1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019 Realtek Corporation
3 */
4
5 #include <linux/dmi.h>
6 #include <linux/module.h>
7 #include <linux/pci.h>
8 #include "main.h"
9 #include "pci.h"
10 #include "reg.h"
11 #include "tx.h"
12 #include "rx.h"
13 #include "fw.h"
14 #include "ps.h"
15 #include "debug.h"
16
17 static bool rtw_disable_msi;
18 static bool rtw_pci_disable_aspm;
19 module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
20 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
21 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
22 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
23
24 static u32 rtw_pci_tx_queue_idx_addr[] = {
25 [RTW_TX_QUEUE_BK] = RTK_PCI_TXBD_IDX_BKQ,
26 [RTW_TX_QUEUE_BE] = RTK_PCI_TXBD_IDX_BEQ,
27 [RTW_TX_QUEUE_VI] = RTK_PCI_TXBD_IDX_VIQ,
28 [RTW_TX_QUEUE_VO] = RTK_PCI_TXBD_IDX_VOQ,
29 [RTW_TX_QUEUE_MGMT] = RTK_PCI_TXBD_IDX_MGMTQ,
30 [RTW_TX_QUEUE_HI0] = RTK_PCI_TXBD_IDX_HI0Q,
31 [RTW_TX_QUEUE_H2C] = RTK_PCI_TXBD_IDX_H2CQ,
32 };
33
rtw_pci_get_tx_qsel(struct sk_buff * skb,u8 queue)34 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb, u8 queue)
35 {
36 switch (queue) {
37 case RTW_TX_QUEUE_BCN:
38 return TX_DESC_QSEL_BEACON;
39 case RTW_TX_QUEUE_H2C:
40 return TX_DESC_QSEL_H2C;
41 case RTW_TX_QUEUE_MGMT:
42 return TX_DESC_QSEL_MGMT;
43 case RTW_TX_QUEUE_HI0:
44 return TX_DESC_QSEL_HIGH;
45 default:
46 return skb->priority;
47 }
48 };
49
rtw_pci_read8(struct rtw_dev * rtwdev,u32 addr)50 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
51 {
52 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
53
54 return readb(rtwpci->mmap + addr);
55 }
56
rtw_pci_read16(struct rtw_dev * rtwdev,u32 addr)57 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
58 {
59 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
60
61 return readw(rtwpci->mmap + addr);
62 }
63
rtw_pci_read32(struct rtw_dev * rtwdev,u32 addr)64 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
65 {
66 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
67
68 return readl(rtwpci->mmap + addr);
69 }
70
rtw_pci_write8(struct rtw_dev * rtwdev,u32 addr,u8 val)71 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
72 {
73 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
74
75 writeb(val, rtwpci->mmap + addr);
76 }
77
rtw_pci_write16(struct rtw_dev * rtwdev,u32 addr,u16 val)78 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
79 {
80 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
81
82 writew(val, rtwpci->mmap + addr);
83 }
84
rtw_pci_write32(struct rtw_dev * rtwdev,u32 addr,u32 val)85 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
86 {
87 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
88
89 writel(val, rtwpci->mmap + addr);
90 }
91
rtw_pci_get_tx_desc(struct rtw_pci_tx_ring * tx_ring,u8 idx)92 static inline void *rtw_pci_get_tx_desc(struct rtw_pci_tx_ring *tx_ring, u8 idx)
93 {
94 int offset = tx_ring->r.desc_size * idx;
95
96 return tx_ring->r.head + offset;
97 }
98
rtw_pci_free_tx_ring_skbs(struct rtw_dev * rtwdev,struct rtw_pci_tx_ring * tx_ring)99 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
100 struct rtw_pci_tx_ring *tx_ring)
101 {
102 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
103 struct rtw_pci_tx_data *tx_data;
104 struct sk_buff *skb, *tmp;
105 dma_addr_t dma;
106
107 /* free every skb remained in tx list */
108 skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
109 __skb_unlink(skb, &tx_ring->queue);
110 tx_data = rtw_pci_get_tx_data(skb);
111 dma = tx_data->dma;
112
113 dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
114 dev_kfree_skb_any(skb);
115 }
116 }
117
rtw_pci_free_tx_ring(struct rtw_dev * rtwdev,struct rtw_pci_tx_ring * tx_ring)118 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
119 struct rtw_pci_tx_ring *tx_ring)
120 {
121 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
122 u8 *head = tx_ring->r.head;
123 u32 len = tx_ring->r.len;
124 int ring_sz = len * tx_ring->r.desc_size;
125
126 rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
127
128 /* free the ring itself */
129 dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
130 tx_ring->r.head = NULL;
131 }
132
rtw_pci_free_rx_ring_skbs(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring)133 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
134 struct rtw_pci_rx_ring *rx_ring)
135 {
136 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
137 struct sk_buff *skb;
138 int buf_sz = RTK_PCI_RX_BUF_SIZE;
139 dma_addr_t dma;
140 int i;
141
142 for (i = 0; i < rx_ring->r.len; i++) {
143 skb = rx_ring->buf[i];
144 if (!skb)
145 continue;
146
147 dma = *((dma_addr_t *)skb->cb);
148 dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
149 dev_kfree_skb(skb);
150 rx_ring->buf[i] = NULL;
151 }
152 }
153
rtw_pci_free_rx_ring(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring)154 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
155 struct rtw_pci_rx_ring *rx_ring)
156 {
157 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
158 u8 *head = rx_ring->r.head;
159 int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
160
161 rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
162
163 dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
164 }
165
rtw_pci_free_trx_ring(struct rtw_dev * rtwdev)166 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
167 {
168 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
169 struct rtw_pci_tx_ring *tx_ring;
170 struct rtw_pci_rx_ring *rx_ring;
171 int i;
172
173 for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
174 tx_ring = &rtwpci->tx_rings[i];
175 rtw_pci_free_tx_ring(rtwdev, tx_ring);
176 }
177
178 for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
179 rx_ring = &rtwpci->rx_rings[i];
180 rtw_pci_free_rx_ring(rtwdev, rx_ring);
181 }
182 }
183
rtw_pci_init_tx_ring(struct rtw_dev * rtwdev,struct rtw_pci_tx_ring * tx_ring,u8 desc_size,u32 len)184 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
185 struct rtw_pci_tx_ring *tx_ring,
186 u8 desc_size, u32 len)
187 {
188 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
189 int ring_sz = desc_size * len;
190 dma_addr_t dma;
191 u8 *head;
192
193 if (len > TRX_BD_IDX_MASK) {
194 rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
195 return -EINVAL;
196 }
197
198 head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
199 if (!head) {
200 rtw_err(rtwdev, "failed to allocate tx ring\n");
201 return -ENOMEM;
202 }
203
204 skb_queue_head_init(&tx_ring->queue);
205 tx_ring->r.head = head;
206 tx_ring->r.dma = dma;
207 tx_ring->r.len = len;
208 tx_ring->r.desc_size = desc_size;
209 tx_ring->r.wp = 0;
210 tx_ring->r.rp = 0;
211
212 return 0;
213 }
214
rtw_pci_reset_rx_desc(struct rtw_dev * rtwdev,struct sk_buff * skb,struct rtw_pci_rx_ring * rx_ring,u32 idx,u32 desc_sz)215 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
216 struct rtw_pci_rx_ring *rx_ring,
217 u32 idx, u32 desc_sz)
218 {
219 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
220 struct rtw_pci_rx_buffer_desc *buf_desc;
221 int buf_sz = RTK_PCI_RX_BUF_SIZE;
222 dma_addr_t dma;
223
224 if (!skb)
225 return -EINVAL;
226
227 dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
228 if (dma_mapping_error(&pdev->dev, dma))
229 return -EBUSY;
230
231 *((dma_addr_t *)skb->cb) = dma;
232 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
233 idx * desc_sz);
234 memset(buf_desc, 0, sizeof(*buf_desc));
235 buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
236 buf_desc->dma = cpu_to_le32(dma);
237
238 return 0;
239 }
240
rtw_pci_sync_rx_desc_device(struct rtw_dev * rtwdev,dma_addr_t dma,struct rtw_pci_rx_ring * rx_ring,u32 idx,u32 desc_sz)241 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
242 struct rtw_pci_rx_ring *rx_ring,
243 u32 idx, u32 desc_sz)
244 {
245 struct device *dev = rtwdev->dev;
246 struct rtw_pci_rx_buffer_desc *buf_desc;
247 int buf_sz = RTK_PCI_RX_BUF_SIZE;
248
249 dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
250
251 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
252 idx * desc_sz);
253 memset(buf_desc, 0, sizeof(*buf_desc));
