1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17 #define pr_fmt(fmt) "OF: " fmt
18
19 #include <linux/bitmap.h>
20 #include <linux/console.h>
21 #include <linux/ctype.h>
22 #include <linux/cpu.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/of_graph.h>
27 #include <linux/spinlock.h>
28 #include <linux/slab.h>
29 #include <linux/string.h>
30 #include <linux/proc_fs.h>
31
32 #include "of_private.h"
33
34 LIST_HEAD(aliases_lookup);
35
36 struct device_node *of_root;
37 EXPORT_SYMBOL(of_root);
38 struct device_node *of_chosen;
39 EXPORT_SYMBOL(of_chosen);
40 struct device_node *of_aliases;
41 struct device_node *of_stdout;
42 static const char *of_stdout_options;
43
44 struct kset *of_kset;
45
46 /*
47 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
48 * This mutex must be held whenever modifications are being made to the
49 * device tree. The of_{attach,detach}_node() and
50 * of_{add,remove,update}_property() helpers make sure this happens.
51 */
52 DEFINE_MUTEX(of_mutex);
53
54 /* use when traversing tree through the child, sibling,
55 * or parent members of struct device_node.
56 */
57 DEFINE_RAW_SPINLOCK(devtree_lock);
58
of_node_name_eq(const struct device_node * np,const char * name)59 bool of_node_name_eq(const struct device_node *np, const char *name)
60 {
61 const char *node_name;
62 size_t len;
63
64 if (!np)
65 return false;
66
67 node_name = kbasename(np->full_name);
68 len = strchrnul(node_name, '@') - node_name;
69
70 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
71 }
72 EXPORT_SYMBOL(of_node_name_eq);
73
of_node_name_prefix(const struct device_node * np,const char * prefix)74 bool of_node_name_prefix(const struct device_node *np, const char *prefix)
75 {
76 if (!np)
77 return false;
78
79 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
80 }
81 EXPORT_SYMBOL(of_node_name_prefix);
82
__of_node_is_type(const struct device_node * np,const char * type)83 static bool __of_node_is_type(const struct device_node *np, const char *type)
84 {
85 const char *match = __of_get_property(np, "device_type", NULL);
86
87 return np && match && type && !strcmp(match, type);
88 }
89
of_bus_n_addr_cells(struct device_node * np)90 int of_bus_n_addr_cells(struct device_node *np)
91 {
92 u32 cells;
93
94 for (; np; np = np->parent)
95 if (!of_property_read_u32(np, "#address-cells", &cells))
96 return cells;
97
98 /* No #address-cells property for the root node */
99 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
100 }
101
of_n_addr_cells(struct device_node * np)102 int of_n_addr_cells(struct device_node *np)
103 {
104 if (np->parent)
105 np = np->parent;
106
107 return of_bus_n_addr_cells(np);
108 }
109 EXPORT_SYMBOL(of_n_addr_cells);
110
of_bus_n_size_cells(struct device_node * np)111 int of_bus_n_size_cells(struct device_node *np)
112 {
113 u32 cells;
114
115 for (; np; np = np->parent)
116 if (!of_property_read_u32(np, "#size-cells", &cells))
117 return cells;
118
119 /* No #size-cells property for the root node */
120 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
121 }
122
of_n_size_cells(struct device_node * np)123 int of_n_size_cells(struct device_node *np)
124 {
125 if (np->parent)
126 np = np->parent;
127
128 return of_bus_n_size_cells(np);
129 }
130 EXPORT_SYMBOL(of_n_size_cells);
131
132 #ifdef CONFIG_NUMA
of_node_to_nid(struct device_node * np)133 int __weak of_node_to_nid(struct device_node *np)
134 {
135 return NUMA_NO_NODE;
136 }
137 #endif
138
139 #define OF_PHANDLE_CACHE_BITS 7
140 #define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
141
142 static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
143
of_phandle_cache_hash(phandle handle)144 static u32 of_phandle_cache_hash(phandle handle)
145 {
146 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
147 }
148
149 /*
150 * Caller must hold devtree_lock.
