1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2019-2021 Linaro Ltd.
5 */
6
7 #include <linux/types.h>
8 #include <linux/device.h>
9 #include <linux/slab.h>
10 #include <linux/bitfield.h>
11 #include <linux/if_rmnet.h>
12 #include <linux/dma-direction.h>
13
14 #include "gsi.h"
15 #include "gsi_trans.h"
16 #include "ipa.h"
17 #include "ipa_data.h"
18 #include "ipa_endpoint.h"
19 #include "ipa_cmd.h"
20 #include "ipa_mem.h"
21 #include "ipa_modem.h"
22 #include "ipa_table.h"
23 #include "ipa_gsi.h"
24 #include "ipa_power.h"
25
26 #define atomic_dec_not_zero(v) atomic_add_unless((v), -1, 0)
27
28 #define IPA_REPLENISH_BATCH 16
29
30 /* RX buffer is 1 page (or a power-of-2 contiguous pages) */
31 #define IPA_RX_BUFFER_SIZE 8192 /* PAGE_SIZE > 4096 wastes a LOT */
32
33 /* The amount of RX buffer space consumed by standard skb overhead */
34 #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
35
36 /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
37 #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */
38
39 #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3
40 #define IPA_AGGR_TIME_LIMIT 500 /* microseconds */
41
42 /** enum ipa_status_opcode - status element opcode hardware values */
43 enum ipa_status_opcode {
44 IPA_STATUS_OPCODE_PACKET = 0x01,
45 IPA_STATUS_OPCODE_DROPPED_PACKET = 0x04,
46 IPA_STATUS_OPCODE_SUSPENDED_PACKET = 0x08,
47 IPA_STATUS_OPCODE_PACKET_2ND_PASS = 0x40,
48 };
49
50 /** enum ipa_status_exception - status element exception type */
51 enum ipa_status_exception {
52 /* 0 means no exception */
53 IPA_STATUS_EXCEPTION_DEAGGR = 0x01,
54 };
55
56 /* Status element provided by hardware */
57 struct ipa_status {
58 u8 opcode; /* enum ipa_status_opcode */
59 u8 exception; /* enum ipa_status_exception */
60 __le16 mask;
61 __le16 pkt_len;
62 u8 endp_src_idx;
63 u8 endp_dst_idx;
64 __le32 metadata;
65 __le32 flags1;
66 __le64 flags2;
67 __le32 flags3;
68 __le32 flags4;
69 };
70
71 /* Field masks for struct ipa_status structure fields */
72 #define IPA_STATUS_MASK_TAG_VALID_FMASK GENMASK(4, 4)
73 #define IPA_STATUS_SRC_IDX_FMASK GENMASK(4, 0)
74 #define IPA_STATUS_DST_IDX_FMASK GENMASK(4, 0)
75 #define IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK GENMASK(31, 22)
76 #define IPA_STATUS_FLAGS2_TAG_FMASK GENMASK_ULL(63, 16)
77
ipa_endpoint_data_valid_one(struct ipa * ipa,u32 count,const struct ipa_gsi_endpoint_data * all_data,const struct ipa_gsi_endpoint_data * data)78 static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
79 const struct ipa_gsi_endpoint_data *all_data,
80 const struct ipa_gsi_endpoint_data *data)
81 {
82 const struct ipa_gsi_endpoint_data *other_data;
83 struct device *dev = &ipa->pdev->dev;
84 enum ipa_endpoint_name other_name;
85
86 if (ipa_gsi_endpoint_data_empty(data))
87 return true;
88
89 if (!data->toward_ipa) {
90 if (data->endpoint.filter_support) {
91 dev_err(dev, "filtering not supported for "
92 "RX endpoint %u\n",
93 data->endpoint_id);
94 return false;
95 }
96
97 return true; /* Nothing more to check for RX */
98 }
99
100 if (data->endpoint.config.status_enable) {
101 other_name = data->endpoint.config.tx.status_endpoint;
102 if (other_name >= count) {
103 dev_err(dev, "status endpoint name %u out of range "
104 "for endpoint %u\n",
105 other_name, data->endpoint_id);
106 return false;
107 }
108
109 /* Status endpoint must be defined... */
110 other_data = &all_data[other_name];
111 if (ipa_gsi_endpoint_data_empty(other_data)) {
112 dev_err(dev, "DMA endpoint name %u undefined "
113 "for endpoint %u\n",
114 other_name, data->endpoint_id);
115 return false;
116 }
117
118 /* ...and has to be an RX endpoint... */
119 if (other_data->toward_ipa) {
120 dev_err(dev,
121 "status endpoint for endpoint %u not RX\n",
122 data->endpoint_id);
123 return false;
124 }
125
126 /* ...and if it's to be an AP endpoint... */
127 if (other_data->ee_id == GSI_EE_AP) {
128 /* ...make sure it has status enabled. */
129 if (!other_data->endpoint.config.status_enable) {
130 dev_err(dev,
131 "status not enabled for endpoint %u\n",
132 other_data->endpoint_id);
133 return false;
134 }
135 }
136 }
137
138 if (data->endpoint.config.dma_mode) {
139 other_name = data->endpoint.config.dma_endpoint;
140 if (other_name >= count) {
141 dev_err(dev, "DMA endpoint name %u out of range "
142 "for endpoint %u\n",
143 other_name, data->endpoint_id);
144 return false;
145 }
146
147 other_data = &all_data[other_name];
148 if (ipa_gsi_endpoint_data_empty(other_data)) {
149 dev_err(dev, "DMA endpoint name %u undefined "
150 "for endpoint %u\n",
151 other_name, data->endpoint_id);
152 return false;
153 }
154 }
155
156 return true;
157 }
158
aggr_byte_limit_max(enum ipa_version version)159 static u32 aggr_byte_limit_max(enum ipa_version version)
160 {
161 if (version < IPA_VERSION_4_5)
162 return field_max(aggr_byte_limit_fmask(true));
163
164 return field_max(aggr_byte_limit_fmask(false));
165 }
166
ipa_endpoint_data_valid(struct ipa * ipa,u32 count,const struct ipa_gsi_endpoint_data * data)167 static bool ipa_endpoint_data_valid(struct ipa *ipa, u32 count,
168 const struct ipa_gsi_endpoint_data *data)
169 {
170 const struct ipa_gsi_endpoint_data *dp = data;
171 struct device *dev = &ipa->pdev->dev;
172 enum ipa_endpoint_name name;
173 u32 limit;
174
175 if (count > IPA_ENDPOINT_COUNT) {
176 dev_err(dev, "too many endpoints specified (%u > %u)\n",
177 count, IPA_ENDPOINT_COUNT);
178 return false;
179 }
180
181 /* The aggregation byte limit defines the point at which an
182 * aggregation window will close. It is programmed into the
183 * IPA hardware as a number of KB. We don't use "hard byte
184 * limit" aggregation, which means that we need to supply
185 * enough space in a receive buffer to hold a complete MTU
186 * plus normal skb overhead *after* that aggregation byte
187 * limit has been crossed.
188 *
189 * This check ensures we don't define a receive buffer size
190 * that would exceed what we can represent in the field that
191 * is used to program its size.
192 */
193 limit = aggr_byte_limit_max(ipa->version) * SZ_1K;
194 limit += IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
195 if (limit < IPA_RX_BUFFER_SIZE) {
196 dev_err(dev, "buffer size too big for aggregation (%u > %u)\n",
197 IPA_RX_BUFFER_SIZE, limit);
198 return false;
199 }
200
201 /* Make sure needed endpoints have defined data */
202 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
203 dev_err(dev, "command TX endpoint not defined\n");
204 return false;
205 }
206 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
207 dev_err(dev, "LAN RX endpoint not defined\n");
208 return false;
209 }
210 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
211 dev_err(dev, "AP->modem TX endpoint not defined\n");
212 return false;
213 }
214 if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
215 dev_err(dev, "AP<-modem RX endpoint not defined\n");
216 return false;
217 }
218
219 for (name = 0; name < count; name++, dp++)
220 if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
221 return false;
222
223 return true;
224 }
225
226 /* Allocate a transaction to use on a non-command endpoint */
ipa_endpoint_trans_alloc(struct ipa_endpoint * endpoint,u32 tre_count)227 static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
228 u32 tre_count)
229 {
230 struct gsi *gsi = &endpoint->ipa->gsi;
231 u32 channel_id = endpoint->channel_id;
232 enum dma_data_direction direction;
233
234 direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
235
236 return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
237 }
238
239 /* suspend_delay represents suspend for RX, delay for TX endpoints.
240 * Note that suspend is not supported starting with IPA v4.0.
241 */
242 static bool
ipa_endpoint_init_ctrl(struct ipa_endpoint * endpoint,bool suspend_delay)243 ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
244 {
245 u32 offset = IPA_REG_ENDP_INIT_CTRL_N_OFFSET(endpoint->endpoint_id);
246 struct ipa *ipa = endpoint->ipa;
247 bool state;
248 u32 mask;
249 u32 val;
250
251 /* Suspend is not supported for IPA v4.0+. Delay doesn't work
252 * correctly on IPA v4.2.