254 buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
255 buf_desc->dma = cpu_to_le32(dma);
256 }
257
rtw_pci_init_rx_ring(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring,u8 desc_size,u32 len)258 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
259 struct rtw_pci_rx_ring *rx_ring,
260 u8 desc_size, u32 len)
261 {
262 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
263 struct sk_buff *skb = NULL;
264 dma_addr_t dma;
265 u8 *head;
266 int ring_sz = desc_size * len;
267 int buf_sz = RTK_PCI_RX_BUF_SIZE;
268 int i, allocated;
269 int ret = 0;
270
271 head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
272 if (!head) {
273 rtw_err(rtwdev, "failed to allocate rx ring\n");
274 return -ENOMEM;
275 }
276 rx_ring->r.head = head;
277
278 for (i = 0; i < len; i++) {
279 skb = dev_alloc_skb(buf_sz);
280 if (!skb) {
281 allocated = i;
282 ret = -ENOMEM;
283 goto err_out;
284 }
285
286 memset(skb->data, 0, buf_sz);
287 rx_ring->buf[i] = skb;
288 ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
289 if (ret) {
290 allocated = i;
291 dev_kfree_skb_any(skb);
292 goto err_out;
293 }
294 }
295
296 rx_ring->r.dma = dma;
297 rx_ring->r.len = len;
298 rx_ring->r.desc_size = desc_size;
299 rx_ring->r.wp = 0;
300 rx_ring->r.rp = 0;
301
302 return 0;
303
304 err_out:
305 for (i = 0; i < allocated; i++) {
306 skb = rx_ring->buf[i];
307 if (!skb)
308 continue;
309 dma = *((dma_addr_t *)skb->cb);
310 dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
311 dev_kfree_skb_any(skb);
312 rx_ring->buf[i] = NULL;
313 }
314 dma_free_coherent(&pdev->dev, ring_sz, head, dma);
315
316 rtw_err(rtwdev, "failed to init rx buffer\n");
317
318 return ret;
319 }
320
rtw_pci_init_trx_ring(struct rtw_dev * rtwdev)321 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
322 {
323 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
324 struct rtw_pci_tx_ring *tx_ring;
325 struct rtw_pci_rx_ring *rx_ring;
326 struct rtw_chip_info *chip = rtwdev->chip;
327 int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
328 int tx_desc_size, rx_desc_size;
329 u32 len;
330 int ret;
331
332 tx_desc_size = chip->tx_buf_desc_sz;
333
334 for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
335 tx_ring = &rtwpci->tx_rings[i];
336 len = max_num_of_tx_queue(i);
337 ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
338 if (ret)
339 goto out;
340 }
341
342 rx_desc_size = chip->rx_buf_desc_sz;
343
344 for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
345 rx_ring = &rtwpci->rx_rings[j];
346 ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
347 RTK_MAX_RX_DESC_NUM);
348 if (ret)
349 goto out;
350 }
351
352 return 0;
353
354 out:
355 tx_alloced = i;
356 for (i = 0; i < tx_alloced; i++) {
357 tx_ring = &rtwpci->tx_rings[i];
358 rtw_pci_free_tx_ring(rtwdev, tx_ring);
359 }
360
361 rx_alloced = j;
362 for (j = 0; j < rx_alloced; j++) {
363 rx_ring = &rtwpci->rx_rings[j];
364 rtw_pci_free_rx_ring(rtwdev, rx_ring);
365 }
366
367 return ret;
368 }
369
rtw_pci_deinit(struct rtw_dev * rtwdev)370 static void rtw_pci_deinit(struct rtw_dev *rtwdev)
371 {
372 rtw_pci_free_trx_ring(rtwdev);
373 }
374
rtw_pci_init(struct rtw_dev * rtwdev)375 static int rtw_pci_init(struct rtw_dev *rtwdev)
376 {
377 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
378 int ret = 0;
379
380 rtwpci->irq_mask[0] = IMR_HIGHDOK |
381 IMR_MGNTDOK |
382 IMR_BKDOK |
383 IMR_BEDOK |
384 IMR_VIDOK |
385 IMR_VODOK |
386 IMR_ROK |
387 IMR_BCNDMAINT_E |
388 IMR_C2HCMD |
389 0;
390 rtwpci->irq_mask[1] = IMR_TXFOVW |
391 0;
392 rtwpci->irq_mask[3] = IMR_H2CDOK |
393 0;
394 spin_lock_init(&rtwpci->irq_lock);
395 spin_lock_init(&rtwpci->hwirq_lock);
396 ret = rtw_pci_init_trx_ring(rtwdev);
397
398 return ret;
399 }
400
rtw_pci_reset_buf_desc(struct rtw_dev * rtwdev)401 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
402 {
403 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
404 u32 len;
405 u8 tmp;
406 dma_addr_t dma;
407
408 tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
409 rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
410
411 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
412 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
413
414 if (!rtw_chip_wcpu_11n(rtwdev)) {
415 len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
416 dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
417 rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
418 rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
419 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
420 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
421 }
422
423 len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
424 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
425 rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
426 rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
427 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
428 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
429
430 len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
431 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
432 rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
433 rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
434 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
435 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
436
437 len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
438 dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
439 rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
440 rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
441 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
442 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
443
444 len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
445 dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
446 rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
447 rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
448 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
449 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
450
451 len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
452 dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
453 rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
454 rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
455 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
456 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
457
458 len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
459 dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
460 rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
461 rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
462 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
463 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
464
465 len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
466 dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
467 rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
468 rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
469 rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
470 rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
471
472 /* reset read/write point */
473 rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
474
475 /* reset H2C Queue index in a single write */
476 if (rtw_chip_wcpu_11ac(rtwdev))
477 rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
478 BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
479 }
480
rtw_pci_reset_trx_ring(struct rtw_dev * rtwdev)481 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
482 {
483 rtw_pci_reset_buf_desc(rtwdev);
484 }
485
rtw_pci_enable_interrupt(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,bool exclude_rx)486 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
487 struct rtw_pci *rtwpci, bool exclude_rx)
488 {
489 unsigned long flags;
490 u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
491
492 spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
493
494 rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
495 rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
496 if (rtw_chip_wcpu_11ac(rtwdev))
497 rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
498