151 */
__of_phandle_cache_inv_entry(phandle handle)152 void __of_phandle_cache_inv_entry(phandle handle)
153 {
154 u32 handle_hash;
155 struct device_node *np;
156
157 if (!handle)
158 return;
159
160 handle_hash = of_phandle_cache_hash(handle);
161
162 np = phandle_cache[handle_hash];
163 if (np && handle == np->phandle)
164 phandle_cache[handle_hash] = NULL;
165 }
166
of_core_init(void)167 void __init of_core_init(void)
168 {
169 struct device_node *np;
170
171
172 /* Create the kset, and register existing nodes */
173 mutex_lock(&of_mutex);
174 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
175 if (!of_kset) {
176 mutex_unlock(&of_mutex);
177 pr_err("failed to register existing nodes\n");
178 return;
179 }
180 for_each_of_allnodes(np) {
181 __of_attach_node_sysfs(np);
182 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
183 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
184 }
185 mutex_unlock(&of_mutex);
186
187 /* Symlink in /proc as required by userspace ABI */
188 if (of_root)
189 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
190 }
191
__of_find_property(const struct device_node * np,const char * name,int * lenp)192 static struct property *__of_find_property(const struct device_node *np,
193 const char *name, int *lenp)
194 {
195 struct property *pp;
196
197 if (!np)
198 return NULL;
199
200 for (pp = np->properties; pp; pp = pp->next) {
201 if (of_prop_cmp(pp->name, name) == 0) {
202 if (lenp)
203 *lenp = pp->length;
204 break;
205 }
206 }
207
208 return pp;
209 }
210
of_find_property(const struct device_node * np,const char * name,int * lenp)211 struct property *of_find_property(const struct device_node *np,
212 const char *name,
213 int *lenp)
214 {
215 struct property *pp;
216 unsigned long flags;
217
218 raw_spin_lock_irqsave(&devtree_lock, flags);
219 pp = __of_find_property(np, name, lenp);
220 raw_spin_unlock_irqrestore(&devtree_lock, flags);
221
222 return pp;
223 }
224 EXPORT_SYMBOL(of_find_property);
225
__of_find_all_nodes(struct device_node * prev)226 struct device_node *__of_find_all_nodes(struct device_node *prev)
227 {
228 struct device_node *np;
229 if (!prev) {
230 np = of_root;
231 } else if (prev->child) {
232 np = prev->child;
233 } else {
234 /* Walk back up looking for a sibling, or the end of the structure */
235 np = prev;
236 while (np->parent && !np->sibling)
237 np = np->parent;
238 np = np->sibling; /* Might be null at the end of the tree */
239 }
240 return np;
241 }
242
243 /**
244 * of_find_all_nodes - Get next node in global list
245 * @prev: Previous node or NULL to start iteration
246 * of_node_put() will be called on it
247 *
248 * Return: A node pointer with refcount incremented, use
249 * of_node_put() on it when done.
250 */
of_find_all_nodes(struct device_node * prev)251 struct device_node *of_find_all_nodes(struct device_node *prev)
252 {
253 struct device_node *np;
254 unsigned long flags;
255
256 raw_spin_lock_irqsave(&devtree_lock, flags);
257 np = __of_find_all_nodes(prev);
258 of_node_get(np);
259 of_node_put(prev);
260 raw_spin_unlock_irqrestore(&devtree_lock, flags);
261 return np;
262 }
263 EXPORT_SYMBOL(of_find_all_nodes);
264
265 /*
266 * Find a property with a given name for a given node
267 * and return the value.
268 */
__of_get_property(const struct device_node * np,const char * name,int * lenp)269 const void *__of_get_property(const struct device_node *np,
270 const char *name, int *lenp)
271 {
272 struct property *pp = __of_find_property(np, name, lenp);
273
274 return pp ? pp->value : NULL;
275 }
276
277 /*
278 * Find a property with a given name for a given node
279 * and return the value.
