pending */
232 if (!eop_desc)
233 break;
234
235 smp_rmb(); /* prevent any other reads prior to eop_desc */
236
237 ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
238 /* if the descriptor isn't done, no work yet to do */
239 if (!(eop_desc->cmd_type_offset_bsz &
240 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
241 break;
242
243 /* clear next_to_watch to prevent false hangs */
244 tx_buf->next_to_watch = NULL;
245
246 /* update the statistics for this packet */
247 total_bytes += tx_buf->bytecount;
248 total_pkts += tx_buf->gso_segs;
249
250 /* free the skb */
251 napi_consume_skb(tx_buf->skb, napi_budget);
252
253 /* unmap skb header data */
254 dma_unmap_single(tx_ring->dev,
255 dma_unmap_addr(tx_buf, dma),
256 dma_unmap_len(tx_buf, len),
257 DMA_TO_DEVICE);
258
259 /* clear tx_buf data */
260 tx_buf->skb = NULL;
261 dma_unmap_len_set(tx_buf, len, 0);
262
263 /* unmap remaining buffers */
264 while (tx_desc != eop_desc) {
265 ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
266 tx_buf++;
267 tx_desc++;
268 i++;
269 if (unlikely(!i)) {
270 i -= tx_ring->count;
271 tx_buf = tx_ring->tx_buf;
272 tx_desc = ICE_TX_DESC(tx_ring, 0);
273 }
274
275 /* unmap any remaining paged data */
276 if (dma_unmap_len(tx_buf, len)) {
277 dma_unmap_page(tx_ring->dev,
278 dma_unmap_addr(tx_buf, dma),
279 dma_unmap_len(tx_buf, len),
280 DMA_TO_DEVICE);
281 dma_unmap_len_set(tx_buf, len, 0);
282 }
283 }
284 ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
285
286 /* move us one more past the eop_desc for start of next pkt */
287 tx_buf++;
288 tx_desc++;
289 i++;
290 if (unlikely(!i)) {
291 i -= tx_ring->count;
292 tx_buf = tx_ring->tx_buf;
293 tx_desc = ICE_TX_DESC(tx_ring, 0);
294 }
295
296 prefetch(tx_desc);
297
298 /* update budget accounting */
299 budget--;
300 } while (likely(budget));
301
302 i += tx_ring->count;
303 tx_ring->next_to_clean = i;
304
305 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
306
307 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
308 total_bytes);
309
310 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
311 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
312 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
313 /* Make sure that anybody stopping the queue after this
314 * sees the new next_to_clean.
315 */
316 smp_mb();
317 if (__netif_subqueue_stopped(tx_ring->netdev,
318 tx_ring->q_index) &&
319 !test_bit(ICE_VSI_DOWN, vsi->state)) {
320 netif_wake_subqueue(tx_ring->netdev,
321 tx_ring->q_index);
322 ++tx_ring->tx_stats.restart_q;
323 }
324 }
325
326 return !!budget;
327 }
328
329 /**
330 * ice_setup_tx_ring - Allocate the Tx descriptors
331 * @tx_ring: the Tx ring to set up
332 *
333 * Return 0 on success, negative on error
334 */
ice_setup_tx_ring(struct ice_tx_ring * tx_ring)335 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
336 {
337 struct device *dev = tx_ring->dev;
338 u32 size;
339
340 if (!dev)
341 return -ENOMEM;
342
343 /* warn if we are about to overwrite the pointer */
344 WARN_ON(tx_ring->tx_buf);
345 tx_ring->tx_buf =
346 devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
347 GFP_KERNEL);
348 if (!tx_ring->tx_buf)
349 return -ENOMEM;
350
351 /* round up to nearest page */
352 size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
353 PAGE_SIZE);
354 tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
355 GFP_KERNEL);
356 if (!tx_ring->desc) {
357 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
358 size);
359 goto err;
360 }
361
362 tx_ring->next_to_use = 0;
363 tx_ring->next_to_clean = 0;
364 tx_ring->tx_stats.prev_pkt = -1;
365 return 0;
366
367 err:
368 devm_kfree(dev, tx_ring->tx_buf);
369 tx_ring->tx_buf = NULL;
370 return -ENOMEM;
371 }
372
373 /**
374 * ice_clean_rx_ring - Free Rx buffers
375 * @rx_ring: ring to be cleaned
376 */
ice_clean_rx_ring(struct ice_rx_ring * rx_ring)377 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
378 {
379 struct device *dev = rx_ring->dev;
380 u32 size;
381 u16 i;
382
383 /* ring already cleared, nothing to do */
384 if (!rx_ring->rx_buf)
385 return;
386
387 if (rx_ring->skb) {
388 dev_kfree_skb(rx_ring->skb);
389 rx_ring->skb = NULL;
390 }
391
392 if (rx_ring->xsk_pool) {
393 ice_xsk_clean_rx_ring(rx_ring);
394 goto rx_skip_free;
395 }
396
397 /* Free all the Rx ring sk_buffs */
398 for (i = 0; i < rx_ring->count; i++) {
399 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
400
401 if (!rx_buf->page)
402 continue;
403
404 /* Invalidate cache lines that may have been written to by
405 * device so that we avoid corrupting memory.
406 */
407 dma_sync_single_range_for_cpu(dev, rx_buf->dma,
408 rx_buf->page_offset,
409 rx_ring->rx_buf_len,
410 DMA_FROM_DEVICE);
411
412 /* free resources associated with mapping */
413 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
414 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
415 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
416
417 rx_buf->page = NULL;
418 rx_buf->page_offset = 0;
419 }
420
421 rx_skip_free:
422 if (rx_ring->xsk_pool)
423 memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
424 else
425 memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
426
427 /* Zero out the descriptor ring */
428 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
429 PAGE_SIZE);
430 memset(rx_ring->desc, 0, size);
431
432 rx_ring->next_to_alloc = 0;
433 rx_ring->next_to_clean = 0;
434 rx_ring->next_to_use = 0;
435 }
436
437 /**
438 * ice_free_rx_ring - Free Rx resources
439 * @rx_ring: ring to clean the resources from
440 *
441 * Free all receive software resources
442 */
ice_free_rx_ring(struct ice_rx_ring * rx_ring)443 void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
444 {
445 u32 size;
446
447 ice_clean_rx_ring(rx_ring);
448 if (rx_ring->vsi->type == ICE_VSI_PF)
449 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
450 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
451 rx_ring->xdp_prog = NULL;
452 if (rx_ring->xsk_pool) {
453 kfree(rx_ring->xdp_buf);
454 rx_ring->xdp_buf = NULL;
455 } else {
456 kfree(rx_ring->rx_buf);
457 rx_ring->rx_buf = NULL;
458 }
459
460 if (rx_ring->desc) {
461 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
462 PAGE_SIZE);
463 dmam_free_coherent(rx_ring->dev, size,
464 rx_ring->desc, rx_ring->dma);
465 rx_ring->desc = NULL;
466 }
467 }
468
469 /**
470 * ice_setup_rx_ring - Allocate the Rx descriptors
471 * @rx_ring: the Rx ring to set up
472 *
473 * Return 0 on success, negative on error
474 */
ice_setup_rx_ring(struct ice_rx_ring * rx_ring)475 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
476 {
477 struct device *dev = rx_ring->dev;
478 u32 size;
479
480 if (!dev)
481 return -ENOMEM;
482
483 /* warn if we are about to overwrite the pointer */
484 WARN_ON(rx_ring->rx_buf);
485 rx_ring->rx_buf =
486 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
487 if (!rx_ring->rx_buf)
488 return -ENOMEM;
489
490 /* round up to nearest page */
491 size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
492 PAGE_SIZE);
493 rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
494 GFP_KERNEL);
495 if (!rx_ring->desc) {
496 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
497 size);
498 goto err;
499 }
500
501 rx_ring->next_to_use = 0;
502 rx_ring->next_to_clean = 0;
503
504 if (ice_is_xdp_ena_vsi(rx_ring->vsi))
505 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
506
507 if (rx_ring->vsi->type == ICE_VSI_PF &&
508 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
509 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
510 rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
511 goto err;
512 return 0;
513
514 err:
515 kfree(rx_ring->rx_buf);
516 rx_ring->rx_buf = NULL;
517 return -ENOMEM;
518 }
519
520 static unsigned int
ice_rx_frame_truesize(struct ice_rx_ring * rx_ring,unsigned int __maybe_unused size)521 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, unsigned int __maybe_unused size)
522 {
523 unsigned int truesize;
524
525 #if (PAGE_SIZE < 8192)
526 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
527 #else
528 truesize = rx_ring->rx_offset ?