499 rtwpci->irq_enabled = true;
500
501 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
502 }
503
rtw_pci_disable_interrupt(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)504 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
505 struct rtw_pci *rtwpci)
506 {
507 unsigned long flags;
508
509 spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
510
511 if (!rtwpci->irq_enabled)
512 goto out;
513
514 rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
515 rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
516 if (rtw_chip_wcpu_11ac(rtwdev))
517 rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
518
519 rtwpci->irq_enabled = false;
520
521 out:
522 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
523 }
524
rtw_pci_dma_reset(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)525 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
526 {
527 /* reset dma and rx tag */
528 rtw_write32_set(rtwdev, RTK_PCI_CTRL,
529 BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
530 rtwpci->rx_tag = 0;
531 }
532
rtw_pci_setup(struct rtw_dev * rtwdev)533 static int rtw_pci_setup(struct rtw_dev *rtwdev)
534 {
535 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
536
537 rtw_pci_reset_trx_ring(rtwdev);
538 rtw_pci_dma_reset(rtwdev, rtwpci);
539
540 return 0;
541 }
542
rtw_pci_dma_release(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)543 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
544 {
545 struct rtw_pci_tx_ring *tx_ring;
546 u8 queue;
547
548 rtw_pci_reset_trx_ring(rtwdev);
549 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
550 tx_ring = &rtwpci->tx_rings[queue];
551 rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
552 }
553 }
554
rtw_pci_napi_start(struct rtw_dev * rtwdev)555 static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
556 {
557 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
558
559 if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
560 return;
561
562 napi_enable(&rtwpci->napi);
563 }
564
rtw_pci_napi_stop(struct rtw_dev * rtwdev)565 static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
566 {
567 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
568
569 if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
570 return;
571
572 napi_synchronize(&rtwpci->napi);
573 napi_disable(&rtwpci->napi);
574 }
575
rtw_pci_start(struct rtw_dev * rtwdev)576 static int rtw_pci_start(struct rtw_dev *rtwdev)
577 {
578 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
579
580 rtw_pci_napi_start(rtwdev);
581
582 spin_lock_bh(&rtwpci->irq_lock);
583 rtwpci->running = true;
584 rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
585 spin_unlock_bh(&rtwpci->irq_lock);
586
587 return 0;
588 }
589
rtw_pci_stop(struct rtw_dev * rtwdev)590 static void rtw_pci_stop(struct rtw_dev *rtwdev)
591 {
592 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
593 struct pci_dev *pdev = rtwpci->pdev;
594
595 spin_lock_bh(&rtwpci->irq_lock);
596 rtwpci->running = false;
597 rtw_pci_disable_interrupt(rtwdev, rtwpci);
598 spin_unlock_bh(&rtwpci->irq_lock);
599
600 synchronize_irq(pdev->irq);
601 rtw_pci_napi_stop(rtwdev);
602
603 spin_lock_bh(&rtwpci->irq_lock);
604 rtw_pci_dma_release(rtwdev, rtwpci);
605 spin_unlock_bh(&rtwpci->irq_lock);
606 }
607
rtw_pci_deep_ps_enter(struct rtw_dev * rtwdev)608 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
609 {
610 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
611 struct rtw_pci_tx_ring *tx_ring;
612 bool tx_empty = true;
613 u8 queue;
614
615 lockdep_assert_held(&rtwpci->irq_lock);
616
617 /* Deep PS state is not allowed to TX-DMA */
618 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
619 /* BCN queue is rsvd page, does not have DMA interrupt
620 * H2C queue is managed by firmware
621 */
622 if (queue == RTW_TX_QUEUE_BCN ||
623 queue == RTW_TX_QUEUE_H2C)
624 continue;
625
626 tx_ring = &rtwpci->tx_rings[queue];
627
628 /* check if there is any skb DMAing */
629 if (skb_queue_len(&tx_ring->queue)) {
630 tx_empty = false;
631 break;
632 }
633 }
634
635 if (!tx_empty) {
636 rtw_dbg(rtwdev, RTW_DBG_PS,
637 "TX path not empty, cannot enter deep power save state\n");
638 return;
639 }
640
641 set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
642 rtw_power_mode_change(rtwdev, true);
643 }
644
rtw_pci_deep_ps_leave(struct rtw_dev * rtwdev)645 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
646 {
647 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
648
649 lockdep_assert_held(&rtwpci->irq_lock);
650
651 if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
652 rtw_power_mode_change(rtwdev, false);
653 }
654
rtw_pci_deep_ps(struct rtw_dev * rtwdev,bool enter)655 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
656 {
657 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
658
659 spin_lock_bh(&rtwpci->irq_lock);
660
661 if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
662 rtw_pci_deep_ps_enter(rtwdev);
663
664 if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
665 rtw_pci_deep_ps_leave(rtwdev);
666
667 spin_unlock_bh(&rtwpci->irq_lock);
668 }
669
670 static u8 ac_to_hwq[] = {
671 [IEEE80211_AC_VO] = RTW_TX_QUEUE_VO,
672 [IEEE80211_AC_VI] = RTW_TX_QUEUE_VI,
673 [IEEE80211_AC_BE] = RTW_TX_QUEUE_BE,
674 [IEEE80211_AC_BK] = RTW_TX_QUEUE_BK,
675 };
676
677 static_assert(ARRAY_SIZE(ac_to_hwq) == IEEE80211_NUM_ACS);
678
rtw_hw_queue_mapping(struct sk_buff * skb)679 static u8 rtw_hw_queue_mapping(struct sk_buff *skb)
680 {
681 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
682 __le16 fc = hdr->frame_control;
683 u8 q_mapping = skb_get_queue_mapping(skb);
684 u8 queue;
685
686 if (unlikely(ieee80211_is_beacon(fc)))
687 queue = RTW_TX_QUEUE_BCN;
688 else if (unlikely(ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)))
689 queue = RTW_TX_QUEUE_MGMT;
690 else if (WARN_ON_ONCE(q_mapping >= ARRAY_SIZE(ac_to_hwq)))
691 queue = ac_to_hwq[IEEE80211_AC_BE];
692 else
693 queue = ac_to_hwq[q_mapping];
694
695 return queue;
696 }
697
rtw_pci_release_rsvd_page(struct rtw_pci * rtwpci,struct rtw_pci_tx_ring * ring)698 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
699 struct rtw_pci_tx_ring *ring)
700 {
701 struct sk_buff *prev = skb_dequeue(&ring->queue);
702 struct rtw_pci_tx_data *tx_data;
703 dma_addr_t dma;
704
705 if (!prev)
706 return;
707
708 tx_data = rtw_pci_get_tx_data(prev);
709 dma = tx_data->dma;
710 dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
711 dev_kfree_skb_any(prev);
712 }
713
rtw_pci_dma_check(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring,u32 idx)714 static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
715 struct rtw_pci_rx_ring *rx_ring,
716 u32 idx)
717 {
718 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
719 struct rtw_chip_info *chip = rtwdev->chip;
720 struct rtw_pci_rx_buffer_desc *buf_desc;
721 u32 desc_sz = chip->rx_buf_desc_sz;
722 u16 total_pkt_size;
723
724 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
725 idx * desc_sz);
726 total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
727
728 /* rx tag mismatch, throw a warning */
729 if (total_pkt_size != rtwpci->rx_tag)
730 rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
731
732 rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
733 }
734
__pci_get_hw_tx_ring_rp(struct rtw_dev * rtwdev,u8 pci_q)735 static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
736 {
737 u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
738 u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
739
740 return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
741 }
742
__pci_flush_queue(struct rtw_dev * rtwdev,u8 pci_q,bool drop)743 static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
744 {
745 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
746 struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
747 u32 cur_rp;
748 u8 i;
749
750 /* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
751 * bit dynamic, it's hard to define a reasonable fixed total timeout to
752 * use read_poll_timeout* helper. Instead, we can ensure a reasonable
753 * polling times, so we just use for loop with udelay here.