280 */
of_get_property(const struct device_node * np,const char * name,int * lenp)281 const void *of_get_property(const struct device_node *np, const char *name,
282 int *lenp)
283 {
284 struct property *pp = of_find_property(np, name, lenp);
285
286 return pp ? pp->value : NULL;
287 }
288 EXPORT_SYMBOL(of_get_property);
289
290 /**
291 * of_get_cpu_hwid - Get the hardware ID from a CPU device node
292 *
293 * @cpun: CPU number(logical index) for which device node is required
294 * @thread: The local thread number to get the hardware ID for.
295 *
296 * Return: The hardware ID for the CPU node or ~0ULL if not found.
297 */
of_get_cpu_hwid(struct device_node * cpun,unsigned int thread)298 u64 of_get_cpu_hwid(struct device_node *cpun, unsigned int thread)
299 {
300 const __be32 *cell;
301 int ac, len;
302
303 ac = of_n_addr_cells(cpun);
304 cell = of_get_property(cpun, "reg", &len);
305 if (!cell || !ac || ((sizeof(*cell) * ac * (thread + 1)) > len))
306 return ~0ULL;
307
308 cell += ac * thread;
309 return of_read_number(cell, ac);
310 }
311
312 /*
313 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
314 *
315 * @cpu: logical cpu index of a core/thread
316 * @phys_id: physical identifier of a core/thread
317 *
318 * CPU logical to physical index mapping is architecture specific.
319 * However this __weak function provides a default match of physical
320 * id to logical cpu index. phys_id provided here is usually values read
321 * from the device tree which must match the hardware internal registers.
322 *
323 * Returns true if the physical identifier and the logical cpu index
324 * correspond to the same core/thread, false otherwise.
325 */
arch_match_cpu_phys_id(int cpu,u64 phys_id)326 bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
327 {
328 return (u32)phys_id == cpu;
329 }
330
331 /*
332 * Checks if the given "prop_name" property holds the physical id of the
333 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
334 * NULL, local thread number within the core is returned in it.
335 */
__of_find_n_match_cpu_property(struct device_node * cpun,const char * prop_name,int cpu,unsigned int * thread)336 static bool __of_find_n_match_cpu_property(struct device_node *cpun,
337 const char *prop_name, int cpu, unsigned int *thread)
338 {
339 const __be32 *cell;
340 int ac, prop_len, tid;
341 u64 hwid;
342
343 ac = of_n_addr_cells(cpun);
344 cell = of_get_property(cpun, prop_name, &prop_len);
345 if (!cell && !ac && arch_match_cpu_phys_id(cpu, 0))
346 return true;
347 if (!cell || !ac)
348 return false;
349 prop_len /= sizeof(*cell) * ac;
350 for (tid = 0; tid < prop_len; tid++) {
351 hwid = of_read_number(cell, ac);
352 if (arch_match_cpu_phys_id(cpu, hwid)) {
353 if (thread)
354 *thread = tid;
355 return true;
356 }
357 cell += ac;
358 }
359 return false;
360 }
361
362 /*
363 * arch_find_n_match_cpu_physical_id - See if the given device node is
364 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
365 * else false. If 'thread' is non-NULL, the local thread number within the
366 * core is returned in it.
367 */
arch_find_n_match_cpu_physical_id(struct device_node * cpun,int cpu,unsigned int * thread)368 bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
369 int cpu, unsigned int *thread)
370 {
371 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
372 * for thread ids on PowerPC. If it doesn't exist fallback to
373 * standard "reg" property.
374 */
375 if (IS_ENABLED(CONFIG_PPC) &&
376 __of_find_n_match_cpu_property(cpun,
377 "ibm,ppc-interrupt-server#s",
378 cpu, thread))
379 return true;
380
381 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
382 }
383
384 /**
385 * of_get_cpu_node - Get device node associated with the given logical CPU
386 *
387 * @cpu: CPU number(logical index) for which device node is required
388 * @thread: if not NULL, local thread number within the physical core is
389 * returned
390 *
391 * The main purpose of this function is to retrieve the device node for the
392 * given logical CPU index. It should be used to initialize the of_node in
393 * cpu device. Once of_node in cpu device is populated, all the further
394 * references can use that instead.
395 *
396 * CPU logical to physical index mapping is architecture specific and is built
397 * before booting secondary cores. This function uses arch_match_cpu_phys_id
398 * which can be overridden by architecture specific implementation.