529 SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
530 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
531 SKB_DATA_ALIGN(size);
532 #endif
533 return truesize;
534 }
535
536 /**
537 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
538 * @rx_ring: Rx ring
539 * @xdp: xdp_buff used as input to the XDP program
540 * @xdp_prog: XDP program to run
541 * @xdp_ring: ring to be used for XDP_TX action
542 *
543 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
544 */
545 static int
ice_run_xdp(struct ice_rx_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct ice_tx_ring * xdp_ring)546 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
547 struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
548 {
549 int err;
550 u32 act;
551
552 act = bpf_prog_run_xdp(xdp_prog, xdp);
553 switch (act) {
554 case XDP_PASS:
555 return ICE_XDP_PASS;
556 case XDP_TX:
557 if (static_branch_unlikely(&ice_xdp_locking_key))
558 spin_lock(&xdp_ring->tx_lock);
559 err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring);
560 if (static_branch_unlikely(&ice_xdp_locking_key))
561 spin_unlock(&xdp_ring->tx_lock);
562 if (err == ICE_XDP_CONSUMED)
563 goto out_failure;
564 return err;
565 case XDP_REDIRECT:
566 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
567 if (err)
568 goto out_failure;
569 return ICE_XDP_REDIR;
570 default:
571 bpf_warn_invalid_xdp_action(act);
572 fallthrough;
573 case XDP_ABORTED:
574 out_failure:
575 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
576 fallthrough;
577 case XDP_DROP:
578 return ICE_XDP_CONSUMED;
579 }
580 }
581
582 /**
583 * ice_xdp_xmit - submit packets to XDP ring for transmission
584 * @dev: netdev
585 * @n: number of XDP frames to be transmitted
586 * @frames: XDP frames to be transmitted
587 * @flags: transmit flags
588 *
589 * Returns number of frames successfully sent. Failed frames
590 * will be free'ed by XDP core.
591 * For error cases, a negative errno code is returned and no-frames
592 * are transmitted (caller must handle freeing frames).
593 */
594 int
ice_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)595 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
596 u32 flags)
597 {
598 struct ice_netdev_priv *np = netdev_priv(dev);
599 unsigned int queue_index = smp_processor_id();
600 struct ice_vsi *vsi = np->vsi;
601 struct ice_tx_ring *xdp_ring;
602 int nxmit = 0, i;
603
604 if (test_bit(ICE_VSI_DOWN, vsi->state))
605 return -ENETDOWN;
606
607 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
608 return -ENXIO;
609
610 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
611 return -EINVAL;
612
613 if (static_branch_unlikely(&ice_xdp_locking_key)) {
614 queue_index %= vsi->num_xdp_txq;
615 xdp_ring = vsi->xdp_rings[queue_index];
616 spin_lock(&xdp_ring->tx_lock);
617 } else {
618 xdp_ring = vsi->xdp_rings[queue_index];
619 }
620
621 for (i = 0; i < n; i++) {
622 struct xdp_frame *xdpf = frames[i];
623 int err;
624
625 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
626 if (err != ICE_XDP_TX)
627 break;
628 nxmit++;
629 }
630
631 if (unlikely(flags & XDP_XMIT_FLUSH))
632 ice_xdp_ring_update_tail(xdp_ring);
633
634 if (static_branch_unlikely(&ice_xdp_locking_key))
635 spin_unlock(&xdp_ring->tx_lock);
636
637 return nxmit;
638 }
639
640 /**
641 * ice_alloc_mapped_page - recycle or make a new page
642 * @rx_ring: ring to use
643 * @bi: rx_buf struct to modify
644 *
645 * Returns true if the page was successfully allocated or
646 * reused.
647 */
648 static bool
ice_alloc_mapped_page(struct ice_rx_ring * rx_ring,struct ice_rx_buf * bi)649 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
650 {
651 struct page *page = bi->page;
652 dma_addr_t dma;
653
654 /* since we are recycling buffers we should seldom need to alloc */
655 if (likely(page))
656 return true;
657
658 /* alloc new page for storage */
659 page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
660 if (unlikely(!page)) {
661 rx_ring->rx_stats.alloc_page_failed++;
662 return false;
663 }
664
665 /* map page for use */
666 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
667 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
668
669 /* if mapping failed free memory back to system since
670 * there isn't much point in holding memory we can't use
671 */
672 if (dma_mapping_error(rx_ring->dev, dma)) {
673 __free_pages(page, ice_rx_pg_order(rx_ring));
674 rx_ring->rx_stats.alloc_page_failed++;
675 return false;
676 }
677
678 bi->dma = dma;
679 bi->page = page;
680 bi->page_offset = rx_ring->rx_offset;
681 page_ref_add(page, USHRT_MAX - 1);
682 bi->pagecnt_bias = USHRT_MAX;
683
684 return true;
685 }
686
687 /**
688 * ice_alloc_rx_bufs - Replace used receive buffers
689 * @rx_ring: ring to place buffers on
690 * @cleaned_count: number of buffers to replace
691 *
692 * Returns false if all allocations were successful, true if any fail. Returning
693 * true signals to the caller that we didn't replace cleaned_count buffers and
694 * there is more work to do.
695 *
696 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
697 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
698 * multiple tail writes per call.
699 */
ice_alloc_rx_bufs(struct ice_rx_ring * rx_ring,u16 cleaned_count)700 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count)
701 {
702 union ice_32b_rx_flex_desc *rx_desc;
703 u16 ntu = rx_ring->next_to_use;
704 struct ice_rx_buf *bi;
705
706 /* do nothing if no valid netdev defined */
707 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
708 !cleaned_count)
709 return false;
710
711 /* get the Rx descriptor and buffer based on next_to_use */
712 rx_desc = ICE_RX_DESC(rx_ring, ntu);
713 bi = &rx_ring->rx_buf[ntu];
714
715 do {
716 /* if we fail here, we have work remaining */
717 if (!ice_alloc_mapped_page(rx_ring, bi))
718 break;
719
720 /* sync the buffer for use by the device */
721 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
722 bi->page_offset,
723 rx_ring->rx_buf_len,
724 DMA_FROM_DEVICE);
725
726 /* Refresh the desc even if buffer_addrs didn't change
727 * because each write-back erases this info.
728 */
729 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
730
731 rx_desc++;
732 bi++;
733 ntu++;
734 if (unlikely(ntu == rx_ring->count)) {
735 rx_desc = ICE_RX_DESC(rx_ring, 0);
736 bi = rx_ring->rx_buf;
737 ntu = 0;
738 }
739
740 /* clear the status bits for the next_to_use descriptor */
741 rx_desc->wb.status_error0 = 0;
742
743 cleaned_count--;
744 } while (cleaned_count);
745
746 if (rx_ring->next_to_use != ntu)
747 ice_release_rx_desc(rx_ring, ntu);
748
749 return !!cleaned_count;
750 }
751
752 /**
753 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
754 * @rx_buf: Rx buffer to adjust
755 * @size: Size of adjustment
756 *
757 * Update the offset within page so that Rx buf will be ready to be reused.
758 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
759 * so the second half of page assigned to Rx buffer will be used, otherwise
760 * the offset is moved by "size" bytes
761 */
762 static void
ice_rx_buf_adjust_pg_offset(struct ice_rx_buf * rx_buf,unsigned int size)763 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
764 {
765 #if (PAGE_SIZE < 8192)
766 /* flip page offset to other buffer */
767 rx_buf->page_offset ^= size;
768 #else
769 /* move offset up to the next cache line */
770 rx_buf->page_offset += size;
771 #endif
772 }
773
774 /**
775 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
776 * @rx_buf: buffer containing the page
777 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
778 *
779 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
780 * which will assign the current buffer to the buffer that next_to_alloc is
781 * pointing to; otherwise, the DMA mapping needs to be destroyed and
782 * page freed
783 */
784 static bool
ice_can_reuse_rx_page(struct ice_rx_buf * rx_buf,int rx_buf_pgcnt)785 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
786 {
787 unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
788 struct page *page = rx_buf->page;
789
790 /* avoid re-using remote and pfmemalloc pages */
791 if (!dev_page_is_reusable(page))
792 return false;
793
794 #if (PAGE_SIZE < 8192)
795 /* if we are only owner of page we can reuse it */
796 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
797 return false;
798 #else
799 #define ICE_LAST_OFFSET \
800 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
801 if (rx_buf->page_offset > ICE_LAST_OFFSET)
802 return false;
803 #endif /* PAGE_SIZE < 8192) */
804
805 /* If we have drained the page fragment pool we need to update
806 * the pagecnt_bias and page count so that we fully restock the
807 * number of references the driver holds.
808 */
809 if (unlikely(pagecnt_bias == 1)) {
810 page_ref_add(page, USHRT_MAX - 1);
811 rx_buf->pagecnt_bias = USHRT_MAX;
812 }
813
814 return true;
815 }
816
817 /**
818 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
819 * @rx_ring: Rx descriptor ring to transact packets on
820 * @rx_buf: buffer containing page to add
821 * @skb: sk_buff to place the data into
822 * @size: packet length from rx_desc
823 *
824 * This function will add the data contained in rx_buf->page to the skb.
825 * It will just attach the page as a frag to the skb.
826 * The function will then update the page offset.