754 */
755 for (i = 0; i < 30; i++) {
756 cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
757 if (cur_rp == ring->r.wp)
758 return;
759
760 udelay(1);
761 }
762
763 if (!drop)
764 rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q);
765 }
766
__rtw_pci_flush_queues(struct rtw_dev * rtwdev,u32 pci_queues,bool drop)767 static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
768 bool drop)
769 {
770 u8 q;
771
772 for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
773 /* It may be not necessary to flush BCN and H2C tx queues. */
774 if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C)
775 continue;
776
777 if (pci_queues & BIT(q))
778 __pci_flush_queue(rtwdev, q, drop);
779 }
780 }
781
rtw_pci_flush_queues(struct rtw_dev * rtwdev,u32 queues,bool drop)782 static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
783 {
784 u32 pci_queues = 0;
785 u8 i;
786
787 /* If all of the hardware queues are requested to flush,
788 * flush all of the pci queues.
789 */
790 if (queues == BIT(rtwdev->hw->queues) - 1) {
791 pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
792 } else {
793 for (i = 0; i < rtwdev->hw->queues; i++)
794 if (queues & BIT(i))
795 pci_queues |= BIT(ac_to_hwq[i]);
796 }
797
798 __rtw_pci_flush_queues(rtwdev, pci_queues, drop);
799 }
800
rtw_pci_tx_kick_off_queue(struct rtw_dev * rtwdev,u8 queue)801 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev, u8 queue)
802 {
803 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
804 struct rtw_pci_tx_ring *ring;
805 u32 bd_idx;
806
807 ring = &rtwpci->tx_rings[queue];
808 bd_idx = rtw_pci_tx_queue_idx_addr[queue];
809
810 spin_lock_bh(&rtwpci->irq_lock);
811 rtw_pci_deep_ps_leave(rtwdev);
812 rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
813 spin_unlock_bh(&rtwpci->irq_lock);
814 }
815
rtw_pci_tx_kick_off(struct rtw_dev * rtwdev)816 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
817 {
818 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
819 u8 queue;
820
821 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
822 if (test_and_clear_bit(queue, rtwpci->tx_queued))
823 rtw_pci_tx_kick_off_queue(rtwdev, queue);
824 }
825
rtw_pci_tx_write_data(struct rtw_dev * rtwdev,struct rtw_tx_pkt_info * pkt_info,struct sk_buff * skb,u8 queue)826 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
827 struct rtw_tx_pkt_info *pkt_info,
828 struct sk_buff *skb, u8 queue)
829 {
830 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
831 struct rtw_chip_info *chip = rtwdev->chip;
832 struct rtw_pci_tx_ring *ring;
833 struct rtw_pci_tx_data *tx_data;
834 dma_addr_t dma;
835 u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
836 u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
837 u32 size;
838 u32 psb_len;
839 u8 *pkt_desc;
840 struct rtw_pci_tx_buffer_desc *buf_desc;
841
842 ring = &rtwpci->tx_rings[queue];
843
844 size = skb->len;
845
846 if (queue == RTW_TX_QUEUE_BCN)
847 rtw_pci_release_rsvd_page(rtwpci, ring);
848 else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
849 return -ENOSPC;
850
851 pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
852 memset(pkt_desc, 0, tx_pkt_desc_sz);
853 pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
854 rtw_tx_fill_tx_desc(pkt_info, skb);
855 dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
856 DMA_TO_DEVICE);
857 if (dma_mapping_error(&rtwpci->pdev->dev, dma))
858 return -EBUSY;
859
860 /* after this we got dma mapped, there is no way back */
861 buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
862 memset(buf_desc, 0, tx_buf_desc_sz);
863 psb_len = (skb->len - 1) / 128 + 1;
864 if (queue == RTW_TX_QUEUE_BCN)
865 psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
866
867 buf_desc[0].psb_len = cpu_to_le16(psb_len);
868 buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
869 buf_desc[0].dma = cpu_to_le32(dma);
870 buf_desc[1].buf_size = cpu_to_le16(size);
871 buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
872
873 tx_data = rtw_pci_get_tx_data(skb);
874 tx_data->dma = dma;
875 tx_data->sn = pkt_info->sn;
876
877 spin_lock_bh(&rtwpci->irq_lock);
878
879 skb_queue_tail(&ring->queue, skb);
880
881 if (queue == RTW_TX_QUEUE_BCN)
882 goto out_unlock;
883
884 /* update write-index, and kick it off later */
885 set_bit(queue, rtwpci->tx_queued);
886 if (++ring->r.wp >= ring->r.len)
887 ring->r.wp = 0;
888
889 out_unlock:
890 spin_unlock_bh(&rtwpci->irq_lock);
891
892 return 0;
893 }
894
rtw_pci_write_data_rsvd_page(struct rtw_dev * rtwdev,u8 * buf,u32 size)895 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
896 u32 size)
897 {
898 struct sk_buff *skb;
899 struct rtw_tx_pkt_info pkt_info = {0};
900 u8 reg_bcn_work;
901 int ret;
902
903 skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
904 if (!skb)
905 return -ENOMEM;
906
907 ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
908 if (ret) {
909 rtw_err(rtwdev, "failed to write rsvd page data\n");
910 return ret;
911 }
912
913 /* reserved pages go through beacon queue */
914 reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
915 reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
916 rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
917
918 return 0;
919 }
920
rtw_pci_write_data_h2c(struct rtw_dev * rtwdev,u8 * buf,u32 size)921 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
922 {
923 struct sk_buff *skb;
924 struct rtw_tx_pkt_info pkt_info = {0};
925 int ret;
926
927 skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
928 if (!skb)
929 return -ENOMEM;
930
931 ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
932 if (ret) {
933 rtw_err(rtwdev, "failed to write h2c data\n");
934 return ret;
935 }
936
937 rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
938
939 return 0;
940 }
941
rtw_pci_tx_write(struct rtw_dev * rtwdev,struct rtw_tx_pkt_info * pkt_info,struct sk_buff * skb)942 static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
943 struct rtw_tx_pkt_info *pkt_info,
944 struct sk_buff *skb)
945 {
946 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
947 struct rtw_pci_tx_ring *ring;
948 u8 queue = rtw_hw_queue_mapping(skb);
949 int ret;
950
951 ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
952 if (ret)
953 return ret;
954
955 ring = &rtwpci->tx_rings[queue];
956 spin_lock_bh(&rtwpci->irq_lock);
957 if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
958 ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
959 ring->queue_stopped = true;
960 }
961 spin_unlock_bh(&rtwpci->irq_lock);
962
963 return 0;
964 }
965
rtw_pci_tx_isr(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,u8 hw_queue)966 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
967 u8 hw_queue)
968 {
969 struct ieee80211_hw *hw = rtwdev->hw;
970 struct ieee80211_tx_info *info;
971 struct rtw_pci_tx_ring *ring;
972 struct rtw_pci_tx_data *tx_data;