399 *
400 * Return: A node pointer for the logical cpu with refcount incremented, use
401 * of_node_put() on it when done. Returns NULL if not found.
402 */
of_get_cpu_node(int cpu,unsigned int * thread)403 struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
404 {
405 struct device_node *cpun;
406
407 for_each_of_cpu_node(cpun) {
408 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
409 return cpun;
410 }
411 return NULL;
412 }
413 EXPORT_SYMBOL(of_get_cpu_node);
414
415 /**
416 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
417 *
418 * @cpu_node: Pointer to the device_node for CPU.
419 *
420 * Return: The logical CPU number of the given CPU device_node or -ENODEV if the
421 * CPU is not found.
422 */
of_cpu_node_to_id(struct device_node * cpu_node)423 int of_cpu_node_to_id(struct device_node *cpu_node)
424 {
425 int cpu;
426 bool found = false;
427 struct device_node *np;
428
429 for_each_possible_cpu(cpu) {
430 np = of_cpu_device_node_get(cpu);
431 found = (cpu_node == np);
432 of_node_put(np);
433 if (found)
434 return cpu;
435 }
436
437 return -ENODEV;
438 }
439 EXPORT_SYMBOL(of_cpu_node_to_id);
440
441 /**
442 * of_get_cpu_state_node - Get CPU's idle state node at the given index
443 *
444 * @cpu_node: The device node for the CPU
445 * @index: The index in the list of the idle states
446 *
447 * Two generic methods can be used to describe a CPU's idle states, either via
448 * a flattened description through the "cpu-idle-states" binding or via the
449 * hierarchical layout, using the "power-domains" and the "domain-idle-states"
450 * bindings. This function check for both and returns the idle state node for
451 * the requested index.
452 *
453 * Return: An idle state node if found at @index. The refcount is incremented
454 * for it, so call of_node_put() on it when done. Returns NULL if not found.
455 */
of_get_cpu_state_node(struct device_node * cpu_node,int index)456 struct device_node *of_get_cpu_state_node(struct device_node *cpu_node,
457 int index)
458 {
459 struct of_phandle_args args;
460 int err;
461
462 err = of_parse_phandle_with_args(cpu_node, "power-domains",
463 "#power-domain-cells", 0, &args);
464 if (!err) {
465 struct device_node *state_node =
466 of_parse_phandle(args.np, "domain-idle-states", index);
467
468 of_node_put(args.np);
469 if (state_node)
470 return state_node;
471 }
472
473 return of_parse_phandle(cpu_node, "cpu-idle-states", index);
474 }
475 EXPORT_SYMBOL(of_get_cpu_state_node);
476
477 /**
478 * __of_device_is_compatible() - Check if the node matches given constraints
479 * @device: pointer to node
480 * @compat: required compatible string, NULL or "" for any match
481 * @type: required device_type value, NULL or "" for any match
482 * @name: required node name, NULL or "" for any match
483 *
484 * Checks if the given @compat, @type and @name strings match the
485 * properties of the given @device. A constraints can be skipped by
486 * passing NULL or an empty string as the constraint.