827 */
828 static void
ice_add_rx_frag(struct ice_rx_ring * rx_ring,struct ice_rx_buf * rx_buf,struct sk_buff * skb,unsigned int size)829 ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
830 struct sk_buff *skb, unsigned int size)
831 {
832 #if (PAGE_SIZE >= 8192)
833 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
834 #else
835 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
836 #endif
837
838 if (!size)
839 return;
840 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
841 rx_buf->page_offset, size, truesize);
842
843 /* page is being used so we must update the page offset */
844 ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
845 }
846
847 /**
848 * ice_reuse_rx_page - page flip buffer and store it back on the ring
849 * @rx_ring: Rx descriptor ring to store buffers on
850 * @old_buf: donor buffer to have page reused
851 *
852 * Synchronizes page for reuse by the adapter
853 */
854 static void
ice_reuse_rx_page(struct ice_rx_ring * rx_ring,struct ice_rx_buf * old_buf)855 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
856 {
857 u16 nta = rx_ring->next_to_alloc;
858 struct ice_rx_buf *new_buf;
859
860 new_buf = &rx_ring->rx_buf[nta];
861
862 /* update, and store next to alloc */
863 nta++;
864 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
865
866 /* Transfer page from old buffer to new buffer.
867 * Move each member individually to avoid possible store
868 * forwarding stalls and unnecessary copy of skb.
869 */
870 new_buf->dma = old_buf->dma;
871 new_buf->page = old_buf->page;
872 new_buf->page_offset = old_buf->page_offset;
873 new_buf->pagecnt_bias = old_buf->pagecnt_bias;
874 }
875
876 /**
877 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
878 * @rx_ring: Rx descriptor ring to transact packets on
879 * @size: size of buffer to add to skb
880 * @rx_buf_pgcnt: rx_buf page refcount
881 *
882 * This function will pull an Rx buffer from the ring and synchronize it
883 * for use by the CPU.
884 */
885 static struct ice_rx_buf *
ice_get_rx_buf(struct ice_rx_ring * rx_ring,const unsigned int size,int * rx_buf_pgcnt)886 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
887 int *rx_buf_pgcnt)
888 {
889 struct ice_rx_buf *rx_buf;
890
891 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
892 *rx_buf_pgcnt =
893 #if (PAGE_SIZE < 8192)
894 page_count(rx_buf->page);
895 #else
896 0;
897 #endif
898 prefetchw(rx_buf->page);
899
900 if (!size)
901 return rx_buf;
902 /* we are reusing so sync this buffer for CPU use */
903 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
904 rx_buf->page_offset, size,
905 DMA_FROM_DEVICE);
906
907 /* We have pulled a buffer for use, so decrement pagecnt_bias */
908 rx_buf->pagecnt_bias--;
909
910 return rx_buf;
911 }
912
913 /**
914 * ice_build_skb - Build skb around an existing buffer
915 * @rx_ring: Rx descriptor ring to transact packets on
916 * @rx_buf: Rx buffer to pull data from
917 * @xdp: xdp_buff pointing to the data
918 *
919 * This function builds an skb around an existing Rx buffer, taking care
920 * to set up the skb correctly and avoid any memcpy overhead.
921 */
922 static struct sk_buff *
ice_build_skb(struct ice_rx_ring * rx_ring,struct ice_rx_buf * rx_buf,struct xdp_buff * xdp)923 ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
924 struct xdp_buff *xdp)
925 {
926 u8 metasize = xdp->data - xdp->data_meta;
927 #if (PAGE_SIZE < 8192)
928 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
929 #else
930 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
931 SKB_DATA_ALIGN(xdp->data_end -
932 xdp->data_hard_start);
933 #endif
934 struct sk_buff *skb;
935
936 /* Prefetch first cache line of first page. If xdp->data_meta
937 * is unused, this points exactly as xdp->data, otherwise we
938 * likely have a consumer accessing first few bytes of meta
939 * data, and then actual data.
940 */
941 net_prefetch(xdp->data_meta);
942 /* build an skb around the page buffer */
943 skb = build_skb(xdp->data_hard_start, truesize);
944 if (unlikely(!skb))
945 return NULL;
946
947 /* must to record Rx queue, otherwise OS features such as
948 * symmetric queue won't work
949 */
950 skb_record_rx_queue(skb, rx_ring->q_index);
951
952 /* update pointers within the skb to store the data */
953 skb_reserve(skb, xdp->data - xdp->data_hard_start);
954 __skb_put(skb, xdp->data_end - xdp->data);
955 if (metasize)
956 skb_metadata_set(skb, metasize);
957
958 /* buffer is used by skb, update page_offset */
959 ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
960
961 return skb;
962 }
963
964 /**
965 * ice_construct_skb - Allocate skb and populate it
966 * @rx_ring: Rx descriptor ring to transact packets on
967 * @rx_buf: Rx buffer to pull data from
968 * @xdp: xdp_buff pointing to the data
969 *
970 * This function allocates an skb. It then populates it with the page
971 * data from the current receive descriptor, taking care to set up the
972 * skb correctly.
973 */
974 static struct sk_buff *
ice_construct_skb(struct ice_rx_ring * rx_ring,struct ice_rx_buf * rx_buf,struct xdp_buff * xdp)975 ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
976 struct xdp_buff *xdp)
977 {
978 unsigned int size = xdp->data_end - xdp->data;
979 unsigned int headlen;
980 struct sk_buff *skb;
981
982 /* prefetch first cache line of first page */
983 net_prefetch(xdp->data);
984
985 /* allocate a skb to store the frags */
986 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
987 GFP_ATOMIC | __GFP_NOWARN);
988 if (unlikely(!skb))
989 return NULL;
990
991 skb_record_rx_queue(skb, rx_ring->q_index);
992 /* Determine available headroom for copy */
993 headlen = size;
994 if (headlen > ICE_RX_HDR_SIZE)
995 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
996
997 /* align pull length to size of long to optimize memcpy performance */
998 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
999 sizeof(long)));
1000
1001 /* if we exhaust the linear part then add what is left as a frag */
1002 size -= headlen;
1003 if (size) {
1004 #if (PAGE_SIZE >= 8192)
1005 unsigned int truesize = SKB_DATA_ALIGN(size);
1006 #else
1007 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
1008 #endif
1009 skb_add_rx_frag(skb, 0, rx_buf->page,
1010 rx_buf->page_offset + headlen, size, truesize);
1011 /* buffer is used by skb, update page_offset */
1012 ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
1013 } else {
1014 /* buffer is unused, reset bias back to rx_buf; data was copied
1015 * onto skb's linear part so there's no need for adjusting
1016 * page offset and we can reuse this buffer as-is
1017 */
1018 rx_buf->pagecnt_bias++;
1019 }
1020
1021 return skb;
1022 }
1023
1024 /**
1025 * ice_put_rx_buf - Clean up used buffer and either recycle or free
1026 * @rx_ring: Rx descriptor ring to transact packets on
1027 * @rx_buf: Rx buffer to pull data from
1028 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
1029 *
1030 * This function will update next_to_clean and then clean up the contents
1031 * of the rx_buf. It will either recycle the buffer or unmap it and free
1032 * the associated resources.
1033 */
1034 static void
ice_put_rx_buf(struct ice_rx_ring * rx_ring,struct ice_rx_buf * rx_buf,int rx_buf_pgcnt)1035 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
1036 int rx_buf_pgcnt)
1037 {
1038 u16 ntc = rx_ring->next_to_clean + 1;
1039
1040 /* fetch, update, and store next to clean */
1041 ntc = (ntc < rx_ring->count) ? ntc : 0;
1042 rx_ring->next_to_clean = ntc;
1043
1044 if (!rx_buf)
1045 return;
1046
1047 if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
1048 /* hand second half of page back to the ring */
1049 ice_reuse_rx_page(rx_ring, rx_buf);
1050 } else {
1051 /* we are not reusing the buffer so unmap it */
1052 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1053 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1054 ICE_RX_DMA_ATTR);
1055 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1056 }
1057
1058 /* clear contents of buffer_info */
1059 rx_buf->page = NULL;
1060 }
1061
1062 /**
1063 * ice_is_non_eop - process handling of non-EOP buffers
1064 * @rx_ring: Rx ring being processed
1065 * @rx_desc: Rx descriptor for current buffer
1066 *
1067 * If the buffer is an EOP buffer, this function exits returning false,
1068 * otherwise return true indicating that this is in fact a non-EOP buffer.
1069 */
1070 static bool
ice_is_non_eop(struct ice_rx_ring * rx_ring,union ice_32b_rx_flex_desc * rx_desc)1071 ice_is_non_eop(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc)
1072 {
1073 /* if we are the last buffer then there is nothing else to do */
1074 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1075 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
1076 return false;
1077
1078 rx_ring->rx_stats.non_eop_descs++;
1079
1080 return true;
1081 }
1082
1083 /**
1084 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1085 * @rx_ring: Rx descriptor ring to transact packets on
1086 * @budget: Total limit on number of packets to process
1087 *
1088 * This function provides a "bounce buffer" approach to Rx interrupt
1089 * processing. The advantage to this is that on systems that have
1090 * expensive overhead for IOMMU access this provides a means of avoiding
1091 * it by maintaining the mapping of the page to the system.