973 struct sk_buff *skb;
974 u32 count;
975 u32 bd_idx_addr;
976 u32 bd_idx, cur_rp, rp_idx;
977 u16 q_map;
978
979 ring = &rtwpci->tx_rings[hw_queue];
980
981 bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
982 bd_idx = rtw_read32(rtwdev, bd_idx_addr);
983 cur_rp = bd_idx >> 16;
984 cur_rp &= TRX_BD_IDX_MASK;
985 rp_idx = ring->r.rp;
986 if (cur_rp >= ring->r.rp)
987 count = cur_rp - ring->r.rp;
988 else
989 count = ring->r.len - (ring->r.rp - cur_rp);
990
991 while (count--) {
992 skb = skb_dequeue(&ring->queue);
993 if (!skb) {
994 rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
995 count, hw_queue, bd_idx, ring->r.rp, cur_rp);
996 break;
997 }
998 tx_data = rtw_pci_get_tx_data(skb);
999 dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
1000 DMA_TO_DEVICE);
1001
1002 /* just free command packets from host to card */
1003 if (hw_queue == RTW_TX_QUEUE_H2C) {
1004 dev_kfree_skb_irq(skb);
1005 continue;
1006 }
1007
1008 if (ring->queue_stopped &&
1009 avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
1010 q_map = skb_get_queue_mapping(skb);
1011 ieee80211_wake_queue(hw, q_map);
1012 ring->queue_stopped = false;
1013 }
1014
1015 if (++rp_idx >= ring->r.len)
1016 rp_idx = 0;
1017
1018 skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
1019
1020 info = IEEE80211_SKB_CB(skb);
1021
1022 /* enqueue to wait for tx report */
1023 if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
1024 rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
1025 continue;
1026 }
1027
1028 /* always ACK for others, then they won't be marked as drop */
1029 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1030 info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
1031 else
1032 info->flags |= IEEE80211_TX_STAT_ACK;
1033
1034 ieee80211_tx_info_clear_status(info);
1035 ieee80211_tx_status_irqsafe(hw, skb);
1036 }
1037
1038 ring->r.rp = cur_rp;
1039 }
1040
rtw_pci_rx_isr(struct rtw_dev * rtwdev)1041 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
1042 {
1043 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1044 struct napi_struct *napi = &rtwpci->napi;
1045
1046 napi_schedule(napi);
1047 }
1048
rtw_pci_get_hw_rx_ring_nr(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)1049 static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
1050 struct rtw_pci *rtwpci)
1051 {
1052 struct rtw_pci_rx_ring *ring;
1053 int count = 0;
1054 u32 tmp, cur_wp;
1055
1056 ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1057 tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
1058 cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
1059 if (cur_wp >= ring->r.wp)
1060 count = cur_wp - ring->r.wp;
1061 else
1062 count = ring->r.len - (ring->r.wp - cur_wp);
1063
1064 return count;
1065 }
1066
rtw_pci_rx_napi(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,u8 hw_queue,u32 limit)1067 static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
1068 u8 hw_queue, u32 limit)
1069 {
1070 struct rtw_chip_info *chip = rtwdev->chip;
1071 struct napi_struct *napi = &rtwpci->napi;
1072 struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1073 struct rtw_rx_pkt_stat pkt_stat;
1074 struct ieee80211_rx_status rx_status;
1075 struct sk_buff *skb, *new;
1076 u32 cur_rp = ring->r.rp;
1077 u32 count, rx_done = 0;
1078 u32 pkt_offset;
1079 u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
1080 u32 buf_desc_sz = chip->rx_buf_desc_sz;
1081 u32 new_len;
1082 u8 *rx_desc;
1083 dma_addr_t dma;
1084
1085 count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
1086 count = min(count, limit);
1087
1088 while (count--) {
1089 rtw_pci_dma_check(rtwdev, ring, cur_rp);
1090 skb = ring->buf[cur_rp];
1091 dma = *((dma_addr_t *)skb->cb);
1092 dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
1093 DMA_FROM_DEVICE);
1094 rx_desc = skb->data;
1095 chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
1096
1097 /* offset from rx_desc to payload */
1098 pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
1099 pkt_stat.shift;
1100
1101 /* allocate a new skb for this frame,
1102 * discard the frame if none available
1103 */
1104 new_len = pkt_stat.pkt_len + pkt_offset;
1105 new = dev_alloc_skb(new_len);
1106 if (WARN_ONCE(!new, "rx routine starvation\n"))
1107 goto next_rp;
1108
1109 /* put the DMA data including rx_desc from phy to new skb */
1110 skb_put_data(new, skb->data, new_len);
1111
1112 if (pkt_stat.is_c2h) {
1113 rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
1114 } else {
1115 /* remove rx_desc */
1116 skb_pull(new, pkt_offset);
1117
1118 rtw_rx_stats(rtwdev, pkt_stat.vif, new);
1119 memcpy(new->cb, &rx_status, sizeof(rx_status));
1120 ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
1121 rx_done++;
1122 }
1123
1124 next_rp:
1125 /* new skb delivered to mac80211, re-enable original skb DMA */
1126 rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
1127 buf_desc_sz);
1128
1129 /* host read next element in ring */
1130 if (++cur_rp >= ring->r.len)
1131 cur_rp = 0;
1132 }
1133
1134 ring->r.rp = cur_rp;
1135 /* 'rp', the last position we have read, is seen as previous posistion
1136 * of 'wp' that is used to calculate 'count' next time.
1137 */
1138 ring->r.wp = cur_rp;
1139 rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
1140
1141 return rx_done;
1142 }
1143
rtw_pci_irq_recognized(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,u32 * irq_status)1144 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
1145 struct rtw_pci *rtwpci, u32 *irq_status)
1146 {
1147 unsigned long flags;
1148
1149 spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
1150
1151 irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
1152 irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
1153 if (rtw_chip_wcpu_11ac(rtwdev))
1154 irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
1155 else
1156 irq_status[3] = 0;
1157 irq_status[0] &= rtwpci->irq_mask[0];
1158 irq_status[1] &= rtwpci->irq_mask[1];
1159 irq_status[3] &= rtwpci->irq_mask[3];
1160 rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
1161 rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
1162 if (rtw_chip_wcpu_11ac(rtwdev))
1163 rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
1164
1165 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
1166 }
1167
rtw_pci_interrupt_handler(int irq,void * dev)1168 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
1169 {
1170 struct rtw_dev *rtwdev = dev;
1171 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1172
1173 /* disable RTW PCI interrupt to avoid more interrupts before the end of
1174 * thread function
1175 *
1176 * disable HIMR here to also avoid new HISR flag being raised before
1177 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
1178 * are cleared, the edge-triggered interrupt will not be generated when
1179 * a new HISR flag is set.