487 *
488 * Returns 0 for no match, and a positive integer on match. The return
489 * value is a relative score with larger values indicating better
490 * matches. The score is weighted for the most specific compatible value
491 * to get the highest score. Matching type is next, followed by matching
492 * name. Practically speaking, this results in the following priority
493 * order for matches:
494 *
495 * 1. specific compatible && type && name
496 * 2. specific compatible && type
497 * 3. specific compatible && name
498 * 4. specific compatible
499 * 5. general compatible && type && name
500 * 6. general compatible && type
501 * 7. general compatible && name
502 * 8. general compatible
503 * 9. type && name
504 * 10. type
505 * 11. name
506 */
__of_device_is_compatible(const struct device_node * device,const char * compat,const char * type,const char * name)507 static int __of_device_is_compatible(const struct device_node *device,
508 const char *compat, const char *type, const char *name)
509 {
510 struct property *prop;
511 const char *cp;
512 int index = 0, score = 0;
513
514 /* Compatible match has highest priority */
515 if (compat && compat[0]) {
516 prop = __of_find_property(device, "compatible", NULL);
517 for (cp = of_prop_next_string(prop, NULL); cp;
518 cp = of_prop_next_string(prop, cp), index++) {
519 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
520 score = INT_MAX/2 - (index << 2);
521 break;
522 }
523 }
524 if (!score)
525 return 0;
526 }
527
528 /* Matching type is better than matching name */
529 if (type && type[0]) {
530 if (!__of_node_is_type(device, type))
531 return 0;
532 score += 2;
533 }
534
535 /* Matching name is a bit better than not */
536 if (name && name[0]) {
537 if (!of_node_name_eq(device, name))
538 return 0;
539 score++;
540 }
541
542 return score;
543 }
544
545 /** Checks if the given "compat" string matches one of the strings in
546 * the device's "compatible" property
547 */
of_device_is_compatible(const struct device_node * device,const char * compat)548 int of_device_is_compatible(const struct device_node *device,
549 const char *compat)
550 {
551 unsigned long flags;
552 int res;
553
554 raw_spin_lock_irqsave(&devtree_lock, flags);
555 res = __of_device_is_compatible(device, compat, NULL, NULL);
556 raw_spin_unlock_irqrestore(&devtree_lock, flags);
557 return res;
558 }
559 EXPORT_SYMBOL(of_device_is_compatible);
560
561 /** Checks if the device is compatible with any of the entries in
562 * a NULL terminated array of strings. Returns the best match
563 * score or 0.
564 */
of_device_compatible_match(struct device_node * device,const char * const * compat)565 int of_device_compatible_match(struct device_node *device,
566 const char *const *compat)
567 {
568 unsigned int tmp, score = 0;
569
570 if (!compat)
571 return 0;
572
573 while (*compat) {
574 tmp = of_device_is_compatible(device, *compat);
575 if (tmp > score)
576 score = tmp;
577 compat++;
578 }
579
580 return score;
581 }
582
583 /**
584 * of_machine_is_compatible - Test root of device tree for a given compatible value
585 * @compat: compatible string to look for in root node's compatible property.
586 *
587 * Return: A positive integer if the root node has the given value in its
588 * compatible property.
589 */
of_machine_is_compatible(const char * compat)590 int of_machine_is_compatible(const char *compat)
591 {
592 struct device_node *root;
593 int rc = 0;
594
595 root = of_find_node_by_path("/");
596 if (root) {
597 rc = of_device_is_compatible(root, compat);
598 of_node_put(root);
599 }
600 return rc;
601 }
602 EXPORT_SYMBOL(of_machine_is_compatible);
603
604 /**
605 * __of_device_is_available - check if a device is available for use
606 *
607 * @device: Node to check for availability, with locks already held
608 *
609 * Return: True if the status property is absent or set to "okay" or "ok",
610 * false otherwise
611 */
__of_device_is_available(const struct device_node * device)612 static bool __of_device_is_available(const struct device_node *device)
613 {
614 const char *status;
615 int statlen;
616
617 if (!device)
618 return false;
619
620 status = __of_get_property(device, "status", &statlen);
621 if (status == NULL)
622 return true;
623
624 if (statlen > 0) {
625 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
626 return true;
627 }
628
629 return false;
630 }
631
632 /**
633 * of_device_is_available - check if a device is available for use
634 *
635 * @device: Node to check for availability
636 *
637 * Return: True if the status property is absent or set to "okay" or "ok",
638 * false otherwise
639 */
of_device_is_available(const struct device_node * device)640 bool of_device_is_available(const struct device_node *device)
641 {
642 unsigned long flags;
643 bool res;
644
645 raw_spin_lock_irqsave(&devtree_lock, flags);
646 res = __of_device_is_available(device);
647 raw_spin_unlock_irqrestore(&devtree_lock, flags);
648 return res;
649
650 }
651 EXPORT_SYMBOL(of_device_is_available);
652
653 /**
654 * of_device_is_big_endian - check if a device has BE registers
655 *
656 * @device: Node to check for endianness
657 *
658 * Return: True if the device has a "big-endian" property, or if the kernel
659 * was compiled for BE *and* the device has a "native-endian" property.