1092 *
1093 * Returns amount of work completed
1094 */
ice_clean_rx_irq(struct ice_rx_ring * rx_ring,int budget)1095 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
1096 {
1097 unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0;
1098 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1099 unsigned int offset = rx_ring->rx_offset;
1100 struct ice_tx_ring *xdp_ring = NULL;
1101 unsigned int xdp_res, xdp_xmit = 0;
1102 struct sk_buff *skb = rx_ring->skb;
1103 struct bpf_prog *xdp_prog = NULL;
1104 struct xdp_buff xdp;
1105 bool failure;
1106
1107 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1108 #if (PAGE_SIZE < 8192)
1109 frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1110 #endif
1111 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1112
1113 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1114 if (xdp_prog)
1115 xdp_ring = rx_ring->xdp_ring;
1116
1117 /* start the loop to process Rx packets bounded by 'budget' */
1118 while (likely(total_rx_pkts < (unsigned int)budget)) {
1119 union ice_32b_rx_flex_desc *rx_desc;
1120 struct ice_rx_buf *rx_buf;
1121 unsigned char *hard_start;
1122 unsigned int size;
1123 u16 stat_err_bits;
1124 int rx_buf_pgcnt;
1125 u16 vlan_tag = 0;
1126 u16 rx_ptype;
1127
1128 /* get the Rx desc from Rx ring based on 'next_to_clean' */
1129 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1130
1131 /* status_error_len will always be zero for unused descriptors
1132 * because it's cleared in cleanup, and overlaps with hdr_addr
1133 * which is always zero because packet split isn't used, if the
1134 * hardware wrote DD then it will be non-zero
1135 */
1136 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1137 if (!ice_test_staterr(rx_desc, stat_err_bits))
1138 break;
1139
1140 /* This memory barrier is needed to keep us from reading
1141 * any other fields out of the rx_desc until we know the
1142 * DD bit is set.
1143 */
1144 dma_rmb();
1145
1146 ice_trace(clean_rx_irq, rx_ring, rx_desc);
1147 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1148 struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1149
1150 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1151 ctrl_vsi->vf_id != ICE_INVAL_VFID)
1152 ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1153 ice_put_rx_buf(rx_ring, NULL, 0);
1154 cleaned_count++;
1155 continue;
1156 }
1157
1158 size = le16_to_cpu(rx_desc->wb.pkt_len) &
1159 ICE_RX_FLX_DESC_PKT_LEN_M;
1160
1161 /* retrieve a buffer from the ring */
1162 rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt);
1163
1164 if (!size) {
1165 xdp.data = NULL;
1166 xdp.data_end = NULL;
1167 xdp.data_hard_start = NULL;
1168 xdp.data_meta = NULL;
1169 goto construct_skb;
1170 }
1171
1172 hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1173 offset;
1174 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
1175 #if (PAGE_SIZE > 4096)
1176 /* At larger PAGE_SIZE, frame_sz depend on len size */
1177 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1178 #endif
1179
1180 if (!xdp_prog)
1181 goto construct_skb;
1182
1183 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog, xdp_ring);
1184 if (!xdp_res)
1185 goto construct_skb;
1186 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1187 xdp_xmit |= xdp_res;
1188 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1189 } else {
1190 rx_buf->pagecnt_bias++;
1191 }
1192 total_rx_bytes += size;
1193 total_rx_pkts++;
1194
1195 cleaned_count++;
1196 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1197 continue;
1198 construct_skb:
1199 if (skb) {
1200 ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1201 } else if (likely(xdp.data)) {
1202 if (ice_ring_uses_build_skb(rx_ring))
1203 skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1204 else
1205 skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1206 }
1207 /* exit if we failed to retrieve a buffer */
1208 if (!skb) {
1209 rx_ring->rx_stats.alloc_buf_failed++;
1210 if (rx_buf)
1211 rx_buf->pagecnt_bias++;
1212 break;
1213 }
1214
1215 ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1216 cleaned_count++;
1217
1218 /* skip if it is NOP desc */
1219 if (ice_is_non_eop(rx_ring, rx_desc))
1220 continue;
1221
1222 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1223 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1224 dev_kfree_skb_any(skb);
1225 continue;
1226 }
1227
1228 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1229 if (ice_test_staterr(rx_desc, stat_err_bits))
1230 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1231
1232 /* pad the skb if needed, to make a valid ethernet frame */
1233 if (eth_skb_pad(skb)) {
1234 skb = NULL;
1235 continue;
1236 }
1237
1238 /* probably a little skewed due to removing CRC */
1239 total_rx_bytes += skb->len;
1240
1241 /* populate checksum, VLAN, and protocol */
1242 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1243 ICE_RX_FLEX_DESC_PTYPE_M;
1244
1245 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1246
1247 ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1248 /* send completed skb up the stack */
1249 ice_receive_skb(rx_ring, skb, vlan_tag);
1250 skb = NULL;
1251
1252 /* update budget accounting */
1253 total_rx_pkts++;
1254 }
1255
1256 /* return up to cleaned_count buffers to hardware */
1257 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1258
1259 if (xdp_prog)
1260 ice_finalize_xdp_rx(xdp_ring, xdp_xmit);
1261 rx_ring->skb = skb;
1262
1263 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1264
1265 /* guarantee a trip back through this routine if there was a failure */
1266 return failure ? budget : (int)total_rx_pkts;
1267 }
1268
__ice_update_sample(struct ice_q_vector * q_vector,struct ice_ring_container * rc,struct dim_sample * sample,bool is_tx)1269 static void __ice_update_sample(struct ice_q_vector *q_vector,
1270 struct ice_ring_container *rc,
1271 struct dim_sample *sample,
1272 bool is_tx)
1273 {
1274 u64 packets = 0, bytes = 0;
1275
1276 if (is_tx) {
1277 struct ice_tx_ring *tx_ring;
1278
1279 ice_for_each_tx_ring(tx_ring, *rc) {
1280 packets += tx_ring->stats.pkts;
1281 bytes += tx_ring->stats.bytes;
1282 }
1283 } else {
1284 struct ice_rx_ring *rx_ring;
1285
1286 ice_for_each_rx_ring(rx_ring, *rc) {
1287 packets += rx_ring->stats.pkts;
1288 bytes += rx_ring->stats.bytes;
1289 }
1290 }
1291
1292 dim_update_sample(q_vector->total_events, packets, bytes, sample);
1293 sample->comp_ctr = 0;
1294
1295 /* if dim settings get stale, like when not updated for 1
1296 * second or longer, force it to start again. This addresses the
1297 * frequent case of an idle queue being switched to by the
1298 * scheduler. The 1,000 here means 1,000 milliseconds.
1299 */
1300 if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
1301 rc->dim.state = DIM_START_MEASURE;
1302 }
1303
1304 /**
1305 * ice_net_dim - Update net DIM algorithm
1306 * @q_vector: the vector associated with the interrupt
1307 *
1308 * Create a DIM sample and notify net_dim() so that it can possibly decide
1309 * a new ITR value based on incoming packets, bytes, and interrupts.
1310 *
1311 * This function is a no-op if the ring is not configured to dynamic ITR.
1312 */
ice_net_dim(struct ice_q_vector * q_vector)1313 static void ice_net_dim(struct ice_q_vector *q_vector)
1314 {
1315 struct ice_ring_container *tx = &q_vector->tx;
1316 struct ice_ring_container *rx = &q_vector->rx;
1317
1318 if (ITR_IS_DYNAMIC(tx)) {
1319 struct dim_sample dim_sample;
1320
1321 __ice_update_sample(q_vector, tx, &dim_sample, true);
1322 net_dim(&tx->dim, dim_sample);
1323 }
1324
1325 if (ITR_IS_DYNAMIC(rx)) {
1326 struct dim_sample dim_sample;
1327
1328 __ice_update_sample(q_vector, rx, &dim_sample, false);
1329 net_dim(&rx->dim, dim_sample);
1330 }
1331 }
1332
1333 /**
1334 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1335 * @itr_idx: interrupt throttling index
1336 * @itr: interrupt throttling value in usecs
1337 */
ice_buildreg_itr(u16 itr_idx,u16 itr)1338 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1339 {
1340 /* The ITR value is reported in microseconds, and the register value is
1341 * recorded in 2 microsecond units. For this reason we only need to
1342 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1343 * granularity as a shift instead of division. The mask makes sure the
1344 * ITR value is never odd so we don't accidentally write into the field
1345 * prior to the ITR field.
1346 */
1347 itr &= ICE_ITR_MASK;
1348
1349 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1350 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1351 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1352 }
1353
1354 /**
1355 * ice_enable_interrupt - re-enable MSI-X interrupt
1356 * @q_vector: the vector associated with the interrupt to enable
1357 *
1358 * If the VSI is down, the interrupt will not be re-enabled. Also,
1359 * when enabling the interrupt always reset the wb_on_itr to false
1360 * and trigger a software interrupt to clean out internal state.