253 */
254 if (endpoint->toward_ipa)
255 WARN_ON(ipa->version == IPA_VERSION_4_2);
256 else
257 WARN_ON(ipa->version >= IPA_VERSION_4_0);
258
259 mask = endpoint->toward_ipa ? ENDP_DELAY_FMASK : ENDP_SUSPEND_FMASK;
260
261 val = ioread32(ipa->reg_virt + offset);
262 state = !!(val & mask);
263
264 /* Don't bother if it's already in the requested state */
265 if (suspend_delay != state) {
266 val ^= mask;
267 iowrite32(val, ipa->reg_virt + offset);
268 }
269
270 return state;
271 }
272
273 /* We currently don't care what the previous state was for delay mode */
274 static void
ipa_endpoint_program_delay(struct ipa_endpoint * endpoint,bool enable)275 ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
276 {
277 WARN_ON(!endpoint->toward_ipa);
278
279 /* Delay mode doesn't work properly for IPA v4.2 */
280 if (endpoint->ipa->version != IPA_VERSION_4_2)
281 (void)ipa_endpoint_init_ctrl(endpoint, enable);
282 }
283
ipa_endpoint_aggr_active(struct ipa_endpoint * endpoint)284 static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
285 {
286 u32 mask = BIT(endpoint->endpoint_id);
287 struct ipa *ipa = endpoint->ipa;
288 u32 offset;
289 u32 val;
290
291 WARN_ON(!(mask & ipa->available));
292
293 offset = ipa_reg_state_aggr_active_offset(ipa->version);
294 val = ioread32(ipa->reg_virt + offset);
295
296 return !!(val & mask);
297 }
298
ipa_endpoint_force_close(struct ipa_endpoint * endpoint)299 static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
300 {
301 u32 mask = BIT(endpoint->endpoint_id);
302 struct ipa *ipa = endpoint->ipa;
303
304 WARN_ON(!(mask & ipa->available));
305
306 iowrite32(mask, ipa->reg_virt + IPA_REG_AGGR_FORCE_CLOSE_OFFSET);
307 }
308
309 /**
310 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
311 * @endpoint: Endpoint on which to emulate a suspend
312 *
313 * Emulate suspend IPA interrupt to unsuspend an endpoint suspended
314 * with an open aggregation frame. This is to work around a hardware
315 * issue in IPA version 3.5.1 where the suspend interrupt will not be
316 * generated when it should be.
317 */
ipa_endpoint_suspend_aggr(struct ipa_endpoint * endpoint)318 static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
319 {
320 struct ipa *ipa = endpoint->ipa;
321
322 if (!endpoint->data->aggregation)
323 return;
324
325 /* Nothing to do if the endpoint doesn't have aggregation open */
326 if (!ipa_endpoint_aggr_active(endpoint))
327 return;
328
329 /* Force close aggregation */
330 ipa_endpoint_force_close(endpoint);
331
332 ipa_interrupt_simulate_suspend(ipa->interrupt);
333 }
334
335 /* Returns previous suspend state (true means suspend was enabled) */
336 static bool
ipa_endpoint_program_suspend(struct ipa_endpoint * endpoint,bool enable)337 ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
338 {
339 bool suspended;
340
341 if (endpoint->ipa->version >= IPA_VERSION_4_0)
342 return enable; /* For IPA v4.0+, no change made */
343
344 WARN_ON(endpoint->toward_ipa);
345
346 suspended = ipa_endpoint_init_ctrl(endpoint, enable);
347
348 /* A client suspended with an open aggregation frame will not
349 * generate a SUSPEND IPA interrupt. If enabling suspend, have
350 * ipa_endpoint_suspend_aggr() handle this.
351 */
352 if (enable && !suspended)
353 ipa_endpoint_suspend_aggr(endpoint);
354
355 return suspended;
356 }
357
358 /* Enable or disable delay or suspend mode on all modem endpoints */
ipa_endpoint_modem_pause_all(struct ipa * ipa,bool enable)359 void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
360 {
361 u32 endpoint_id;
362
363 /* DELAY mode doesn't work correctly on IPA v4.2 */
364 if (ipa->version == IPA_VERSION_4_2)
365 return;
366
367 for (endpoint_id = 0; endpoint_id < IPA_ENDPOINT_MAX; endpoint_id++) {
368 struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id];
369
370 if (endpoint->ee_id != GSI_EE_MODEM)
371 continue;
372
373 /* Set TX delay mode or RX suspend mode */
374 if (endpoint->toward_ipa)
375 ipa_endpoint_program_delay(endpoint, enable);
376 else
377 (void)ipa_endpoint_program_suspend(endpoint, enable);
378 }
379 }
380
381 /* Reset all modem endpoints to use the default exception endpoint */
ipa_endpoint_modem_exception_reset_all(struct ipa * ipa)382 int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
383 {
384 u32 initialized = ipa->initialized;
385 struct gsi_trans *trans;
386 u32 count;
387
388 /* We need one command per modem TX endpoint. We can get an upper
389 * bound on that by assuming all initialized endpoints are modem->IPA.
390 * That won't happen, and we could be more precise, but this is fine
391 * for now. End the transaction with commands to clear the pipeline.
392 */
393 count = hweight32(initialized) + ipa_cmd_pipeline_clear_count();
394 trans = ipa_cmd_trans_alloc(ipa, count);
395 if (!trans) {
396 dev_err(&ipa->pdev->dev,
397 "no transaction to reset modem exception endpoints\n");
398 return -EBUSY;
399 }
400
401 while (initialized) {
402 u32 endpoint_id = __ffs(initialized);
403 struct ipa_endpoint *endpoint;
404 u32 offset;
405
406 initialized ^= BIT(endpoint_id);
407
408 /* We only reset modem TX endpoints */
409 endpoint = &ipa->endpoint[endpoint_id];
410 if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
411 continue;
412
413 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
414
415 /* Value written is 0, and all bits are updated. That
416 * means status is disabled on the endpoint, and as a
417 * result all other fields in the register are ignored.
418 */
419 ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
420 }
421
422 ipa_cmd_pipeline_clear_add(trans);
423
424 /* XXX This should have a 1 second timeout */
425 gsi_trans_commit_wait(trans);
426
427 ipa_cmd_pipeline_clear_wait(ipa);
428
429 return 0;
430 }
431
ipa_endpoint_init_cfg(struct ipa_endpoint * endpoint)432 static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
433 {
434 u32 offset = IPA_REG_ENDP_INIT_CFG_N_OFFSET(endpoint->endpoint_id);
435 enum ipa_cs_offload_en enabled;
436 u32 val = 0;
437
438 /* FRAG_OFFLOAD_EN is 0 */
439 if (endpoint->data->checksum) {
440 enum ipa_version version = endpoint->ipa->version;
441
442 if (endpoint->toward_ipa) {
443 u32 checksum_offset;
444
445 /* Checksum header offset is in 4-byte units */
446 checksum_offset = sizeof(struct rmnet_map_header);
447 checksum_offset /= sizeof(u32);
448 val |= u32_encode_bits(checksum_offset,
449 CS_METADATA_HDR_OFFSET_FMASK);
450
451 enabled = version < IPA_VERSION_4_5
452 ? IPA_CS_OFFLOAD_UL
453 : IPA_CS_OFFLOAD_INLINE;
454 } else {
455 enabled = version < IPA_VERSION_4_5
456 ? IPA_CS_OFFLOAD_DL
457 : IPA_CS_OFFLOAD_INLINE;
458 }
459 } else {
460 enabled = IPA_CS_OFFLOAD_NONE;
461 }
462 val |= u32_encode_bits(enabled, CS_OFFLOAD_EN_FMASK);
463 /* CS_GEN_QMB_MASTER_SEL is 0 */
464
465 iowrite32(val, endpoint->ipa->reg_virt + offset);
466 }
467
ipa_endpoint_init_nat(struct ipa_endpoint * endpoint)468 static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
469 {
470 u32 offset;
471 u32 val;
472
473 if (!endpoint->toward_ipa)
474 return;
475
476 offset = IPA_REG_ENDP_INIT_NAT_N_OFFSET(endpoint->endpoint_id);
477 val = u32_encode_bits(IPA_NAT_BYPASS, NAT_EN_FMASK);
478
479 iowrite32(val, endpoint->ipa->reg_virt + offset);
480 }
481
482 static u32
ipa_qmap_header_size(enum ipa_version version,struct ipa_endpoint * endpoint)483 ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
484 {
485 u32 header_size = sizeof(struct rmnet_map_header);
486
487 /* Without checksum offload, we just have the MAP header */
488 if (!endpoint->data->checksum)
489 return header_size;
490
491 if (version < IPA_VERSION_4_5) {
492 /* Checksum header inserted for AP TX endpoints only */
493 if (endpoint->toward_ipa)
494 header_size += sizeof(struct rmnet_map_ul_csum_header);
495 } else {
496 /* Checksum header is used in both directions */
497 header_size += sizeof(struct rmnet_map_v5_csum_header);
498 }
499
500 return header_size;
501 }
502
503 /**
504 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
505 * @endpoint: Endpoint pointer
506 *
507 * We program QMAP endpoints so each packet received is preceded by a QMAP
508 * header structure. The QMAP header contains a 1-byte mux_id and 2-byte
509 * packet size field, and we have the IPA hardware populate both for each
510 * received packet. The header is configured (in the HDR_EXT register)
511 * to use big endian format.