1180 */
1181 rtw_pci_disable_interrupt(rtwdev, rtwpci);
1182
1183 return IRQ_WAKE_THREAD;
1184 }
1185
rtw_pci_interrupt_threadfn(int irq,void * dev)1186 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
1187 {
1188 struct rtw_dev *rtwdev = dev;
1189 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1190 u32 irq_status[4];
1191 bool rx = false;
1192
1193 spin_lock_bh(&rtwpci->irq_lock);
1194 rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
1195
1196 if (irq_status[0] & IMR_MGNTDOK)
1197 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
1198 if (irq_status[0] & IMR_HIGHDOK)
1199 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
1200 if (irq_status[0] & IMR_BEDOK)
1201 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
1202 if (irq_status[0] & IMR_BKDOK)
1203 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
1204 if (irq_status[0] & IMR_VODOK)
1205 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
1206 if (irq_status[0] & IMR_VIDOK)
1207 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
1208 if (irq_status[3] & IMR_H2CDOK)
1209 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
1210 if (irq_status[0] & IMR_ROK) {
1211 rtw_pci_rx_isr(rtwdev);
1212 rx = true;
1213 }
1214 if (unlikely(irq_status[0] & IMR_C2HCMD))
1215 rtw_fw_c2h_cmd_isr(rtwdev);
1216
1217 /* all of the jobs for this interrupt have been done */
1218 if (rtwpci->running)
1219 rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
1220 spin_unlock_bh(&rtwpci->irq_lock);
1221
1222 return IRQ_HANDLED;
1223 }
1224
rtw_pci_io_mapping(struct rtw_dev * rtwdev,struct pci_dev * pdev)1225 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
1226 struct pci_dev *pdev)
1227 {
1228 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1229 unsigned long len;
1230 u8 bar_id = 2;
1231 int ret;
1232
1233 ret = pci_request_regions(pdev, KBUILD_MODNAME);
1234 if (ret) {
1235 rtw_err(rtwdev, "failed to request pci regions\n");
1236 return ret;
1237 }
1238
1239 len = pci_resource_len(pdev, bar_id);
1240 rtwpci->mmap = pci_iomap(pdev, bar_id, len);
1241 if (!rtwpci->mmap) {
1242 pci_release_regions(pdev);
1243 rtw_err(rtwdev, "failed to map pci memory\n");
1244 return -ENOMEM;
1245 }
1246
1247 return 0;
1248 }
1249
rtw_pci_io_unmapping(struct rtw_dev * rtwdev,struct pci_dev * pdev)1250 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
1251 struct pci_dev *pdev)
1252 {
1253 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1254
1255 if (rtwpci->mmap) {
1256 pci_iounmap(pdev, rtwpci->mmap);
1257 pci_release_regions(pdev);
1258 }
1259 }
1260
rtw_dbi_write8(struct rtw_dev * rtwdev,u16 addr,u8 data)1261 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
1262 {
1263 u16 write_addr;
1264 u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
1265 u8 flag;
1266 u8 cnt;
1267
1268 write_addr = addr & BITS_DBI_ADDR_MASK;
1269 write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
1270 rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
1271 rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
1272 rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
1273
1274 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1275 flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1276 if (flag == 0)
1277 return;
1278
1279 udelay(10);
1280 }
1281
1282 WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
1283 }
1284
rtw_dbi_read8(struct rtw_dev * rtwdev,u16 addr,u8 * value)1285 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
1286 {
1287 u16 read_addr = addr & BITS_DBI_ADDR_MASK;
1288 u8 flag;
1289 u8 cnt;
1290
1291 rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
1292 rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
1293
1294 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1295 flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1296 if (flag == 0) {
1297 read_addr = REG_DBI_RDATA_V1 + (addr & 3);
1298 *value = rtw_read8(rtwdev, read_addr);
1299 return 0;
1300 }
1301
1302 udelay(10);
1303 }
1304
1305 WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
1306 return -EIO;
1307 }
1308
rtw_mdio_write(struct rtw_dev * rtwdev,u8 addr,u16 data,bool g1)1309 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
1310 {
1311 u8 page;
1312 u8 wflag;
1313 u8 cnt;
1314
1315 rtw_write16(rtwdev, REG_MDIO_V1, data);
1316
1317 page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
1318 page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
1319 rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
1320 rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
1321 rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
1322
1323 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1324 wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
1325 BIT_MDIO_WFLAG_V1);
1326 if (wflag == 0)
1327 return;
1328
1329 udelay(10);
1330 }
1331
1332 WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
1333 }
1334
rtw_pci_clkreq_set(struct rtw_dev * rtwdev,bool enable)1335 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
1336 {
1337 u8 value;
1338 int ret;
1339
1340 if (rtw_pci_disable_aspm)
1341 return;
1342
1343 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1344 if (ret) {
1345 rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1346 return;
1347 }
1348
1349 if (enable)
1350 value |= BIT_CLKREQ_SW_EN;
1351 else
1352 value &= ~BIT_CLKREQ_SW_EN;
1353
1354 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1355 }
1356
rtw_pci_clkreq_pad_low(struct rtw_dev * rtwdev,bool enable)1357 static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable)
1358 {
1359 u8 value;
1360 int ret;
1361
1362 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1363 if (ret) {
1364 rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1365 return;
1366 }
1367
1368 if (enable)
1369 value &= ~BIT_CLKREQ_N_PAD;
1370 else
1371 value |= BIT_CLKREQ_N_PAD;
1372
1373 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1374 }
1375
rtw_pci_aspm_set(struct rtw_dev * rtwdev,bool enable)1376 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
1377 {
1378 u8 value;
1379 int ret;
1380
1381 if (rtw_pci_disable_aspm)
1382 return;
1383
1384 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1385 if (ret) {
1386 rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
1387 return;
1388 }
1389
1390 if (enable)
1391 value |= BIT_L1_SW_EN;
1392 else
1393 value &= ~BIT_L1_SW_EN;
1394
1395 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1396 }
1397
rtw_pci_link_ps(struct rtw_dev * rtwdev,bool enter)1398 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
1399 {
1400 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1401
1402 /* Like CLKREQ, ASPM is also implemented by two HW modules, and can
1403 * only be enabled when host supports it.
1404 *
1405 * And ASPM mechanism should be enabled when driver/firmware enters
1406 * power save mode, without having heavy traffic. Because we've
1407 * experienced some inter-operability issues that the link tends
1408 * to enter L1 state on the fly even when driver is having high
1409 * throughput. This is probably because the ASPM behavior slightly
1410 * varies from different SOC.
1411 */
1412 if (rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1)
1413 rtw_pci_aspm_set(rtwdev, enter);
1414 }
1415
rtw_pci_link_cfg(struct rtw_dev * rtwdev)1416 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
1417 {
1418 struct rtw_chip_info *chip = rtwdev->chip;
1419 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1420 struct pci_dev *pdev = rtwpci->pdev;
1421 u16 link_ctrl;
1422 int ret;
1423
1424 /* RTL8822CE has enabled REFCLK auto calibration, it does not need
1425 * to add clock delay to cover the REFCLK timing gap.
1426 */
1427 if (chip->id == RTW_CHIP_TYPE_8822C)
1428 rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
1429
1430 /* Though there is standard PCIE configuration space to set the
1431 * link control register, but by Realtek's design, driver should
1432 * check if host supports CLKREQ/ASPM to enable the HW module.
1433 *
1434 * These functions are implemented by two HW modules associated,
1435 * one is responsible to access PCIE configuration space to
1436 * follow the host settings, and another is in charge of doing
1437 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
1438 * the host does not support it, and due to some reasons or wrong
1439 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
1440 * loss if HW misbehaves on the link.
1441 *
1442 * Hence it's designed that driver should first check the PCIE
1443 * configuration space is sync'ed and enabled, then driver can turn
1444 * on the other module that is actually working on the mechanism.