1361 */
ice_enable_interrupt(struct ice_q_vector * q_vector)1362 static void ice_enable_interrupt(struct ice_q_vector *q_vector)
1363 {
1364 struct ice_vsi *vsi = q_vector->vsi;
1365 bool wb_en = q_vector->wb_on_itr;
1366 u32 itr_val;
1367
1368 if (test_bit(ICE_DOWN, vsi->state))
1369 return;
1370
1371 /* trigger an ITR delayed software interrupt when exiting busy poll, to
1372 * make sure to catch any pending cleanups that might have been missed
1373 * due to interrupt state transition. If busy poll or poll isn't
1374 * enabled, then don't update ITR, and just enable the interrupt.
1375 */
1376 if (!wb_en) {
1377 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1378 } else {
1379 q_vector->wb_on_itr = false;
1380
1381 /* do two things here with a single write. Set up the third ITR
1382 * index to be used for software interrupt moderation, and then
1383 * trigger a software interrupt with a rate limit of 20K on
1384 * software interrupts, this will help avoid high interrupt
1385 * loads due to frequently polling and exiting polling.
1386 */
1387 itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
1388 itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1389 ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
1390 GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1391 }
1392 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1393 }
1394
1395 /**
1396 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1397 * @q_vector: q_vector to set WB_ON_ITR on
1398 *
1399 * We need to tell hardware to write-back completed descriptors even when
1400 * interrupts are disabled. Descriptors will be written back on cache line
1401 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1402 * descriptors may not be written back if they don't fill a cache line until
1403 * the next interrupt.
1404 *
1405 * This sets the write-back frequency to whatever was set previously for the
1406 * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1407 * aren't meddling with the INTENA_M bit.
1408 */
ice_set_wb_on_itr(struct ice_q_vector * q_vector)1409 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1410 {
1411 struct ice_vsi *vsi = q_vector->vsi;
1412
1413 /* already in wb_on_itr mode no need to change it */
1414 if (q_vector->wb_on_itr)
1415 return;
1416
1417 /* use previously set ITR values for all of the ITR indices by
1418 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1419 * be static in non-adaptive mode (user configured)
1420 */
1421 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1422 ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
1423 GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
1424 GLINT_DYN_CTL_WB_ON_ITR_M);
1425
1426 q_vector->wb_on_itr = true;
1427 }
1428
1429 /**
1430 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1431 * @napi: napi struct with our devices info in it
1432 * @budget: amount of work driver is allowed to do this pass, in packets
1433 *
1434 * This function will clean all queues associated with a q_vector.
1435 *
1436 * Returns the amount of work done
1437 */
ice_napi_poll(struct napi_struct * napi,int budget)1438 int ice_napi_poll(struct napi_struct *napi, int budget)
1439 {
1440 struct ice_q_vector *q_vector =
1441 container_of(napi, struct ice_q_vector, napi);
1442 struct ice_tx_ring *tx_ring;
1443 struct ice_rx_ring *rx_ring;
1444 bool clean_complete = true;
1445 int budget_per_ring;
1446 int work_done = 0;
1447
1448 /* Since the actual Tx work is minimal, we can give the Tx a larger
1449 * budget and be more aggressive about cleaning up the Tx descriptors.
1450 */
1451 ice_for_each_tx_ring(tx_ring, q_vector->tx) {
1452 bool wd;
1453
1454 if (tx_ring->xsk_pool)
1455 wd = ice_clean_tx_irq_zc(tx_ring, budget);
1456 else if (ice_ring_is_xdp(tx_ring))
1457 wd = true;
1458 else
1459 wd = ice_clean_tx_irq(tx_ring, budget);
1460
1461 if (!wd)
1462 clean_complete = false;
1463 }
1464
1465 /* Handle case where we are called by netpoll with a budget of 0 */
1466 if (unlikely(budget <= 0))
1467 return budget;
1468
1469 /* normally we have 1 Rx ring per q_vector */
1470 if (unlikely(q_vector->num_ring_rx > 1))
1471 /* We attempt to distribute budget to each Rx queue fairly, but
1472 * don't allow the budget to go below 1 because that would exit
1473 * polling early.
1474 */
1475 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1476 else
1477 /* Max of 1 Rx ring in this q_vector so give it the budget */
1478 budget_per_ring = budget;
1479
1480 ice_for_each_rx_ring(rx_ring, q_vector->rx) {
1481 int cleaned;
1482
1483 /* A dedicated path for zero-copy allows making a single
1484 * comparison in the irq context instead of many inside the
1485 * ice_clean_rx_irq function and makes the codebase cleaner.
1486 */
1487 cleaned = rx_ring->xsk_pool ?
1488 ice_clean_rx_irq_zc(rx_ring, budget_per_ring) :
1489 ice_clean_rx_irq(rx_ring, budget_per_ring);
1490 work_done += cleaned;
1491 /* if we clean as many as budgeted, we must not be done */
1492 if (cleaned >= budget_per_ring)
1493 clean_complete = false;
1494 }
1495
1496 /* If work not completed, return budget and polling will return */
1497 if (!clean_complete) {
1498 /* Set the writeback on ITR so partial completions of
1499 * cache-lines will still continue even if we're polling.
1500 */
1501 ice_set_wb_on_itr(q_vector);
1502 return budget;
1503 }
1504
1505 /* Exit the polling mode, but don't re-enable interrupts if stack might
1506 * poll us due to busy-polling
1507 */
1508 if (likely(napi_complete_done(napi, work_done))) {
1509 ice_net_dim(q_vector);
1510 ice_enable_interrupt(q_vector);
1511 } else {
1512 ice_set_wb_on_itr(q_vector);
1513 }
1514
1515 return min_t(int, work_done, budget - 1);
1516 }
1517
1518 /**
1519 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1520 * @tx_ring: the ring to be checked
1521 * @size: the size buffer we want to assure is available
1522 *
1523 * Returns -EBUSY if a stop is needed, else 0
1524 */
__ice_maybe_stop_tx(struct ice_tx_ring * tx_ring,unsigned int size)1525 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1526 {
1527 netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1528 /* Memory barrier before checking head and tail */
1529 smp_mb();
1530
1531 /* Check again in a case another CPU has just made room available. */
1532 if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1533 return -EBUSY;
1534
1535 /* A reprieve! - use start_subqueue because it doesn't call schedule */
1536 netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1537 ++tx_ring->tx_stats.restart_q;
1538 return 0;
1539 }
1540
1541 /**
1542 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1543 * @tx_ring: the ring to be checked
1544 * @size: the size buffer we want to assure is available
1545 *
1546 * Returns 0 if stop is not needed
1547 */
ice_maybe_stop_tx(struct ice_tx_ring * tx_ring,unsigned int size)1548 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1549 {
1550 if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1551 return 0;
1552
1553 return __ice_maybe_stop_tx(tx_ring, size);
1554 }
1555
1556 /**
1557 * ice_tx_map - Build the Tx descriptor
1558 * @tx_ring: ring to send buffer on
1559 * @first: first buffer info buffer to use
1560 * @off: pointer to struct that holds offload parameters
1561 *
1562 * This function loops over the skb data pointed to by *first
1563 * and gets a physical address for each memory location and programs
1564 * it and the length into the transmit descriptor.
1565 */
1566 static void
ice_tx_map(struct ice_tx_ring * tx_ring,struct ice_tx_buf * first,struct ice_tx_offload_params * off)1567 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
1568 struct ice_tx_offload_params *off)
1569 {
1570 u64 td_offset, td_tag, td_cmd;
1571 u16 i = tx_ring->next_to_use;
1572 unsigned int data_len, size;
1573 struct ice_tx_desc *tx_desc;
1574 struct ice_tx_buf *tx_buf;
1575 struct sk_buff *skb;
1576 skb_frag_t *frag;
1577 dma_addr_t dma;
1578
1579 td_tag = off->td_l2tag1;
1580 td_cmd = off->td_cmd;
1581 td_offset = off->td_offset;
1582 skb = first->skb;
1583
1584 data_len = skb->data_len;
1585 size = skb_headlen(skb);
1586
1587 tx_desc = ICE_TX_DESC(tx_ring, i);
1588
1589 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1590 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1591 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1592 ICE_TX_FLAGS_VLAN_S;
1593 }
1594
1595 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1596
1597 tx_buf = first;
1598
1599 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1600 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1601
1602 if (dma_mapping_error(tx_ring->dev, dma))
1603 goto dma_error;
1604
1605 /* record length, and DMA address */
1606 dma_unmap_len_set(tx_buf, len, size);
1607 dma_unmap_addr_set(tx_buf, dma, dma);
1608
1609 /* align size to end of page */
1610 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1611 tx_desc->buf_addr = cpu_to_le64(dma);
1612
1613 /* account for data chunks larger than the hardware
1614 * can handle
1615 */
1616 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1617 tx_desc->cmd_type_offset_bsz =
1618 ice_build_ctob(td_cmd, td_offset, max_data,
1619 td_tag);
1620
1621 tx_desc++;
1622 i++;
1623
1624 if (i == tx_ring->count) {
1625 tx_desc = ICE_TX_DESC(tx_ring, 0);
1626 i = 0;
1627 }
1628
1629 dma += max_data;
1630 size -= max_data;
1631
1632 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1633 tx_desc->buf_addr = cpu_to_le64(dma);
1634 }
1635
1636 if (likely(!data_len))
1637 break;
1638
1639 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1640 size, td_tag);
1641
1642 tx_desc++;
1643 i++;
1644
1645 if (i == tx_ring->count) {
1646 tx_desc = ICE_TX_DESC(tx_ring, 0);
1647 i = 0;
1648 }
1649
1650 size = skb_frag_size(frag);
1651 data_len -= size;
1652
1653 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1654 DMA_TO_DEVICE);
1655
1656 tx_buf = &tx_ring->tx_buf[i];
1657 }
1658
1659 /* record bytecount for BQL */
1660 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1661
1662 /* record SW timestamp if HW timestamp is not available */
1663 skb_tx_timestamp(first->skb);
1664
1665 i++;
1666 if (i == tx_ring->count)
1667 i = 0;
1668
1669 /* write last descriptor with RS and EOP bits */
1670 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1671 tx_desc->cmd_type_offset_bsz =
1672 ice_build_ctob(td_cmd, td_offset, size, td_tag);
1673
1674 /* Force memory writes to complete before letting h/w know there
1675 * are new descriptors to fetch.