512 *
513 * The packet size is written into the QMAP header's pkt_len field. That
514 * location is defined here using the HDR_OFST_PKT_SIZE field.
515 *
516 * The mux_id comes from a 4-byte metadata value supplied with each packet
517 * by the modem. It is *not* a QMAP header, but it does contain the mux_id
518 * value that we want, in its low-order byte. A bitmask defined in the
519 * endpoint's METADATA_MASK register defines which byte within the modem
520 * metadata contains the mux_id. And the OFST_METADATA field programmed
521 * here indicates where the extracted byte should be placed within the QMAP
522 * header.
523 */
ipa_endpoint_init_hdr(struct ipa_endpoint * endpoint)524 static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
525 {
526 u32 offset = IPA_REG_ENDP_INIT_HDR_N_OFFSET(endpoint->endpoint_id);
527 struct ipa *ipa = endpoint->ipa;
528 u32 val = 0;
529
530 if (endpoint->data->qmap) {
531 enum ipa_version version = ipa->version;
532 size_t header_size;
533
534 header_size = ipa_qmap_header_size(version, endpoint);
535 val = ipa_header_size_encoded(version, header_size);
536
537 /* Define how to fill fields in a received QMAP header */
538 if (!endpoint->toward_ipa) {
539 u32 offset; /* Field offset within header */
540
541 /* Where IPA will write the metadata value */
542 offset = offsetof(struct rmnet_map_header, mux_id);
543 val |= ipa_metadata_offset_encoded(version, offset);
544
545 /* Where IPA will write the length */
546 offset = offsetof(struct rmnet_map_header, pkt_len);
547 /* Upper bits are stored in HDR_EXT with IPA v4.5 */
548 if (version >= IPA_VERSION_4_5)
549 offset &= field_mask(HDR_OFST_PKT_SIZE_FMASK);
550
551 val |= HDR_OFST_PKT_SIZE_VALID_FMASK;
552 val |= u32_encode_bits(offset, HDR_OFST_PKT_SIZE_FMASK);
553 }
554 /* For QMAP TX, metadata offset is 0 (modem assumes this) */
555 val |= HDR_OFST_METADATA_VALID_FMASK;
556
557 /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
558 /* HDR_A5_MUX is 0 */
559 /* HDR_LEN_INC_DEAGG_HDR is 0 */
560 /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
561 }
562
563 iowrite32(val, ipa->reg_virt + offset);
564 }
565
ipa_endpoint_init_hdr_ext(struct ipa_endpoint * endpoint)566 static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
567 {
568 u32 offset = IPA_REG_ENDP_INIT_HDR_EXT_N_OFFSET(endpoint->endpoint_id);
569 u32 pad_align = endpoint->data->rx.pad_align;
570 struct ipa *ipa = endpoint->ipa;
571 u32 val = 0;
572
573 val |= HDR_ENDIANNESS_FMASK; /* big endian */
574
575 /* A QMAP header contains a 6 bit pad field at offset 0. The RMNet
576 * driver assumes this field is meaningful in packets it receives,
577 * and assumes the header's payload length includes that padding.
578 * The RMNet driver does *not* pad packets it sends, however, so
579 * the pad field (although 0) should be ignored.
580 */
581 if (endpoint->data->qmap && !endpoint->toward_ipa) {
582 val |= HDR_TOTAL_LEN_OR_PAD_VALID_FMASK;
583 /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
584 val |= HDR_PAYLOAD_LEN_INC_PADDING_FMASK;
585 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
586 }
587
588 /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
589 if (!endpoint->toward_ipa)
590 val |= u32_encode_bits(pad_align, HDR_PAD_TO_ALIGNMENT_FMASK);
591
592 /* IPA v4.5 adds some most-significant bits to a few fields,
593 * two of which are defined in the HDR (not HDR_EXT) register.
594 */
595 if (ipa->version >= IPA_VERSION_4_5) {
596 /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
597 if (endpoint->data->qmap && !endpoint->toward_ipa) {
598 u32 offset;
599
600 offset = offsetof(struct rmnet_map_header, pkt_len);
601 offset >>= hweight32(HDR_OFST_PKT_SIZE_FMASK);
602 val |= u32_encode_bits(offset,
603 HDR_OFST_PKT_SIZE_MSB_FMASK);
604 /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
605 }
606 }
607 iowrite32(val, ipa->reg_virt + offset);
608 }
609
ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint * endpoint)610 static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
611 {
612 u32 endpoint_id = endpoint->endpoint_id;
613 u32 val = 0;
614 u32 offset;
615
616 if (endpoint->toward_ipa)
617 return; /* Register not valid for TX endpoints */
618
619 offset = IPA_REG_ENDP_INIT_HDR_METADATA_MASK_N_OFFSET(endpoint_id);
620
621 /* Note that HDR_ENDIANNESS indicates big endian header fields */
622 if (endpoint->data->qmap)
623 val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
624
625 iowrite32(val, endpoint->ipa->reg_virt + offset);
626 }
627
ipa_endpoint_init_mode(struct ipa_endpoint * endpoint)628 static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
629 {
630 u32 offset = IPA_REG_ENDP_INIT_MODE_N_OFFSET(endpoint->endpoint_id);
631 u32 val;
632
633 if (!endpoint->toward_ipa)
634 return; /* Register not valid for RX endpoints */
635
636 if (endpoint->data->dma_mode) {
637 enum ipa_endpoint_name name = endpoint->data->dma_endpoint;
638 u32 dma_endpoint_id;
639
640 dma_endpoint_id = endpoint->ipa->name_map[name]->endpoint_id;
641
642 val = u32_encode_bits(IPA_DMA, MODE_FMASK);
643 val |= u32_encode_bits(dma_endpoint_id, DEST_PIPE_INDEX_FMASK);
644 } else {
645 val = u32_encode_bits(IPA_BASIC, MODE_FMASK);
646 }
647 /* All other bits unspecified (and 0) */
648
649 iowrite32(val, endpoint->ipa->reg_virt + offset);
650 }
651
652 /* Compute the aggregation size value to use for a given buffer size */
ipa_aggr_size_kb(u32 rx_buffer_size)653 static u32 ipa_aggr_size_kb(u32 rx_buffer_size)
654 {
655 /* We don't use "hard byte limit" aggregation, so we define the
656 * aggregation limit such that our buffer has enough space *after*
657 * that limit to receive a full MTU of data, plus overhead.
658 */
659 rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
660
661 return rx_buffer_size / SZ_1K;
662 }
663
664 /* Encoded values for AGGR endpoint register fields */
aggr_byte_limit_encoded(enum ipa_version version,u32 limit)665 static u32 aggr_byte_limit_encoded(enum ipa_version version, u32 limit)
666 {
667 if (version < IPA_VERSION_4_5)
668 return u32_encode_bits(limit, aggr_byte_limit_fmask(true));
669
670 return u32_encode_bits(limit, aggr_byte_limit_fmask(false));
671 }
672
673 /* Encode the aggregation timer limit (microseconds) based on IPA version */
aggr_time_limit_encoded(enum ipa_version version,u32 limit)674 static u32 aggr_time_limit_encoded(enum ipa_version version, u32 limit)
675 {
676 u32 gran_sel;
677 u32 fmask;
678 u32 val;
679
680 if (version < IPA_VERSION_4_5) {
681 /* We set aggregation granularity in ipa_hardware_config() */
682 limit = DIV_ROUND_CLOSEST(limit, IPA_AGGR_GRANULARITY);
683
684 return u32_encode_bits(limit, aggr_time_limit_fmask(true));
685 }
686
687 /* IPA v4.5 expresses the time limit using Qtime. The AP has
688 * pulse generators 0 and 1 available, which were configured
689 * in ipa_qtime_config() to have granularity 100 usec and
690 * 1 msec, respectively. Use pulse generator 0 if possible,
691 * otherwise fall back to pulse generator 1.