1445 */
1446 ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
1447 if (ret) {
1448 rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
1449 return;
1450 }
1451
1452 if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
1453 rtw_pci_clkreq_set(rtwdev, true);
1454
1455 rtwpci->link_ctrl = link_ctrl;
1456 }
1457
rtw_pci_interface_cfg(struct rtw_dev * rtwdev)1458 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
1459 {
1460 struct rtw_chip_info *chip = rtwdev->chip;
1461
1462 switch (chip->id) {
1463 case RTW_CHIP_TYPE_8822C:
1464 if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
1465 rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
1466 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
1467 break;
1468 default:
1469 break;
1470 }
1471 }
1472
rtw_pci_phy_cfg(struct rtw_dev * rtwdev)1473 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
1474 {
1475 struct rtw_chip_info *chip = rtwdev->chip;
1476 const struct rtw_intf_phy_para *para;
1477 u16 cut;
1478 u16 value;
1479 u16 offset;
1480 int i;
1481
1482 cut = BIT(0) << rtwdev->hal.cut_version;
1483
1484 for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
1485 para = &chip->intf_table->gen1_para[i];
1486 if (!(para->cut_mask & cut))
1487 continue;
1488 if (para->offset == 0xffff)
1489 break;
1490 offset = para->offset;
1491 value = para->value;
1492 if (para->ip_sel == RTW_IP_SEL_PHY)
1493 rtw_mdio_write(rtwdev, offset, value, true);
1494 else
1495 rtw_dbi_write8(rtwdev, offset, value);
1496 }
1497
1498 for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
1499 para = &chip->intf_table->gen2_para[i];
1500 if (!(para->cut_mask & cut))
1501 continue;
1502 if (para->offset == 0xffff)
1503 break;
1504 offset = para->offset;
1505 value = para->value;
1506 if (para->ip_sel == RTW_IP_SEL_PHY)
1507 rtw_mdio_write(rtwdev, offset, value, false);
1508 else
1509 rtw_dbi_write8(rtwdev, offset, value);
1510 }
1511
1512 rtw_pci_link_cfg(rtwdev);
1513 }
1514
rtw_pci_suspend(struct device * dev)1515 static int __maybe_unused rtw_pci_suspend(struct device *dev)
1516 {
1517 struct ieee80211_hw *hw = dev_get_drvdata(dev);
1518 struct rtw_dev *rtwdev = hw->priv;
1519 struct rtw_chip_info *chip = rtwdev->chip;
1520 struct rtw_efuse *efuse = &rtwdev->efuse;
1521
1522 if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1523 rtw_pci_clkreq_pad_low(rtwdev, true);
1524 return 0;
1525 }
1526
rtw_pci_resume(struct device * dev)1527 static int __maybe_unused rtw_pci_resume(struct device *dev)
1528 {
1529 struct ieee80211_hw *hw = dev_get_drvdata(dev);
1530 struct rtw_dev *rtwdev = hw->priv;
1531 struct rtw_chip_info *chip = rtwdev->chip;
1532 struct rtw_efuse *efuse = &rtwdev->efuse;
1533
1534 if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1535 rtw_pci_clkreq_pad_low(rtwdev, false);
1536 return 0;
1537 }
1538
1539 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
1540 EXPORT_SYMBOL(rtw_pm_ops);
1541
rtw_pci_claim(struct rtw_dev * rtwdev,struct pci_dev * pdev)1542 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1543 {
1544 int ret;
1545
1546 ret = pci_enable_device(pdev);
1547 if (ret) {
1548 rtw_err(rtwdev, "failed to enable pci device\n");
1549 return ret;
1550 }
1551
1552 pci_set_master(pdev);
1553 pci_set_drvdata(pdev, rtwdev->hw);
1554 SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
1555
1556 return 0;
1557 }
1558
rtw_pci_declaim(struct rtw_dev * rtwdev,struct pci_dev * pdev)1559 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1560 {
1561 pci_clear_master(pdev);
1562 pci_disable_device(pdev);
1563 }
1564
rtw_pci_setup_resource(struct rtw_dev * rtwdev,struct pci_dev * pdev)1565 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1566 {
1567 struct rtw_pci *rtwpci;
1568 int ret;
1569
1570 rtwpci = (struct rtw_pci *)rtwdev->priv;
1571 rtwpci->pdev = pdev;
1572
1573 /* after this driver can access to hw registers */
1574 ret = rtw_pci_io_mapping(rtwdev, pdev);
1575 if (ret) {
1576 rtw_err(rtwdev, "failed to request pci io region\n");
1577 goto err_out;
1578 }
1579
1580 ret = rtw_pci_init(rtwdev);
1581 if (ret) {
1582 rtw_err(rtwdev, "failed to allocate pci resources\n");
1583 goto err_io_unmap;
1584 }
1585
1586 return 0;
1587
1588 err_io_unmap:
1589 rtw_pci_io_unmapping(rtwdev, pdev);
1590
1591 err_out:
1592 return ret;
1593 }
1594
rtw_pci_destroy(struct rtw_dev * rtwdev,struct pci_dev * pdev)1595 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1596 {
1597 rtw_pci_deinit(rtwdev);
1598 rtw_pci_io_unmapping(rtwdev, pdev);
1599 }
1600
1601 static struct rtw_hci_ops rtw_pci_ops = {
1602 .tx_write = rtw_pci_tx_write,
1603 .tx_kick_off = rtw_pci_tx_kick_off,
1604 .flush_queues = rtw_pci_flush_queues,
1605 .setup = rtw_pci_setup,
1606 .start = rtw_pci_start,
1607 .stop = rtw_pci_stop,
1608 .deep_ps = rtw_pci_deep_ps,
1609 .link_ps = rtw_pci_link_ps,
1610 .interface_cfg = rtw_pci_interface_cfg,
1611
1612 .read8 = rtw_pci_read8,
1613 .read16 = rtw_pci_read16,
1614 .read32 = rtw_pci_read32,
1615 .write8 = rtw_pci_write8,
1616 .write16 = rtw_pci_write16,
1617 .write32 = rtw_pci_write32,
1618 .write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
1619 .write_data_h2c = rtw_pci_write_data_h2c,
1620 };
1621
rtw_pci_request_irq(struct rtw_dev * rtwdev,struct pci_dev * pdev)1622 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1623 {
1624 unsigned int flags = PCI_IRQ_LEGACY;
1625 int ret;
1626
1627 if (!rtw_disable_msi)
1628 flags |= PCI_IRQ_MSI;
1629
1630 ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
1631 if (ret < 0) {
1632 rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
1633 return ret;
1634 }
1635
1636 ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
1637 rtw_pci_interrupt_handler,
1638 rtw_pci_interrupt_threadfn,
1639 IRQF_SHARED, KBUILD_MODNAME, rtwdev);
1640 if (ret) {
1641 rtw_err(rtwdev, "failed to request irq %d\n", ret);
1642 pci_free_irq_vectors(pdev);
1643 }
1644
1645 return ret;
1646 }
1647
rtw_pci_free_irq(struct rtw_dev * rtwdev,struct pci_dev * pdev)1648 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1649 {
1650 devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
1651 pci_free_irq_vectors(pdev);
1652 }
1653
rtw_pci_napi_poll(struct napi_struct * napi,int budget)1654 static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
1655 {
1656 struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
1657 struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
1658 priv);
1659 int work_done = 0;
1660
1661 while (work_done < budget) {
1662 u32 work_done_once;
1663
1664 work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
1665 budget - work_done);
1666 if (work_done_once == 0)
1667 break;
1668 work_done += work_done_once;
1669 }
1670 if (work_done < budget) {
1671 napi_complete_done(napi, work_done);
1672 spin_lock_bh(&rtwpci->irq_lock);
1673 if (rtwpci->running)
1674 rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
1675 spin_unlock_bh(&rtwpci->irq_lock);
1676 /* When ISR happens during polling and before napi_complete
1677 * while no further data is received. Data on the dma_ring will
1678 * not be processed immediately. Check whether dma ring is
1679 * empty and perform napi_schedule accordingly.