1676 *
1677 * We also use this memory barrier to make certain all of the
1678 * status bits have been updated before next_to_watch is written.
1679 */
1680 wmb();
1681
1682 /* set next_to_watch value indicating a packet is present */
1683 first->next_to_watch = tx_desc;
1684
1685 tx_ring->next_to_use = i;
1686
1687 ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1688
1689 /* notify HW of packet */
1690 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
1691 writel(i, tx_ring->tail);
1692
1693 return;
1694
1695 dma_error:
1696 /* clear DMA mappings for failed tx_buf map */
1697 for (;;) {
1698 tx_buf = &tx_ring->tx_buf[i];
1699 ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1700 if (tx_buf == first)
1701 break;
1702 if (i == 0)
1703 i = tx_ring->count;
1704 i--;
1705 }
1706
1707 tx_ring->next_to_use = i;
1708 }
1709
1710 /**
1711 * ice_tx_csum - Enable Tx checksum offloads
1712 * @first: pointer to the first descriptor
1713 * @off: pointer to struct that holds offload parameters
1714 *
1715 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1716 */
1717 static
ice_tx_csum(struct ice_tx_buf * first,struct ice_tx_offload_params * off)1718 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1719 {
1720 u32 l4_len = 0, l3_len = 0, l2_len = 0;
1721 struct sk_buff *skb = first->skb;
1722 union {
1723 struct iphdr *v4;
1724 struct ipv6hdr *v6;
1725 unsigned char *hdr;
1726 } ip;
1727 union {
1728 struct tcphdr *tcp;
1729 unsigned char *hdr;
1730 } l4;
1731 __be16 frag_off, protocol;
1732 unsigned char *exthdr;
1733 u32 offset, cmd = 0;
1734 u8 l4_proto = 0;
1735
1736 if (skb->ip_summed != CHECKSUM_PARTIAL)
1737 return 0;
1738
1739 ip.hdr = skb_network_header(skb);
1740 l4.hdr = skb_transport_header(skb);
1741
1742 /* compute outer L2 header size */
1743 l2_len = ip.hdr - skb->data;
1744 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1745
1746 protocol = vlan_get_protocol(skb);
1747
1748 if (protocol == htons(ETH_P_IP))
1749 first->tx_flags |= ICE_TX_FLAGS_IPV4;
1750 else if (protocol == htons(ETH_P_IPV6))
1751 first->tx_flags |= ICE_TX_FLAGS_IPV6;
1752
1753 if (skb->encapsulation) {
1754 bool gso_ena = false;
1755 u32 tunnel = 0;
1756
1757 /* define outer network header type */
1758 if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1759 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1760 ICE_TX_CTX_EIPT_IPV4 :
1761 ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1762 l4_proto = ip.v4->protocol;
1763 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1764 int ret;
1765
1766 tunnel |= ICE_TX_CTX_EIPT_IPV6;
1767 exthdr = ip.hdr + sizeof(*ip.v6);
1768 l4_proto = ip.v6->nexthdr;
1769 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1770 &l4_proto, &frag_off);
1771 if (ret < 0)
1772 return -1;
1773 }
1774
1775 /* define outer transport */
1776 switch (l4_proto) {
1777 case IPPROTO_UDP:
1778 tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1779 first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1780 break;
1781 case IPPROTO_GRE:
1782 tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1783 first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1784 break;
1785 case IPPROTO_IPIP:
1786 case IPPROTO_IPV6:
1787 first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1788 l4.hdr = skb_inner_network_header(skb);
1789 break;
1790 default:
1791 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1792 return -1;
1793
1794 skb_checksum_help(skb);
1795 return 0;
1796 }
1797
1798 /* compute outer L3 header size */
1799 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1800 ICE_TXD_CTX_QW0_EIPLEN_S;
1801
1802 /* switch IP header pointer from outer to inner header */
1803 ip.hdr = skb_inner_network_header(skb);
1804
1805 /* compute tunnel header size */
1806 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1807 ICE_TXD_CTX_QW0_NATLEN_S;
1808
1809 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1810 /* indicate if we need to offload outer UDP header */
1811 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1812 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1813 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1814
1815 /* record tunnel offload values */
1816 off->cd_tunnel_params |= tunnel;
1817
1818 /* set DTYP=1 to indicate that it's an Tx context descriptor
1819 * in IPsec tunnel mode with Tx offloads in Quad word 1
1820 */
1821 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1822
1823 /* switch L4 header pointer from outer to inner */
1824 l4.hdr = skb_inner_transport_header(skb);
1825 l4_proto = 0;
1826
1827 /* reset type as we transition from outer to inner headers */
1828 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1829 if (ip.v4->version == 4)
1830 first->tx_flags |= ICE_TX_FLAGS_IPV4;
1831 if (ip.v6->version == 6)
1832 first->tx_flags |= ICE_TX_FLAGS_IPV6;
1833 }
1834
1835 /* Enable IP checksum offloads */
1836 if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1837 l4_proto = ip.v4->protocol;
1838 /* the stack computes the IP header already, the only time we
1839 * need the hardware to recompute it is in the case of TSO.
1840 */
1841 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1842 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1843 else
1844 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1845
1846 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1847 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1848 exthdr = ip.hdr + sizeof(*ip.v6);
1849 l4_proto = ip.v6->nexthdr;
1850 if (l4.hdr != exthdr)
1851 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1852 &frag_off);
1853 } else {
1854 return -1;
1855 }
1856
1857 /* compute inner L3 header size */
1858 l3_len = l4.hdr - ip.hdr;
1859 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1860
1861 /* Enable L4 checksum offloads */
1862 switch (l4_proto) {
1863 case IPPROTO_TCP:
1864 /* enable checksum offloads */
1865 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1866 l4_len = l4.tcp->doff;
1867 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1868 break;
1869 case IPPROTO_UDP:
1870 /* enable UDP checksum offload */
1871 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1872 l4_len = (sizeof(struct udphdr) >> 2);
1873 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1874 break;
1875 case IPPROTO_SCTP:
1876 /* enable SCTP checksum offload */
1877 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1878 l4_len = sizeof(struct sctphdr) >> 2;
1879 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1880 break;
1881
1882 default:
1883 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1884 return -1;
1885 skb_checksum_help(skb);
1886 return 0;
1887 }
1888
1889 off->td_cmd |= cmd;
1890 off->td_offset |= offset;
1891 return 1;
1892 }
1893
1894 /**
1895 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1896 * @tx_ring: ring to send buffer on
1897 * @first: pointer to struct ice_tx_buf
1898 *
1899 * Checks the skb and set up correspondingly several generic transmit flags
1900 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1901 */
1902 static void
ice_tx_prepare_vlan_flags(struct ice_tx_ring * tx_ring,struct ice_tx_buf * first)1903 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
1904 {
1905 struct sk_buff *skb = first->skb;
1906
1907 /* nothing left to do, software offloaded VLAN */
1908 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
1909 return;
1910
1911 /* currently, we always assume 802.1Q for VLAN insertion as VLAN
1912 * insertion for 802.1AD is not supported
1913 */
1914 if (skb_vlan_tag_present(skb)) {
1915 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1916 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1917 }
1918
1919 ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1920 }
1921
1922 /**
1923 * ice_tso - computes mss and TSO length to prepare for TSO
1924 * @first: pointer to struct ice_tx_buf
1925 * @off: pointer to struct that holds offload parameters
1926 *
1927 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1928 */
1929 static
ice_tso(struct ice_tx_buf * first,struct ice_tx_offload_params * off)1930 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1931 {
1932 struct sk_buff *skb = first->skb;
1933 union {
1934 struct iphdr *v4;
1935 struct ipv6hdr *v6;
1936 unsigned char *hdr;
1937 } ip;
1938 union {
1939 struct tcphdr *tcp;