692 */
693 fmask = aggr_time_limit_fmask(false);
694 val = DIV_ROUND_CLOSEST(limit, 100);
695 if (val > field_max(fmask)) {
696 /* Have to use pulse generator 1 (millisecond granularity) */
697 gran_sel = AGGR_GRAN_SEL_FMASK;
698 val = DIV_ROUND_CLOSEST(limit, 1000);
699 } else {
700 /* We can use pulse generator 0 (100 usec granularity) */
701 gran_sel = 0;
702 }
703
704 return gran_sel | u32_encode_bits(val, fmask);
705 }
706
aggr_sw_eof_active_encoded(enum ipa_version version,bool enabled)707 static u32 aggr_sw_eof_active_encoded(enum ipa_version version, bool enabled)
708 {
709 u32 val = enabled ? 1 : 0;
710
711 if (version < IPA_VERSION_4_5)
712 return u32_encode_bits(val, aggr_sw_eof_active_fmask(true));
713
714 return u32_encode_bits(val, aggr_sw_eof_active_fmask(false));
715 }
716
ipa_endpoint_init_aggr(struct ipa_endpoint * endpoint)717 static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
718 {
719 u32 offset = IPA_REG_ENDP_INIT_AGGR_N_OFFSET(endpoint->endpoint_id);
720 enum ipa_version version = endpoint->ipa->version;
721 u32 val = 0;
722
723 if (endpoint->data->aggregation) {
724 if (!endpoint->toward_ipa) {
725 bool close_eof;
726 u32 limit;
727
728 val |= u32_encode_bits(IPA_ENABLE_AGGR, AGGR_EN_FMASK);
729 val |= u32_encode_bits(IPA_GENERIC, AGGR_TYPE_FMASK);
730
731 limit = ipa_aggr_size_kb(IPA_RX_BUFFER_SIZE);
732 val |= aggr_byte_limit_encoded(version, limit);
733
734 limit = IPA_AGGR_TIME_LIMIT;
735 val |= aggr_time_limit_encoded(version, limit);
736
737 /* AGGR_PKT_LIMIT is 0 (unlimited) */
738
739 close_eof = endpoint->data->rx.aggr_close_eof;
740 val |= aggr_sw_eof_active_encoded(version, close_eof);
741
742 /* AGGR_HARD_BYTE_LIMIT_ENABLE is 0 */
743 } else {
744 val |= u32_encode_bits(IPA_ENABLE_DEAGGR,
745 AGGR_EN_FMASK);
746 val |= u32_encode_bits(IPA_QCMAP, AGGR_TYPE_FMASK);
747 /* other fields ignored */
748 }
749 /* AGGR_FORCE_CLOSE is 0 */
750 /* AGGR_GRAN_SEL is 0 for IPA v4.5 */
751 } else {
752 val |= u32_encode_bits(IPA_BYPASS_AGGR, AGGR_EN_FMASK);
753 /* other fields ignored */
754 }
755
756 iowrite32(val, endpoint->ipa->reg_virt + offset);
757 }
758
759 /* Return the Qtime-based head-of-line blocking timer value that
760 * represents the given number of microseconds. The result
761 * includes both the timer value and the selected timer granularity.
762 */
hol_block_timer_qtime_val(struct ipa * ipa,u32 microseconds)763 static u32 hol_block_timer_qtime_val(struct ipa *ipa, u32 microseconds)
764 {
765 u32 gran_sel;
766 u32 val;
767
768 /* IPA v4.5 expresses time limits using Qtime. The AP has
769 * pulse generators 0 and 1 available, which were configured
770 * in ipa_qtime_config() to have granularity 100 usec and
771 * 1 msec, respectively. Use pulse generator 0 if possible,
772 * otherwise fall back to pulse generator 1.
773 */
774 val = DIV_ROUND_CLOSEST(microseconds, 100);
775 if (val > field_max(TIME_LIMIT_FMASK)) {
776 /* Have to use pulse generator 1 (millisecond granularity) */
777 gran_sel = GRAN_SEL_FMASK;
778 val = DIV_ROUND_CLOSEST(microseconds, 1000);
779 } else {
780 /* We can use pulse generator 0 (100 usec granularity) */
781 gran_sel = 0;
782 }
783
784 return gran_sel | u32_encode_bits(val, TIME_LIMIT_FMASK);
785 }
786
787 /* The head-of-line blocking timer is defined as a tick count. For
788 * IPA version 4.5 the tick count is based on the Qtimer, which is
789 * derived from the 19.2 MHz SoC XO clock. For older IPA versions
790 * each tick represents 128 cycles of the IPA core clock.
791 *
792 * Return the encoded value that should be written to that register
793 * that represents the timeout period provided. For IPA v4.2 this
794 * encodes a base and scale value, while for earlier versions the
795 * value is a simple tick count.
796 */
hol_block_timer_val(struct ipa * ipa,u32 microseconds)797 static u32 hol_block_timer_val(struct ipa *ipa, u32 microseconds)
798 {
799 u32 width;
800 u32 scale;
801 u64 ticks;
802 u64 rate;
803 u32 high;
804 u32 val;
805
806 if (!microseconds)
807 return 0; /* Nothing to compute if timer period is 0 */
808
809 if (ipa->version >= IPA_VERSION_4_5)
810 return hol_block_timer_qtime_val(ipa, microseconds);
811
812 /* Use 64 bit arithmetic to avoid overflow... */
813 rate = ipa_core_clock_rate(ipa);
814 ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
815 /* ...but we still need to fit into a 32-bit register */
816 WARN_ON(ticks > U32_MAX);
817
818 /* IPA v3.5.1 through v4.1 just record the tick count */
819 if (ipa->version < IPA_VERSION_4_2)
820 return (u32)ticks;
821
822 /* For IPA v4.2, the tick count is represented by base and
823 * scale fields within the 32-bit timer register, where:
824 * ticks = base << scale;
825 * The best precision is achieved when the base value is as
826 * large as possible. Find the highest set bit in the tick
827 * count, and extract the number of bits in the base field
828 * such that high bit is included.
829 */
830 high = fls(ticks); /* 1..32 */
831 width = HWEIGHT32(BASE_VALUE_FMASK);
832 scale = high > width ? high - width : 0;
833 if (scale) {
834 /* If we're scaling, round up to get a closer result */
835 ticks += 1 << (scale - 1);
836 /* High bit was set, so rounding might have affected it */
837 if (fls(ticks) != high)
838 scale++;
839 }
840
841 val = u32_encode_bits(scale, SCALE_FMASK);
842 val |= u32_encode_bits(ticks >> scale, BASE_VALUE_FMASK);
843
844 return val;
845 }
846
847 /* If microseconds is 0, timeout is immediate */
ipa_endpoint_init_hol_block_timer(struct ipa_endpoint * endpoint,u32 microseconds)848 static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
849 u32 microseconds)
850 {
851 u32 endpoint_id = endpoint->endpoint_id;
852 struct ipa *ipa = endpoint->ipa;
853 u32 offset;
854 u32 val;
855
856 /* This should only be changed when HOL_BLOCK_EN is disabled */
857 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_TIMER_N_OFFSET(endpoint_id);
858 val = hol_block_timer_val(ipa, microseconds);
859 iowrite32(val, ipa->reg_virt + offset);
860 }
861
862 static void
ipa_endpoint_init_hol_block_enable(struct ipa_endpoint * endpoint,bool enable)863 ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, bool enable)
864 {
865 u32 endpoint_id = endpoint->endpoint_id;
866 u32 offset;
867 u32 val;
868
869 val = enable ? HOL_BLOCK_EN_FMASK : 0;
870 offset = IPA_REG_ENDP_INIT_HOL_BLOCK_EN_N_OFFSET(endpoint_id);
871 iowrite32(val, endpoint->ipa->reg_virt + offset);
872 /* When enabling, the register must be written twice for IPA v4.5+ */
873 if (enable && endpoint->ipa->version >= IPA_VERSION_4_5)
874 iowrite32(val, endpoint->ipa->reg_virt + offset);
875 }
876
ipa_endpoint_modem_hol_block_clear_all(struct ipa * ipa)877 void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
878 {
879 u32 i;
880
881 for (i = 0; i < IPA_ENDPOINT_MAX; i++) {
882 struct ipa_endpoint *endpoint = &ipa->endpoint[i];
883
884 if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
885 continue;
886
887 ipa_endpoint_init_hol_block_enable(endpoint, false);
888 ipa_endpoint_init_hol_block_timer(endpoint, 0);
889 ipa_endpoint_init_hol_block_enable(endpoint, true);
890 }
891 }
892
ipa_endpoint_init_deaggr(struct ipa_endpoint * endpoint)893 static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
894 {
895 u32 offset = IPA_REG_ENDP_INIT_DEAGGR_N_OFFSET(endpoint->endpoint_id);
896 u32 val = 0;
897
898 if (!endpoint->toward_ipa)
899 return; /* Register not valid for RX endpoints */
900
901 /* DEAGGR_HDR_LEN is 0 */
902 /* PACKET_OFFSET_VALID is 0 */
903 /* PACKET_OFFSET_LOCATION is ignored (not valid) */
904 /* MAX_PACKET_LEN is 0 (not enforced) */
905
906 iowrite32(val, endpoint->ipa->reg_virt + offset);
907 }
908
ipa_endpoint_init_rsrc_grp(struct ipa_endpoint * endpoint)909 static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
910 {
911 u32 offset = IPA_REG_ENDP_INIT_RSRC_GRP_N_OFFSET(endpoint->endpoint_id);
912 struct ipa *ipa = endpoint->ipa;
913 u32 val;
914
915 val = rsrc_grp_encoded(ipa->version, endpoint->data->resource_group);
916 iowrite32(val, ipa->reg_virt + offset);
917 }
918
ipa_endpoint_init_seq(struct ipa_endpoint * endpoint)919 static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
920 {
921 u32 offset = IPA_REG_ENDP_INIT_SEQ_N_OFFSET(endpoint->endpoint_id);
922 u32 val = 0;
923
924 if (!endpoint->toward_ipa)
925 return; /* Register not valid for RX endpoints */
926
927 /* Low-order byte configures primary packet processing */
928 val |= u32_encode_bits(endpoint->data->tx.seq_type, SEQ_TYPE_FMASK);
929
930 /* Second byte configures replicated packet processing */
931 val |= u32_encode_bits(endpoint->data->tx.seq_rep_type,
932 SEQ_REP_TYPE_FMASK);
933
934 iowrite32(val, endpoint->ipa->reg_virt + offset);
935 }
936
937 /**
938 * ipa_endpoint_skb_tx() - Transmit a socket buffer
939 * @endpoint: Endpoint pointer
940 * @skb: Socket buffer to send
941 *
942 * Returns: 0 if successful, or a negative error code
943 */
ipa_endpoint_skb_tx(struct ipa_endpoint * endpoint,struct sk_buff * skb)944 int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
945 {
946 struct gsi_trans *trans;
947 u32 nr_frags;
948 int ret;
949
950 /* Make sure source endpoint's TLV FIFO has enough entries to
951 * hold the linear portion of the skb and all its fragments.