1680 */
1681 if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
1682 napi_schedule(napi);
1683 }
1684
1685 return work_done;
1686 }
1687
rtw_pci_napi_init(struct rtw_dev * rtwdev)1688 static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
1689 {
1690 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1691
1692 init_dummy_netdev(&rtwpci->netdev);
1693 netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll,
1694 RTW_NAPI_WEIGHT_NUM);
1695 }
1696
rtw_pci_napi_deinit(struct rtw_dev * rtwdev)1697 static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
1698 {
1699 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1700
1701 rtw_pci_napi_stop(rtwdev);
1702 netif_napi_del(&rtwpci->napi);
1703 }
1704
1705 enum rtw88_quirk_dis_pci_caps {
1706 QUIRK_DIS_PCI_CAP_MSI,
1707 QUIRK_DIS_PCI_CAP_ASPM,
1708 };
1709
disable_pci_caps(const struct dmi_system_id * dmi)1710 static int disable_pci_caps(const struct dmi_system_id *dmi)
1711 {
1712 uintptr_t dis_caps = (uintptr_t)dmi->driver_data;
1713
1714 if (dis_caps & BIT(QUIRK_DIS_PCI_CAP_MSI))
1715 rtw_disable_msi = true;
1716 if (dis_caps & BIT(QUIRK_DIS_PCI_CAP_ASPM))
1717 rtw_pci_disable_aspm = true;
1718
1719 return 1;
1720 }
1721
1722 static const struct dmi_system_id rtw88_pci_quirks[] = {
1723 {
1724 .callback = disable_pci_caps,
1725 .ident = "Protempo Ltd L116HTN6SPW",
1726 .matches = {
1727 DMI_MATCH(DMI_SYS_VENDOR, "Protempo Ltd"),
1728 DMI_MATCH(DMI_PRODUCT_NAME, "L116HTN6SPW"),
1729 },
1730 .driver_data = (void *)BIT(QUIRK_DIS_PCI_CAP_ASPM),
1731 },
1732 {
1733 .callback = disable_pci_caps,
1734 .ident = "HP HP Pavilion Laptop 14-ce0xxx",
1735 .matches = {
1736 DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1737 DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Laptop 14-ce0xxx"),
1738 },
1739 .driver_data = (void *)BIT(QUIRK_DIS_PCI_CAP_ASPM),
1740 },
1741 {}
1742 };
1743
rtw_pci_probe(struct pci_dev * pdev,const struct pci_device_id * id)1744 int rtw_pci_probe(struct pci_dev *pdev,
1745 const struct pci_device_id *id)
1746 {
1747 struct ieee80211_hw *hw;
1748 struct rtw_dev *rtwdev;
1749 int drv_data_size;
1750 int ret;
1751
1752 drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
1753 hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
1754 if (!hw) {
1755 dev_err(&pdev->dev, "failed to allocate hw\n");
1756 return -ENOMEM;
1757 }
1758
1759 rtwdev = hw->priv;
1760 rtwdev->hw = hw;
1761 rtwdev->dev = &pdev->dev;
1762 rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
1763 rtwdev->hci.ops = &rtw_pci_ops;
1764 rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
1765
1766 ret = rtw_core_init(rtwdev);
1767 if (ret)
1768 goto err_release_hw;
1769
1770 rtw_dbg(rtwdev, RTW_DBG_PCI,
1771 "rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
1772 pdev->vendor, pdev->device, pdev->revision);
1773
1774 ret = rtw_pci_claim(rtwdev, pdev);
1775 if (ret) {
1776 rtw_err(rtwdev, "failed to claim pci device\n");
1777 goto err_deinit_core;
1778 }
1779
1780 ret = rtw_pci_setup_resource(rtwdev, pdev);
1781 if (ret) {
1782 rtw_err(rtwdev, "failed to setup pci resources\n");
1783 goto err_pci_declaim;
1784 }
1785
1786 rtw_pci_napi_init(rtwdev);
1787
1788 ret = rtw_chip_info_setup(rtwdev);
1789 if (ret) {
1790 rtw_err(rtwdev, "failed to setup chip information\n");
1791 goto err_destroy_pci;
1792 }
1793
1794 dmi_check_system(rtw88_pci_quirks);
1795 rtw_pci_phy_cfg(rtwdev);
1796
1797 ret = rtw_register_hw(rtwdev, hw);
1798 if (ret) {
1799 rtw_err(rtwdev, "failed to register hw\n");
1800 goto err_destroy_pci;
1801 }
1802
1803 ret = rtw_pci_request_irq(rtwdev, pdev);
1804 if (ret) {
1805 ieee80211_unregister_hw(hw);
1806 goto err_destroy_pci;
1807 }
1808
1809 return 0;
1810
1811 err_destroy_pci:
1812 rtw_pci_napi_deinit(rtwdev);
1813 rtw_pci_destroy(rtwdev, pdev);
1814
1815 err_pci_declaim:
1816 rtw_pci_declaim(rtwdev, pdev);
1817
1818 err_deinit_core:
1819 rtw_core_deinit(rtwdev);
1820
1821 err_release_hw:
1822 ieee80211_free_hw(hw);
1823
1824 return ret;
1825 }
1826 EXPORT_SYMBOL(rtw_pci_probe);
1827
rtw_pci_remove(struct pci_dev * pdev)1828 void rtw_pci_remove(struct pci_dev *pdev)
1829 {
1830 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1831 struct rtw_dev *rtwdev;
1832 struct rtw_pci *rtwpci;
1833
1834 if (!hw)
1835 return;
1836
1837 rtwdev = hw->priv;
1838 rtwpci = (struct rtw_pci *)rtwdev->priv;
1839
1840 rtw_unregister_hw(rtwdev, hw);
1841 rtw_pci_disable_interrupt(rtwdev, rtwpci);
1842 rtw_pci_napi_deinit(rtwdev);
1843 rtw_pci_destroy(rtwdev, pdev);
1844 rtw_pci_declaim(rtwdev, pdev);
1845 rtw_pci_free_irq(rtwdev, pdev);
1846 rtw_core_deinit(rtwdev);
1847 ieee80211_free_hw(hw);
1848 }
1849 EXPORT_SYMBOL(rtw_pci_remove);
1850
rtw_pci_shutdown(struct pci_dev * pdev)1851 void rtw_pci_shutdown(struct pci_dev *pdev)
1852 {
1853 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1854 struct rtw_dev *rtwdev;
1855 struct rtw_chip_info *chip;
1856
1857 if (!hw)
1858 return;
1859
1860 rtwdev = hw->priv;
1861 chip = rtwdev->chip;
1862
1863 if (chip->ops->shutdown)
1864 chip->ops->shutdown(rtwdev);
1865
1866 pci_set_power_state(pdev, PCI_D3hot);
1867 }
1868 EXPORT_SYMBOL(rtw_pci_shutdown);
1869
1870 MODULE_AUTHOR("Realtek Corporation");
1871 MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver");
1872 MODULE_LICENSE("Dual BSD/GPL");
1873