1940 struct udphdr *udp;
1941 unsigned char *hdr;
1942 } l4;
1943 u64 cd_mss, cd_tso_len;
1944 u32 paylen;
1945 u8 l4_start;
1946 int err;
1947
1948 if (skb->ip_summed != CHECKSUM_PARTIAL)
1949 return 0;
1950
1951 if (!skb_is_gso(skb))
1952 return 0;
1953
1954 err = skb_cow_head(skb, 0);
1955 if (err < 0)
1956 return err;
1957
1958 /* cppcheck-suppress unreadVariable */
1959 ip.hdr = skb_network_header(skb);
1960 l4.hdr = skb_transport_header(skb);
1961
1962 /* initialize outer IP header fields */
1963 if (ip.v4->version == 4) {
1964 ip.v4->tot_len = 0;
1965 ip.v4->check = 0;
1966 } else {
1967 ip.v6->payload_len = 0;
1968 }
1969
1970 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1971 SKB_GSO_GRE_CSUM |
1972 SKB_GSO_IPXIP4 |
1973 SKB_GSO_IPXIP6 |
1974 SKB_GSO_UDP_TUNNEL |
1975 SKB_GSO_UDP_TUNNEL_CSUM)) {
1976 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1977 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1978 l4.udp->len = 0;
1979
1980 /* determine offset of outer transport header */
1981 l4_start = (u8)(l4.hdr - skb->data);
1982
1983 /* remove payload length from outer checksum */
1984 paylen = skb->len - l4_start;
1985 csum_replace_by_diff(&l4.udp->check,
1986 (__force __wsum)htonl(paylen));
1987 }
1988
1989 /* reset pointers to inner headers */
1990
1991 /* cppcheck-suppress unreadVariable */
1992 ip.hdr = skb_inner_network_header(skb);
1993 l4.hdr = skb_inner_transport_header(skb);
1994
1995 /* initialize inner IP header fields */
1996 if (ip.v4->version == 4) {
1997 ip.v4->tot_len = 0;
1998 ip.v4->check = 0;
1999 } else {
2000 ip.v6->payload_len = 0;
2001 }
2002 }
2003
2004 /* determine offset of transport header */
2005 l4_start = (u8)(l4.hdr - skb->data);
2006
2007 /* remove payload length from checksum */
2008 paylen = skb->len - l4_start;
2009
2010 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2011 csum_replace_by_diff(&l4.udp->check,
2012 (__force __wsum)htonl(paylen));
2013 /* compute length of UDP segmentation header */
2014 off->header_len = (u8)sizeof(l4.udp) + l4_start;
2015 } else {
2016 csum_replace_by_diff(&l4.tcp->check,
2017 (__force __wsum)htonl(paylen));
2018 /* compute length of TCP segmentation header */
2019 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2020 }
2021
2022 /* update gso_segs and bytecount */
2023 first->gso_segs = skb_shinfo(skb)->gso_segs;
2024 first->bytecount += (first->gso_segs - 1) * off->header_len;
2025
2026 cd_tso_len = skb->len - off->header_len;
2027 cd_mss = skb_shinfo(skb)->gso_size;
2028
2029 /* record cdesc_qw1 with TSO parameters */
2030 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2031 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2032 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2033 (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2034 first->tx_flags |= ICE_TX_FLAGS_TSO;
2035 return 1;
2036 }
2037
2038 /**
2039 * ice_txd_use_count - estimate the number of descriptors needed for Tx
2040 * @size: transmit request size in bytes
2041 *
2042 * Due to hardware alignment restrictions (4K alignment), we need to
2043 * assume that we can have no more than 12K of data per descriptor, even
2044 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2045 * Thus, we need to divide by 12K. But division is slow! Instead,
2046 * we decompose the operation into shifts and one relatively cheap
2047 * multiply operation.
2048 *
2049 * To divide by 12K, we first divide by 4K, then divide by 3:
2050 * To divide by 4K, shift right by 12 bits
2051 * To divide by 3, multiply by 85, then divide by 256
2052 * (Divide by 256 is done by shifting right by 8 bits)
2053 * Finally, we add one to round up. Because 256 isn't an exact multiple of
2054 * 3, we'll underestimate near each multiple of 12K. This is actually more
2055 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2056 * segment. For our purposes this is accurate out to 1M which is orders of
2057 * magnitude greater than our largest possible GSO size.
2058 *
2059 * This would then be implemented as:
2060 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2061 *
2062 * Since multiplication and division are commutative, we can reorder
2063 * operations into:
2064 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2065 */
ice_txd_use_count(unsigned int size)2066 static unsigned int ice_txd_use_count(unsigned int size)
2067 {
2068 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2069 }
2070
2071 /**
2072 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2073 * @skb: send buffer
2074 *
2075 * Returns number of data descriptors needed for this skb.
2076 */
ice_xmit_desc_count(struct sk_buff * skb)2077 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2078 {
2079 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2080 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2081 unsigned int count = 0, size = skb_headlen(skb);
2082
2083 for (;;) {
2084 count += ice_txd_use_count(size);
2085
2086 if (!nr_frags--)
2087 break;
2088
2089 size = skb_frag_size(frag++);
2090 }
2091
2092 return count;
2093 }
2094
2095 /**
2096 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2097 * @skb: send buffer
2098 *
2099 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2100 * and so we need to figure out the cases where we need to linearize the skb.
2101 *
2102 * For TSO we need to count the TSO header and segment payload separately.
2103 * As such we need to check cases where we have 7 fragments or more as we
2104 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2105 * the segment payload in the first descriptor, and another 7 for the
2106 * fragments.
2107 */
__ice_chk_linearize(struct sk_buff * skb)2108 static bool __ice_chk_linearize(struct sk_buff *skb)
2109 {
2110 const skb_frag_t *frag, *stale;
2111 int nr_frags, sum;
2112
2113 /* no need to check if number of frags is less than 7 */
2114 nr_frags = skb_shinfo(skb)->nr_frags;
2115 if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2116 return false;
2117
2118 /* We need to walk through the list and validate that each group
2119 * of 6 fragments totals at least gso_size.
2120 */
2121 nr_frags -= ICE_MAX_BUF_TXD - 2;
2122 frag = &skb_shinfo(skb)->frags[0];
2123
2124 /* Initialize size to the negative value of gso_size minus 1. We
2125 * use this as the worst case scenario in which the frag ahead
2126 * of us only provides one byte which is why we are limited to 6
2127 * descriptors for a single transmit as the header and previous
2128 * fragment are already consuming 2 descriptors.
2129 */
2130 sum = 1 - skb_shinfo(skb)->gso_size;
2131
2132 /* Add size of frags 0 through 4 to create our initial sum */
2133 sum += skb_frag_size(frag++);
2134 sum += skb_frag_size(frag++);
2135 sum += skb_frag_size(frag++);
2136 sum += skb_frag_size(frag++);
2137 sum += skb_frag_size(frag++);
2138
2139 /* Walk through fragments adding latest fragment, testing it, and
2140 * then removing stale fragments from the sum.
2141 */
2142 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2143 int stale_size = skb_frag_size(stale);
2144
2145 sum += skb_frag_size(frag++);
2146
2147 /* The stale fragment may present us with a smaller
2148 * descriptor than the actual fragment size. To account
2149 * for that we need to remove all the data on the front and
2150 * figure out what the remainder would be in the last
2151 * descriptor associated with the fragment.
2152 */
2153 if (stale_size > ICE_MAX_DATA_PER_TXD) {
2154 int align_pad = -(skb_frag_off(stale)) &
2155 (ICE_MAX_READ_REQ_SIZE - 1);
2156
2157 sum -= align_pad;
2158 stale_size -= align_pad;
2159
2160 do {
2161 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2162 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2163 } while (stale_size > ICE_MAX_DATA_PER_TXD);
2164 }
2165
2166 /* if sum is negative we failed to make sufficient progress */
2167 if (sum < 0)
2168 return true;
2169
2170 if (!nr_frags--)
2171 break;
2172
2173 sum -= stale_size;
2174 }
2175
2176 return false;
2177 }
2178
2179 /**
2180 * ice_chk_linearize - Check if there are more than 8 fragments per packet
2181 * @skb: send buffer
2182 * @count: number of buffers used
2183 *
2184 * Note: Our HW can't scatter-gather more than 8 fragments to build
2185 * a packet on the wire and so we need to figure out the cases where we
2186 * need to linearize the skb.