952 * If not, see if we can linearize it before giving up.
953 */
954 nr_frags = skb_shinfo(skb)->nr_frags;
955 if (1 + nr_frags > endpoint->trans_tre_max) {
956 if (skb_linearize(skb))
957 return -E2BIG;
958 nr_frags = 0;
959 }
960
961 trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
962 if (!trans)
963 return -EBUSY;
964
965 ret = gsi_trans_skb_add(trans, skb);
966 if (ret)
967 goto err_trans_free;
968 trans->data = skb; /* transaction owns skb now */
969
970 gsi_trans_commit(trans, !netdev_xmit_more());
971
972 return 0;
973
974 err_trans_free:
975 gsi_trans_free(trans);
976
977 return -ENOMEM;
978 }
979
ipa_endpoint_status(struct ipa_endpoint * endpoint)980 static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
981 {
982 u32 endpoint_id = endpoint->endpoint_id;
983 struct ipa *ipa = endpoint->ipa;
984 u32 val = 0;
985 u32 offset;
986
987 offset = IPA_REG_ENDP_STATUS_N_OFFSET(endpoint_id);
988
989 if (endpoint->data->status_enable) {
990 val |= STATUS_EN_FMASK;
991 if (endpoint->toward_ipa) {
992 enum ipa_endpoint_name name;
993 u32 status_endpoint_id;
994
995 name = endpoint->data->tx.status_endpoint;
996 status_endpoint_id = ipa->name_map[name]->endpoint_id;
997
998 val |= u32_encode_bits(status_endpoint_id,
999 STATUS_ENDP_FMASK);
1000 }
1001 /* STATUS_LOCATION is 0, meaning status element precedes
1002 * packet (not present for IPA v4.5)
1003 */
1004 /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v3.5.1) */
1005 }
1006
1007 iowrite32(val, ipa->reg_virt + offset);
1008 }
1009
ipa_endpoint_replenish_one(struct ipa_endpoint * endpoint)1010 static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint)
1011 {
1012 struct gsi_trans *trans;
1013 bool doorbell = false;
1014 struct page *page;
1015 u32 offset;
1016 u32 len;
1017 int ret;
1018
1019 page = dev_alloc_pages(get_order(IPA_RX_BUFFER_SIZE));
1020 if (!page)
1021 return -ENOMEM;
1022
1023 trans = ipa_endpoint_trans_alloc(endpoint, 1);
1024 if (!trans)
1025 goto err_free_pages;
1026
1027 /* Offset the buffer to make space for skb headroom */
1028 offset = NET_SKB_PAD;
1029 len = IPA_RX_BUFFER_SIZE - offset;
1030
1031 ret = gsi_trans_page_add(trans, page, len, offset);
1032 if (ret)
1033 goto err_trans_free;
1034 trans->data = page; /* transaction owns page now */
1035
1036 if (++endpoint->replenish_ready == IPA_REPLENISH_BATCH) {
1037 doorbell = true;
1038 endpoint->replenish_ready = 0;
1039 }
1040
1041 gsi_trans_commit(trans, doorbell);
1042
1043 return 0;
1044
1045 err_trans_free:
1046 gsi_trans_free(trans);
1047 err_free_pages:
1048 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1049
1050 return -ENOMEM;
1051 }
1052
1053 /**
1054 * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1055 * @endpoint: Endpoint to be replenished
1056 * @add_one: Whether this is replacing a just-consumed buffer
1057 *
1058 * The IPA hardware can hold a fixed number of receive buffers for an RX
1059 * endpoint, based on the number of entries in the underlying channel ring
1060 * buffer. If an endpoint's "backlog" is non-zero, it indicates how many
1061 * more receive buffers can be supplied to the hardware. Replenishing for
1062 * an endpoint can be disabled, in which case requests to replenish a
1063 * buffer are "saved", and transferred to the backlog once it is re-enabled
1064 * again.
1065 */
ipa_endpoint_replenish(struct ipa_endpoint * endpoint,bool add_one)1066 static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint, bool add_one)
1067 {
1068 struct gsi *gsi;
1069 u32 backlog;
1070
1071 if (!endpoint->replenish_enabled) {
1072 if (add_one)
1073 atomic_inc(&endpoint->replenish_saved);
1074 return;
1075 }
1076
1077 while (atomic_dec_not_zero(&endpoint->replenish_backlog))
1078 if (ipa_endpoint_replenish_one(endpoint))
1079 goto try_again_later;
1080 if (add_one)
1081 atomic_inc(&endpoint->replenish_backlog);
1082
1083 return;
1084
1085 try_again_later:
1086 /* The last one didn't succeed, so fix the backlog */
1087 backlog = atomic_inc_return(&endpoint->replenish_backlog);
1088
1089 if (add_one)
1090 atomic_inc(&endpoint->replenish_backlog);
1091
1092 /* Whenever a receive buffer transaction completes we'll try to
1093 * replenish again. It's unlikely, but if we fail to supply even
1094 * one buffer, nothing will trigger another replenish attempt.
1095 * Receive buffer transactions use one TRE, so schedule work to
1096 * try replenishing again if our backlog is *all* available TREs.
1097 */
1098 gsi = &endpoint->ipa->gsi;
1099 if (backlog == gsi_channel_tre_max(gsi, endpoint->channel_id))
1100 schedule_delayed_work(&endpoint->replenish_work,
1101 msecs_to_jiffies(1));
1102 }
1103
ipa_endpoint_replenish_enable(struct ipa_endpoint * endpoint)1104 static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1105 {
1106 struct gsi *gsi = &endpoint->ipa->gsi;
1107 u32 max_backlog;
1108 u32 saved;
1109
1110 endpoint->replenish_enabled = true;
1111 while ((saved = atomic_xchg(&endpoint->replenish_saved, 0)))
1112 atomic_add(saved, &endpoint->replenish_backlog);
1113
1114 /* Start replenishing if hardware currently has no buffers */
1115 max_backlog = gsi_channel_tre_max(gsi, endpoint->channel_id);
1116 if (atomic_read(&endpoint->replenish_backlog) == max_backlog)
1117 ipa_endpoint_replenish(endpoint, false);
1118 }
1119
ipa_endpoint_replenish_disable(struct ipa_endpoint * endpoint)1120 static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1121 {
1122 u32 backlog;
1123
1124 endpoint->replenish_enabled = false;
1125 while ((backlog = atomic_xchg(&endpoint->replenish_backlog, 0)))
1126 atomic_add(backlog, &endpoint->replenish_saved);
1127 }
1128
ipa_endpoint_replenish_work(struct work_struct * work)1129 static void ipa_endpoint_replenish_work(struct work_struct *work)
1130 {
1131 struct delayed_work *dwork = to_delayed_work(work);
1132 struct ipa_endpoint *endpoint;
1133
1134 endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1135
1136 ipa_endpoint_replenish(endpoint, false);
1137 }
1138
ipa_endpoint_skb_copy(struct ipa_endpoint * endpoint,void * data,u32 len,u32 extra)1139 static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1140 void *data, u32 len, u32 extra)
1141 {
1142 struct sk_buff *skb;
1143
1144 skb = __dev_alloc_skb(len, GFP_ATOMIC);
1145 if (skb) {
1146 skb_put(skb, len);
1147 memcpy(skb->data, data, len);
1148 skb->truesize += extra;
1149 }
1150
1151 /* Now receive it, or drop it if there's no netdev */
1152 if (endpoint->netdev)
1153 ipa_modem_skb_rx(endpoint->netdev, skb);
1154 else if (skb)
1155 dev_kfree_skb_any(skb);
1156 }
1157
ipa_endpoint_skb_build(struct ipa_endpoint * endpoint,struct page * page,u32 len)1158 static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1159 struct page *page, u32 len)
1160 {
1161 struct sk_buff *skb;
1162
1163 /* Nothing to do if there's no netdev */
1164 if (!endpoint->netdev)
1165 return false;
1166
1167 WARN_ON(len > SKB_WITH_OVERHEAD(IPA_RX_BUFFER_SIZE - NET_SKB_PAD));
1168
1169 skb = build_skb(page_address(page), IPA_RX_BUFFER_SIZE);
1170 if (skb) {
1171 /* Reserve the headroom and account for the data */
1172 skb_reserve(skb, NET_SKB_PAD);
1173 skb_put(skb, len);
1174 }
1175
1176 /* Receive the buffer (or record drop if unable to build it) */
1177 ipa_modem_skb_rx(endpoint->netdev, skb);
1178
1179 return skb != NULL;
1180 }
1181
1182 /* The format of a packet status element is the same for several status
1183 * types (opcodes). Other types aren't currently supported.