660 * Returns false otherwise.
661 *
662 * Callers would nominally use ioread32be/iowrite32be if
663 * of_device_is_big_endian() == true, or readl/writel otherwise.
664 */
of_device_is_big_endian(const struct device_node * device)665 bool of_device_is_big_endian(const struct device_node *device)
666 {
667 if (of_property_read_bool(device, "big-endian"))
668 return true;
669 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
670 of_property_read_bool(device, "native-endian"))
671 return true;
672 return false;
673 }
674 EXPORT_SYMBOL(of_device_is_big_endian);
675
676 /**
677 * of_get_parent - Get a node's parent if any
678 * @node: Node to get parent
679 *
680 * Return: A node pointer with refcount incremented, use
681 * of_node_put() on it when done.
682 */
of_get_parent(const struct device_node * node)683 struct device_node *of_get_parent(const struct device_node *node)
684 {
685 struct device_node *np;
686 unsigned long flags;
687
688 if (!node)
689 return NULL;
690
691 raw_spin_lock_irqsave(&devtree_lock, flags);
692 np = of_node_get(node->parent);
693 raw_spin_unlock_irqrestore(&devtree_lock, flags);
694 return np;
695 }
696 EXPORT_SYMBOL(of_get_parent);
697
698 /**
699 * of_get_next_parent - Iterate to a node's parent
700 * @node: Node to get parent of
701 *
702 * This is like of_get_parent() except that it drops the
703 * refcount on the passed node, making it suitable for iterating
704 * through a node's parents.
705 *
706 * Return: A node pointer with refcount incremented, use
707 * of_node_put() on it when done.
708 */
of_get_next_parent(struct device_node * node)709 struct device_node *of_get_next_parent(struct device_node *node)
710 {
711 struct device_node *parent;
712 unsigned long flags;
713
714 if (!node)
715 return NULL;
716
717 raw_spin_lock_irqsave(&devtree_lock, flags);
718 parent = of_node_get(node->parent);
719 of_node_put(node);
720 raw_spin_unlock_irqrestore(&devtree_lock, flags);
721 return parent;
722 }
723 EXPORT_SYMBOL(of_get_next_parent);
724
__of_get_next_child(const struct device_node * node,struct device_node * prev)725 static struct device_node *__of_get_next_child(const struct device_node *node,
726 struct device_node *prev)
727 {
728 struct device_node *next;
729
730 if (!node)
731 return NULL;
732
733 next = prev ? prev->sibling : node->child;
734 of_node_get(next);
735 of_node_put(prev);
736 return next;
737 }
738 #define __for_each_child_of_node(parent, child) \
739 for (child = __of_get_next_child(parent, NULL); child != NULL; \
740 child = __of_get_next_child(parent, child))
741
742 /**
743 * of_get_next_child - Iterate a node childs
744 * @node: parent node
745 * @prev: previous child of the parent node, or NULL to get first
746 *
747 * Return: A node pointer with refcount incremented, use of_node_put() on
748 * it when done. Returns NULL when prev is the last child. Decrements the
749 * refcount of prev.
750 */
of_get_next_child(const struct device_node * node,struct device_node * prev)751 struct device_node *of_get_next_child(const struct device_node *node,
752 struct device_node *prev)
753 {
754 struct device_node *next;
755 unsigned long flags;
756
757 raw_spin_lock_irqsave(&devtree_lock, flags);
758 next = __of_get_next_child(node, prev);
759 raw_spin_unlock_irqrestore(&devtree_lock, flags);
760 return next;
761 }
762 EXPORT_SYMBOL(of_get_next_child);
763
764 /**
765 * of_get_next_available_child - Find the next available child node
766 * @node: parent node
767 * @prev: previous child of the parent node, or NULL to get first
768 *
769 * This function is like of_get_next_child(), except that it
770 * automatically skips any disabled nodes (i.e. status = "disabled").