2187 */
ice_chk_linearize(struct sk_buff * skb,unsigned int count)2188 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2189 {
2190 /* Both TSO and single send will work if count is less than 8 */
2191 if (likely(count < ICE_MAX_BUF_TXD))
2192 return false;
2193
2194 if (skb_is_gso(skb))
2195 return __ice_chk_linearize(skb);
2196
2197 /* we can support up to 8 data buffers for a single send */
2198 return count != ICE_MAX_BUF_TXD;
2199 }
2200
2201 /**
2202 * ice_tstamp - set up context descriptor for hardware timestamp
2203 * @tx_ring: pointer to the Tx ring to send buffer on
2204 * @skb: pointer to the SKB we're sending
2205 * @first: Tx buffer
2206 * @off: Tx offload parameters
2207 */
2208 static void
ice_tstamp(struct ice_tx_ring * tx_ring,struct sk_buff * skb,struct ice_tx_buf * first,struct ice_tx_offload_params * off)2209 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
2210 struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2211 {
2212 s8 idx;
2213
2214 /* only timestamp the outbound packet if the user has requested it */
2215 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2216 return;
2217
2218 if (!tx_ring->ptp_tx)
2219 return;
2220
2221 /* Tx timestamps cannot be sampled when doing TSO */
2222 if (first->tx_flags & ICE_TX_FLAGS_TSO)
2223 return;
2224
2225 /* Grab an open timestamp slot */
2226 idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2227 if (idx < 0)
2228 return;
2229
2230 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2231 (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2232 ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2233 first->tx_flags |= ICE_TX_FLAGS_TSYN;
2234 }
2235
2236 /**
2237 * ice_xmit_frame_ring - Sends buffer on Tx ring
2238 * @skb: send buffer
2239 * @tx_ring: ring to send buffer on
2240 *
2241 * Returns NETDEV_TX_OK if sent, else an error code
2242 */
2243 static netdev_tx_t
ice_xmit_frame_ring(struct sk_buff * skb,struct ice_tx_ring * tx_ring)2244 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
2245 {
2246 struct ice_tx_offload_params offload = { 0 };
2247 struct ice_vsi *vsi = tx_ring->vsi;
2248 struct ice_tx_buf *first;
2249 struct ethhdr *eth;
2250 unsigned int count;
2251 int tso, csum;
2252
2253 ice_trace(xmit_frame_ring, tx_ring, skb);
2254
2255 count = ice_xmit_desc_count(skb);
2256 if (ice_chk_linearize(skb, count)) {
2257 if (__skb_linearize(skb))
2258 goto out_drop;
2259 count = ice_txd_use_count(skb->len);
2260 tx_ring->tx_stats.tx_linearize++;
2261 }
2262
2263 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2264 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2265 * + 4 desc gap to avoid the cache line where head is,
2266 * + 1 desc for context descriptor,
2267 * otherwise try next time
2268 */
2269 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2270 ICE_DESCS_FOR_CTX_DESC)) {
2271 tx_ring->tx_stats.tx_busy++;
2272 return NETDEV_TX_BUSY;
2273 }
2274
2275 offload.tx_ring = tx_ring;
2276
2277 /* record the location of the first descriptor for this packet */
2278 first = &tx_ring->tx_buf[tx_ring->next_to_use];
2279 first->skb = skb;
2280 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2281 first->gso_segs = 1;
2282 first->tx_flags = 0;
2283
2284 /* prepare the VLAN tagging flags for Tx */
2285 ice_tx_prepare_vlan_flags(tx_ring, first);
2286
2287 /* set up TSO offload */
2288 tso = ice_tso(first, &offload);
2289 if (tso < 0)
2290 goto out_drop;
2291
2292 /* always set up Tx checksum offload */
2293 csum = ice_tx_csum(first, &offload);
2294 if (csum < 0)
2295 goto out_drop;
2296
2297 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2298 eth = (struct ethhdr *)skb_mac_header(skb);
2299 if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2300 eth->h_proto == htons(ETH_P_LLDP)) &&
2301 vsi->type == ICE_VSI_PF &&
2302 vsi->port_info->qos_cfg.is_sw_lldp))
2303 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2304 ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2305 ICE_TXD_CTX_QW1_CMD_S);
2306
2307 ice_tstamp(tx_ring, skb, first, &offload);
2308 if (ice_is_switchdev_running(vsi->back))
2309 ice_eswitch_set_target_vsi(skb, &offload);
2310
2311 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2312 struct ice_tx_ctx_desc *cdesc;
2313 u16 i = tx_ring->next_to_use;
2314
2315 /* grab the next descriptor */
2316 cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2317 i++;
2318 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2319
2320 /* setup context descriptor */
2321 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2322 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2323 cdesc->rsvd = cpu_to_le16(0);
2324 cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2325 }
2326
2327 ice_tx_map(tx_ring, first, &offload);
2328 return NETDEV_TX_OK;
2329
2330 out_drop:
2331 ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2332 dev_kfree_skb_any(skb);
2333 return NETDEV_TX_OK;
2334 }
2335
2336 /**
2337 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2338 * @skb: send buffer
2339 * @netdev: network interface device structure
2340 *
2341 * Returns NETDEV_TX_OK if sent, else an error code
2342 */
ice_start_xmit(struct sk_buff * skb,struct net_device * netdev)2343 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2344 {
2345 struct ice_netdev_priv *np = netdev_priv(netdev);
2346 struct ice_vsi *vsi = np->vsi;
2347 struct ice_tx_ring *tx_ring;
2348
2349 tx_ring = vsi->tx_rings[skb->queue_mapping];
2350
2351 /* hardware can't handle really short frames, hardware padding works
2352 * beyond this point
2353 */
2354 if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2355 return NETDEV_TX_OK;
2356
2357 return ice_xmit_frame_ring(skb, tx_ring);
2358 }
2359
2360 /**
2361 * ice_get_dscp_up - return the UP/TC value for a SKB
2362 * @dcbcfg: DCB config that contains DSCP to UP/TC mapping
2363 * @skb: SKB to query for info to determine UP/TC
2364 *
2365 * This function is to only be called when the PF is in L3 DSCP PFC mode
2366 */
ice_get_dscp_up(struct ice_dcbx_cfg * dcbcfg,struct sk_buff * skb)2367 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
2368 {
2369 u8 dscp = 0;
2370
2371 if (skb->protocol == htons(ETH_P_IP))
2372 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
2373 else if (skb->protocol == htons(ETH_P_IPV6))
2374 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
2375
2376 return dcbcfg->dscp_map[dscp];
2377 }
2378
2379 u16
ice_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device * sb_dev)2380 ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
2381 struct net_device *sb_dev)
2382 {
2383 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2384 struct ice_dcbx_cfg *dcbcfg;
2385
2386 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
2387 if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
2388 skb->priority = ice_get_dscp_up(dcbcfg, skb);
2389
2390 return netdev_pick_tx(netdev, skb, sb_dev);
2391 }
2392
2393 /**
2394 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2395 * @tx_ring: tx_ring to clean
2396 */
ice_clean_ctrl_tx_irq(struct ice_tx_ring * tx_ring)2397 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
2398 {
2399 struct ice_vsi *vsi = tx_ring->vsi;
2400 s16 i = tx_ring->next_to_clean;
2401 int budget = ICE_DFLT_IRQ_WORK;
2402 struct ice_tx_desc *tx_desc;
2403 struct ice_tx_buf *tx_buf;
2404
2405 tx_buf = &tx_ring->tx_buf[i];
2406 tx_desc = ICE_TX_DESC(tx_ring, i);
2407 i -= tx_ring->count;
2408
2409 do {
2410 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2411
2412 /* if next_to_watch is not set then there is no pending work */
2413 if (!eop_desc)
2414 break;
2415
2416 /* prevent any other reads prior to eop_desc */
2417 smp_rmb();
2418
2419 /* if the descriptor isn't done, no work to do */
2420 if (!(eop_desc->cmd_type_offset_bsz &
2421 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2422 break;
2423
2424 /* clear next_to_watch to prevent false hangs */
2425 tx_buf->next_to_watch = NULL;
2426 tx_desc->buf_addr = 0;
2427 tx_desc->cmd_type_offset_bsz = 0;
2428
2429 /* move past filter desc */
2430 tx_buf++;
2431 tx_desc++;
2432 i++;
2433 if (unlikely(!i)) {
2434 i -= tx_ring->count;
2435 tx_buf = tx_ring->tx_buf;
2436 tx_desc = ICE_TX_DESC(tx_ring, 0);
2437 }
2438
2439 /* unmap the data header */
2440 if (dma_unmap_len(tx_buf, len))
2441 dma_unmap_single(tx_ring->dev,
2442 dma_unmap_addr(tx_buf, dma),
2443 dma_unmap_len(tx_buf, len),
2444 DMA_TO_DEVICE);
2445 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2446 devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2447
2448 /* clear next_to_watch to prevent false hangs */
2449 tx_buf->raw_buf = NULL;
2450 tx_buf->tx_flags = 0;
2451 tx_buf->next_to_watch = NULL;
2452 dma_unmap_len_set(tx_buf, len, 0);
2453 tx_desc->buf_addr = 0;
2454 tx_desc->cmd_type_offset_bsz = 0;
2455
2456 /* move past eop_desc for start of next FD desc */
2457 tx_buf++;
2458 tx_desc++;
2459 i++;
2460 if (unlikely(!i)) {
2461 i -= tx_ring->count;
2462 tx_buf = tx_ring->tx_buf;
2463 tx_desc = ICE_TX_DESC(tx_ring, 0);
2464 }
2465
2466 budget--;
2467 } while (likely(budget));
2468
2469 i += tx_ring->count;
2470 tx_ring->next_to_clean = i;
2471
2472 /* re-enable interrupt if needed */
2473 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2474 }
2475