1184 */
ipa_status_format_packet(enum ipa_status_opcode opcode)1185 static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1186 {
1187 switch (opcode) {
1188 case IPA_STATUS_OPCODE_PACKET:
1189 case IPA_STATUS_OPCODE_DROPPED_PACKET:
1190 case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1191 case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1192 return true;
1193 default:
1194 return false;
1195 }
1196 }
1197
ipa_endpoint_status_skip(struct ipa_endpoint * endpoint,const struct ipa_status * status)1198 static bool ipa_endpoint_status_skip(struct ipa_endpoint *endpoint,
1199 const struct ipa_status *status)
1200 {
1201 u32 endpoint_id;
1202
1203 if (!ipa_status_format_packet(status->opcode))
1204 return true;
1205 if (!status->pkt_len)
1206 return true;
1207 endpoint_id = u8_get_bits(status->endp_dst_idx,
1208 IPA_STATUS_DST_IDX_FMASK);
1209 if (endpoint_id != endpoint->endpoint_id)
1210 return true;
1211
1212 return false; /* Don't skip this packet, process it */
1213 }
1214
ipa_endpoint_status_tag(struct ipa_endpoint * endpoint,const struct ipa_status * status)1215 static bool ipa_endpoint_status_tag(struct ipa_endpoint *endpoint,
1216 const struct ipa_status *status)
1217 {
1218 struct ipa_endpoint *command_endpoint;
1219 struct ipa *ipa = endpoint->ipa;
1220 u32 endpoint_id;
1221
1222 if (!le16_get_bits(status->mask, IPA_STATUS_MASK_TAG_VALID_FMASK))
1223 return false; /* No valid tag */
1224
1225 /* The status contains a valid tag. We know the packet was sent to
1226 * this endpoint (already verified by ipa_endpoint_status_skip()).
1227 * If the packet came from the AP->command TX endpoint we know
1228 * this packet was sent as part of the pipeline clear process.
1229 */
1230 endpoint_id = u8_get_bits(status->endp_src_idx,
1231 IPA_STATUS_SRC_IDX_FMASK);
1232 command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1233 if (endpoint_id == command_endpoint->endpoint_id) {
1234 complete(&ipa->completion);
1235 } else {
1236 dev_err(&ipa->pdev->dev,
1237 "unexpected tagged packet from endpoint %u\n",
1238 endpoint_id);
1239 }
1240
1241 return true;
1242 }
1243
1244 /* Return whether the status indicates the packet should be dropped */
ipa_endpoint_status_drop(struct ipa_endpoint * endpoint,const struct ipa_status * status)1245 static bool ipa_endpoint_status_drop(struct ipa_endpoint *endpoint,
1246 const struct ipa_status *status)
1247 {
1248 u32 val;
1249
1250 /* If the status indicates a tagged transfer, we'll drop the packet */
1251 if (ipa_endpoint_status_tag(endpoint, status))
1252 return true;
1253
1254 /* Deaggregation exceptions we drop; all other types we consume */
1255 if (status->exception)
1256 return status->exception == IPA_STATUS_EXCEPTION_DEAGGR;
1257
1258 /* Drop the packet if it fails to match a routing rule; otherwise no */
1259 val = le32_get_bits(status->flags1, IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1260
1261 return val == field_max(IPA_STATUS_FLAGS1_RT_RULE_ID_FMASK);
1262 }
1263
ipa_endpoint_status_parse(struct ipa_endpoint * endpoint,struct page * page,u32 total_len)1264 static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1265 struct page *page, u32 total_len)
1266 {
1267 void *data = page_address(page) + NET_SKB_PAD;
1268 u32 unused = IPA_RX_BUFFER_SIZE - total_len;
1269 u32 resid = total_len;
1270
1271 while (resid) {
1272 const struct ipa_status *status = data;
1273 u32 align;
1274 u32 len;
1275
1276 if (resid < sizeof(*status)) {
1277 dev_err(&endpoint->ipa->pdev->dev,
1278 "short message (%u bytes < %zu byte status)\n",
1279 resid, sizeof(*status));
1280 break;
1281 }
1282
1283 /* Skip over status packets that lack packet data */
1284 if (ipa_endpoint_status_skip(endpoint, status)) {
1285 data += sizeof(*status);
1286 resid -= sizeof(*status);
1287 continue;
1288 }
1289
1290 /* Compute the amount of buffer space consumed by the packet,
1291 * including the status element. If the hardware is configured
1292 * to pad packet data to an aligned boundary, account for that.
1293 * And if checksum offload is enabled a trailer containing
1294 * computed checksum information will be appended.
1295 */
1296 align = endpoint->data->rx.pad_align ? : 1;
1297 len = le16_to_cpu(status->pkt_len);
1298 len = sizeof(*status) + ALIGN(len, align);
1299 if (endpoint->data->checksum)
1300 len += sizeof(struct rmnet_map_dl_csum_trailer);
1301
1302 if (!ipa_endpoint_status_drop(endpoint, status)) {
1303 void *data2;
1304 u32 extra;
1305 u32 len2;
1306
1307 /* Client receives only packet data (no status) */
1308 data2 = data + sizeof(*status);
1309 len2 = le16_to_cpu(status->pkt_len);
1310
1311 /* Have the true size reflect the extra unused space in
1312 * the original receive buffer. Distribute the "cost"
1313 * proportionately across all aggregated packets in the
1314 * buffer.
1315 */
1316 extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1317 ipa_endpoint_skb_copy(endpoint, data2, len2, extra);
1318 }
1319
1320 /* Consume status and the full packet it describes */
1321 data += len;
1322 resid -= len;
1323 }
1324 }
1325
1326 /* Complete a TX transaction, command or from ipa_endpoint_skb_tx() */
ipa_endpoint_tx_complete(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1327 static void ipa_endpoint_tx_complete(struct ipa_endpoint *endpoint,
1328 struct gsi_trans *trans)
1329 {
1330 }
1331
1332 /* Complete transaction initiated in ipa_endpoint_replenish_one() */
ipa_endpoint_rx_complete(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1333 static void ipa_endpoint_rx_complete(struct ipa_endpoint *endpoint,
1334 struct gsi_trans *trans)
1335 {
1336 struct page *page;
1337
1338 ipa_endpoint_replenish(endpoint, true);
1339
1340 if (trans->cancelled)
1341 return;
1342
1343 /* Parse or build a socket buffer using the actual received length */
1344 page = trans->data;
1345 if (endpoint->data->status_enable)
1346 ipa_endpoint_status_parse(endpoint, page, trans->len);
1347 else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1348 trans->data = NULL; /* Pages have been consumed */
1349 }
1350
ipa_endpoint_trans_complete(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1351 void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1352 struct gsi_trans *trans)
1353 {
1354 if (endpoint->toward_ipa)
1355 ipa_endpoint_tx_complete(endpoint, trans);
1356 else
1357 ipa_endpoint_rx_complete(endpoint, trans);
1358 }
1359
ipa_endpoint_trans_release(struct ipa_endpoint * endpoint,struct gsi_trans * trans)1360 void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1361 struct gsi_trans *trans)
1362 {
1363 if (endpoint->toward_ipa) {
1364 struct ipa *ipa = endpoint->ipa;
1365
1366 /* Nothing to do for command transactions */
1367 if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1368 struct sk_buff *skb = trans->data;
1369
1370 if (skb)
1371 dev_kfree_skb_any(skb);
1372 }
1373 } else {
1374 struct page *page = trans->data;
1375
1376 if (page)
1377 __free_pages(page, get_order(IPA_RX_BUFFER_SIZE));
1378 }
1379 }
1380
ipa_endpoint_default_route_set(struct ipa * ipa,u32 endpoint_id)1381 void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1382 {
1383 u32 val;
1384
1385 /* ROUTE_DIS is 0 */
1386 val = u32_encode_bits(endpoint_id, ROUTE_DEF_PIPE_FMASK);
1387 val |= ROUTE_DEF_HDR_TABLE_FMASK;
1388 val |= u32_encode_bits(0, ROUTE_DEF_HDR_OFST_FMASK);
1389 val |= u32_encode_bits(endpoint_id, ROUTE_FRAG_DEF_PIPE_FMASK);
1390 val |= ROUTE_DEF_RETAIN_HDR_FMASK;
1391
1392 iowrite32(val, ipa->reg_virt + IPA_REG_ROUTE_OFFSET);
1393 }
1394
ipa_endpoint_default_route_clear(struct ipa * ipa)1395 void ipa_endpoint_default_route_clear(struct ipa *ipa)
1396 {
1397 ipa_endpoint_default_route_set(ipa, 0);
1398 }
1399
1400 /**
1401 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1402 * @endpoint: Endpoint to be reset
1403 *
1404 * If aggregation is active on an RX endpoint when a reset is performed
1405 * on its underlying GSI channel, a special sequence of actions must be
1406 * taken to ensure the IPA pipeline is properly cleared.
1407 *
1408 * Return: 0 if successful, or a negative error code
1409 */
ipa_endpoint_reset_rx_aggr(struct ipa_endpoint * endpoint)1410 static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1411 {
1412 struct device *dev = &endpoint->ipa->pdev->dev;
1413 struct ipa *ipa = endpoint->ipa;
1414 struct gsi *gsi = &ipa->gsi;
1415 bool suspended = false;
1416 dma_addr_t addr;
1417 u32 retries;
1418 u32 len = 1;
1419 void *virt;
1420 int ret;
1421
1422 virt = kzalloc(len, GFP_KERNEL);
1423 if (!virt)
1424 return -ENOMEM;
1425
1426 addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1427 if (dma_mapping_error(dev, addr)) {
1428 ret = -ENOMEM;
1429 goto out_kfree;
1430 }
1431
1432 /* Force close aggregation before issuing the reset */
1433 ipa_endpoint_force_close(endpoint);
1434
1435 /* Reset and reconfigure the channel with the doorbell engine
1436 * disabled. Then poll until we know aggregation is no longer
1437 * active. We'll re-enable the doorbell (if appropriate) when
1438 * we reset again below.
1439 */
1440 gsi_channel_reset(gsi, endpoint->channel_id, false);
1441
1442 /* Make sure the channel isn't suspended */
1443 suspended = ipa_endpoint_program_suspend(endpoint, false);
1444
1445 /* Start channel and do a 1 byte read */
1446 ret = gsi_channel_start(gsi, endpoint->channel_id);
1447 if (ret)
1448 goto out_suspend_again;
1449
1450 ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1451 if (ret)
1452 goto err_endpoint_stop;
1453
1454 /* Wait for aggregation to be closed on the channel */
1455 retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1456 do {
1457 if (!ipa_endpoint_aggr_active(endpoint))
1458 break;
1459 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1460 } while (retries--);
1461
1462 /* Check one last time */
1463 if (ipa_endpoint_aggr_active(endpoint))
1464 dev_err(dev, "endpoint %u still active during reset\n",
1465 endpoint->endpoint_id);
1466
1467 gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1468
1469 ret = gsi_channel_stop(gsi, endpoint->channel_id);
1470 if (ret)
1471 goto out_suspend_again;
1472
1473 /* Finally, reset and reconfigure the channel again (re-enabling
1474 * the doorbell engine if appropriate). Sleep for 1 millisecond to
1475 * complete the channel reset sequence. Finish by suspending the
1476 * channel again (if necessary).
1477 */
1478 gsi_channel_reset(gsi, endpoint->channel_id, true);
1479
1480 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1481
1482 goto out_suspend_again;
1483
1484 err_endpoint_stop:
1485 (void)gsi_channel_stop(gsi, endpoint->channel_id);
1486 out_suspend_again:
1487 if (suspended)
1488 (void)ipa_endpoint_program_suspend(endpoint, true);
1489 dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1490 out_kfree:
1491 kfree(virt);
1492
1493 return ret;
1494 }
1495
ipa_endpoint_reset(struct ipa_endpoint * endpoint)1496 static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1497 {
1498 u32 channel_id = endpoint->channel_id;
1499 struct ipa *ipa = endpoint->ipa;
1500 bool special;
1501 int ret = 0;
1502
1503 /* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1504 * is active, we need to handle things specially to recover.
1505 * All other cases just need to reset the underlying GSI channel.
1506 */
1507 special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1508 endpoint->data->aggregation;
1509 if (special && ipa_endpoint_aggr_active(endpoint))
1510 ret = ipa_endpoint_reset_rx_aggr(endpoint);
1511 else
1512 gsi_channel_reset(&ipa->gsi, channel_id, true);
1513
1514 if (ret)
1515 dev_err(&ipa->pdev->dev,
1516 "error %d resetting channel %u for endpoint %u\n",
1517 ret, endpoint->channel_id, endpoint->endpoint_id);
1518 }
1519
ipa_endpoint_program(struct ipa_endpoint * endpoint)1520 static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1521 {
1522 if (endpoint->toward_ipa)
1523 ipa_endpoint_program_delay(endpoint, false);
1524 else
1525 (void)ipa_endpoint_program_suspend(endpoint, false);
1526 ipa_endpoint_init_cfg(endpoint);
1527 ipa_endpoint_init_nat(endpoint);
1528 ipa_endpoint_init_hdr(endpoint);
1529 ipa_endpoint_init_hdr_ext(endpoint);
1530 ipa_endpoint_init_hdr_metadata_mask(endpoint);
1531 ipa_endpoint_init_mode(endpoint);
1532 ipa_endpoint_init_aggr(endpoint);
1533 ipa_endpoint_init_deaggr(endpoint);
1534 ipa_endpoint_init_rsrc_grp(endpoint);
1535 ipa_endpoint_init_seq(endpoint);
1536 ipa_endpoint_status(endpoint);
1537 }
1538
ipa_endpoint_enable_one(struct ipa_endpoint * endpoint)1539 int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1540 {
1541 struct ipa *ipa = endpoint->ipa;
1542 struct gsi *gsi = &ipa->gsi;
1543 int ret;
1544
1545 ret = gsi_channel_start(gsi, endpoint->channel_id);
1546 if (ret) {
1547 dev_err(&ipa->pdev->dev,
1548 "error %d starting %cX channel %u for endpoint %u\n",
1549 ret, endpoint->toward_ipa ? 'T' : 'R',
1550 endpoint->channel_id, endpoint->endpoint_id);
1551 return ret;
1552 }
1553
1554 if (!endpoint->toward_ipa) {
1555 ipa_interrupt_suspend_enable(ipa->interrupt,
1556 endpoint->endpoint_id);
1557 ipa_endpoint_replenish_enable(endpoint);
1558 }
1559
1560 ipa->enabled |= BIT(endpoint->endpoint_id);
1561
1562 return 0;
1563 }
1564
ipa_endpoint_disable_one(struct ipa_endpoint * endpoint)1565 void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1566 {
1567 u32 mask = BIT(endpoint->endpoint_id);
1568 struct ipa *ipa = endpoint->ipa;
1569 struct gsi *gsi = &ipa->gsi;
1570 int ret;
1571
1572 if (!(ipa->enabled & mask))
1573 return;
1574
1575 ipa->enabled ^= mask;
1576
1577 if (!endpoint->toward_ipa) {
1578 ipa_endpoint_replenish_disable(endpoint);
1579 ipa_interrupt_suspend_disable(ipa->interrupt,
1580 endpoint->endpoint_id);
1581 }
1582
1583 /* Note that if stop fails, the channel's state is not well-defined */
1584 ret = gsi_channel_stop(gsi, endpoint->channel_id);
1585 if (ret)
1586 dev_err(&ipa->pdev->dev,
1587 "error %d attempting to stop endpoint %u\n", ret,
1588 endpoint->endpoint_id);
1589 }
1590
ipa_endpoint_suspend_one(struct ipa_endpoint * endpoint)1591 void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1592 {
1593 struct device *dev = &endpoint->ipa->pdev->dev;
1594 struct gsi *gsi = &endpoint->ipa->gsi;
1595 int ret;
1596
1597 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1598 return;
1599
1600 if (!endpoint->toward_ipa) {
1601 ipa_endpoint_replenish_disable(endpoint);
1602 (void)ipa_endpoint_program_suspend(endpoint, true);
1603 }
1604
1605 ret = gsi_channel_suspend(gsi, endpoint->channel_id);
1606 if (ret)
1607 dev_err(dev, "error %d suspending channel %u\n", ret,
1608 endpoint->channel_id);
1609 }
1610
ipa_endpoint_resume_one(struct ipa_endpoint * endpoint)1611 void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1612 {
1613 struct device *dev = &endpoint->ipa->pdev->dev;
1614 struct gsi *gsi = &endpoint->ipa->gsi;
1615 int ret;
1616
1617 if (!(endpoint->ipa->enabled & BIT(endpoint->endpoint_id)))
1618 return;
1619
1620 if (!endpoint->toward_ipa)
1621 (void)ipa_endpoint_program_suspend(endpoint, false);
1622
1623 ret = gsi_channel_resume(gsi, endpoint->channel_id);
1624 if (ret)
1625 dev_err(dev, "error %d resuming channel %u\n", ret,
1626 endpoint->channel_id);
1627 else if (!endpoint->toward_ipa)
1628 ipa_endpoint_replenish_enable(endpoint);
1629 }
1630
ipa_endpoint_suspend(struct ipa * ipa)1631 void ipa_endpoint_suspend(struct ipa *ipa)
1632 {
1633 if (!ipa->setup_complete)
1634 return;
1635
1636 if (ipa->modem_netdev)
1637 ipa_modem_suspend(ipa->modem_netdev);
1638
1639 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1640 ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1641 }
1642
ipa_endpoint_resume(struct ipa * ipa)1643 void ipa_endpoint_resume(struct ipa *ipa)
1644 {
1645 if (!ipa->setup_complete)
1646 return;
1647
1648 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1649 ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1650
1651 if (ipa->modem_netdev)
1652 ipa_modem_resume(ipa->modem_netdev);
1653 }
1654
ipa_endpoint_setup_one(struct ipa_endpoint * endpoint)1655 static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1656 {
1657 struct gsi *gsi = &endpoint->ipa->gsi;
1658 u32 channel_id = endpoint->channel_id;
1659
1660 /* Only AP endpoints get set up */
1661 if (endpoint->ee_id != GSI_EE_AP)
1662 return;
1663
1664 endpoint->trans_tre_max = gsi_channel_trans_tre_max(gsi, channel_id);
1665 if (!endpoint->toward_ipa) {
1666 /* RX transactions require a single TRE, so the maximum
1667 * backlog is the same as the maximum outstanding TREs.
1668 */
1669 endpoint->replenish_enabled = false;
1670 atomic_set(&endpoint->replenish_saved,
1671 gsi_channel_tre_max(gsi, endpoint->channel_id));
1672 atomic_set(&endpoint->replenish_backlog, 0);
1673 INIT_DELAYED_WORK(&endpoint->replenish_work,
1674 ipa_endpoint_replenish_work);
1675 }
1676
1677 ipa_endpoint_program(endpoint);
1678
1679 endpoint->ipa->set_up |= BIT(endpoint->endpoint_id);
1680 }
1681
ipa_endpoint_teardown_one(struct ipa_endpoint * endpoint)1682 static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1683 {
1684 endpoint->ipa->set_up &= ~BIT(endpoint->endpoint_id);
1685
1686 if (!endpoint->toward_ipa)
1687 cancel_delayed_work_sync(&endpoint->replenish_work);
1688
1689 ipa_endpoint_reset(endpoint);
1690 }
1691
ipa_endpoint_setup(struct ipa * ipa)1692 void ipa_endpoint_setup(struct ipa *ipa)
1693 {
1694 u32 initialized = ipa->initialized;
1695
1696 ipa->set_up = 0;
1697 while (initialized) {
1698 u32 endpoint_id = __ffs(initialized);
1699
1700 initialized ^= BIT(endpoint_id);
1701
1702 ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1703 }
1704 }
1705
ipa_endpoint_teardown(struct ipa * ipa)1706 void ipa_endpoint_teardown(struct ipa *ipa)
1707 {
1708 u32 set_up = ipa->set_up;
1709
1710 while (set_up) {
1711 u32 endpoint_id = __fls(set_up);
1712
1713 set_up ^= BIT(endpoint_id);
1714
1715 ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1716 }
1717 ipa->set_up = 0;
1718 }
1719
ipa_endpoint_config(struct ipa * ipa)1720 int ipa_endpoint_config(struct ipa *ipa)
1721 {
1722 struct device *dev = &ipa->pdev->dev;
1723 u32 initialized;
1724 u32 rx_base;
1725 u32 rx_mask;
1726 u32 tx_mask;
1727 int ret = 0;
1728 u32 max;
1729 u32 val;
1730
1731 /* Prior to IPAv3.5, the FLAVOR_0 register was not supported.
1732 * Furthermore, the endpoints were not grouped such that TX
1733 * endpoint numbers started with 0 and RX endpoints had numbers
1734 * higher than all TX endpoints, so we can't do the simple
1735 * direction check used for newer hardware below.
1736 *
1737 * For hardware that doesn't support the FLAVOR_0 register,
1738 * just set the available mask to support any endpoint, and
1739 * assume the configuration is valid.
1740 */
1741 if (ipa->version < IPA_VERSION_3_5) {
1742 ipa->available = ~0;
1743 return 0;
1744 }
1745
1746 /* Find out about the endpoints supplied by the hardware, and ensure
1747 * the highest one doesn't exceed the number we support.
1748 */
1749 val = ioread32(ipa->reg_virt + IPA_REG_FLAVOR_0_OFFSET);
1750
1751 /* Our RX is an IPA producer */
1752 rx_base = u32_get_bits(val, IPA_PROD_LOWEST_FMASK);
1753 max = rx_base + u32_get_bits(val, IPA_MAX_PROD_PIPES_FMASK);
1754 if (max > IPA_ENDPOINT_MAX) {
1755 dev_err(dev, "too many endpoints (%u > %u)\n",
1756 max, IPA_ENDPOINT_MAX);
1757 return -EINVAL;
1758 }
1759 rx_mask = GENMASK(max - 1, rx_base);
1760
1761 /* Our TX is an IPA consumer */
1762 max = u32_get_bits(val, IPA_MAX_CONS_PIPES_FMASK);
1763 tx_mask = GENMASK(max - 1, 0);
1764
1765 ipa->available = rx_mask | tx_mask;
1766
1767 /* Check for initialized endpoints not supported by the hardware */
1768 if (ipa->initialized & ~ipa->available) {
1769 dev_err(dev, "unavailable endpoint id(s) 0x%08x\n",
1770 ipa->initialized & ~ipa->available);
1771 ret = -EINVAL; /* Report other errors too */
1772 }
1773
1774 initialized = ipa->initialized;
1775 while (initialized) {
1776 u32 endpoint_id = __ffs(initialized);
1777 struct ipa_endpoint *endpoint;
1778
1779 initialized ^= BIT(endpoint_id);
1780
1781 /* Make sure it's pointing in the right direction */
1782 endpoint = &ipa->endpoint[endpoint_id];
1783 if ((endpoint_id < rx_base) != endpoint->toward_ipa) {
1784 dev_err(dev, "endpoint id %u wrong direction\n",
1785 endpoint_id);
1786 ret = -EINVAL;
1787 }
1788 }
1789
1790 return ret;
1791 }
1792
ipa_endpoint_deconfig(struct ipa * ipa)1793 void ipa_endpoint_deconfig(struct ipa *ipa)
1794 {
1795 ipa->available = 0; /* Nothing more to do */
1796 }
1797
ipa_endpoint_init_one(struct ipa * ipa,enum ipa_endpoint_name name,const struct ipa_gsi_endpoint_data * data)1798 static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
1799 const struct ipa_gsi_endpoint_data *data)
1800 {
1801 struct ipa_endpoint *endpoint;
1802
1803 endpoint = &ipa->endpoint[data->endpoint_id];
1804
1805 if (data->ee_id == GSI_EE_AP)
1806 ipa->channel_map[data->channel_id] = endpoint;
1807 ipa->name_map[name] = endpoint;
1808
1809 endpoint->ipa = ipa;
1810 endpoint->ee_id = data->ee_id;
1811 endpoint->channel_id = data->channel_id;
1812 endpoint->endpoint_id = data->endpoint_id;
1813 endpoint->toward_ipa = data->toward_ipa;
1814 endpoint->data = &data->endpoint.config;
1815
1816 ipa->initialized |= BIT(endpoint->endpoint_id);
1817 }
1818
ipa_endpoint_exit_one(struct ipa_endpoint * endpoint)1819 static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
1820 {
1821 endpoint->ipa->initialized &= ~BIT(endpoint->endpoint_id);
1822
1823 memset(endpoint, 0, sizeof(*endpoint));
1824 }
1825
ipa_endpoint_exit(struct ipa * ipa)1826 void ipa_endpoint_exit(struct ipa *ipa)
1827 {
1828 u32 initialized = ipa->initialized;
1829
1830 while (initialized) {
1831 u32 endpoint_id = __fls(initialized);
1832
1833 initialized ^= BIT(endpoint_id);
1834
1835 ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
1836 }
1837 memset(ipa->name_map, 0, sizeof(ipa->name_map));
1838 memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
1839 }
1840
1841 /* Returns a bitmask of endpoints that support filtering, or 0 on error */
ipa_endpoint_init(struct ipa * ipa,u32 count,const struct ipa_gsi_endpoint_data * data)1842 u32 ipa_endpoint_init(struct ipa *ipa, u32 count,
1843 const struct ipa_gsi_endpoint_data *data)
1844 {
1845 enum ipa_endpoint_name name;
1846 u32 filter_map;
1847
1848 if (!ipa_endpoint_data_valid(ipa, count, data))
1849 return 0; /* Error */
1850
1851 ipa->initialized = 0;
1852
1853 filter_map = 0;
1854 for (name = 0; name < count; name++, data++) {
1855 if (ipa_gsi_endpoint_data_empty(data))
1856 continue; /* Skip over empty slots */
1857
1858 ipa_endpoint_init_one(ipa, name, data);
1859
1860 if (data->endpoint.filter_support)
1861 filter_map |= BIT(data->endpoint_id);
1862 }
1863
1864 if (!ipa_filter_map_valid(ipa, filter_map))
1865 goto err_endpoint_exit;
1866
1867 return filter_map; /* Non-zero bitmask */
1868
1869 err_endpoint_exit:
1870 ipa_endpoint_exit(ipa);
1871
1872 return 0; /* Error */
1873 }
1874