771 */
of_get_next_available_child(const struct device_node * node,struct device_node * prev)772 struct device_node *of_get_next_available_child(const struct device_node *node,
773 struct device_node *prev)
774 {
775 struct device_node *next;
776 unsigned long flags;
777
778 if (!node)
779 return NULL;
780
781 raw_spin_lock_irqsave(&devtree_lock, flags);
782 next = prev ? prev->sibling : node->child;
783 for (; next; next = next->sibling) {
784 if (!__of_device_is_available(next))
785 continue;
786 if (of_node_get(next))
787 break;
788 }
789 of_node_put(prev);
790 raw_spin_unlock_irqrestore(&devtree_lock, flags);
791 return next;
792 }
793 EXPORT_SYMBOL(of_get_next_available_child);
794
795 /**
796 * of_get_next_cpu_node - Iterate on cpu nodes
797 * @prev: previous child of the /cpus node, or NULL to get first
798 *
799 * Return: A cpu node pointer with refcount incremented, use of_node_put()
800 * on it when done. Returns NULL when prev is the last child. Decrements
801 * the refcount of prev.
802 */
of_get_next_cpu_node(struct device_node * prev)803 struct device_node *of_get_next_cpu_node(struct device_node *prev)
804 {
805 struct device_node *next = NULL;
806 unsigned long flags;
807 struct device_node *node;
808
809 if (!prev)
810 node = of_find_node_by_path("/cpus");
811
812 raw_spin_lock_irqsave(&devtree_lock, flags);
813 if (prev)
814 next = prev->sibling;
815 else if (node) {
816 next = node->child;
817 of_node_put(node);
818 }
819 for (; next; next = next->sibling) {
820 if (!(of_node_name_eq(next, "cpu") ||
821 __of_node_is_type(next, "cpu")))
822 continue;
823 if (of_node_get(next))
824 break;
825 }
826 of_node_put(prev);
827 raw_spin_unlock_irqrestore(&devtree_lock, flags);
828 return next;
829 }
830 EXPORT_SYMBOL(of_get_next_cpu_node);
831
832 /**
833 * of_get_compatible_child - Find compatible child node
834 * @parent: parent node
835 * @compatible: compatible string
836 *
837 * Lookup child node whose compatible property contains the given compatible
838 * string.
839 *
840 * Return: a node pointer with refcount incremented, use of_node_put() on it
841 * when done; or NULL if not found.
842 */
of_get_compatible_child(const struct device_node * parent,const char * compatible)843 struct device_node *of_get_compatible_child(const struct device_node *parent,
844 const char *compatible)
845 {
846 struct device_node *child;
847
848 for_each_child_of_node(parent, child) {
849 if (of_device_is_compatible(child, compatible))
850 break;
851 }
852
853 return child;
854 }
855 EXPORT_SYMBOL(of_get_compatible_child);
856
857 /**
858 * of_get_child_by_name - Find the child node by name for a given parent
859 * @node: parent node
860 * @name: child name to look for.
861 *
862 * This function looks for child node for given matching name
863 *
864 * Return: A node pointer if found, with refcount incremented, use
865 * of_node_put() on it when done.
866 * Returns NULL if node is not found.
867 */
of_get_child_by_name(const struct device_node * node,const char * name)868 struct device_node *of_get_child_by_name(const struct device_node *node,
869 const char *name)
870 {
871 struct device_node *child;
872
873 for_each_child_of_node(node, child)
874 if (of_node_name_eq(child, name))
875 break;
876 return child;
877 }
878 EXPORT_SYMBOL(of_get_child_by_name);
879
__of_find_node_by_path(struct device_node * parent,const char * path)880 struct device_node *__of_find_node_by_path(struct device_node *parent,
881 const char *path)
882 {
883 struct device_node *child;
884 int len;
885
886 len = strcspn(path, "/:");
887 if (!len)
888 return NULL;
889
890 __for_each_child_of_node(parent, child) {
891 const char *name = kbasename(child->full_name);
892 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
893 return child;
894 }
895 return NULL;
896 }
897
__of_find_node_by_full_path(struct device_node * node,const char * path)898 struct device_node *__of_find_node_by_full_path(struct device_node *node,
899 const char *path)
900 {
901 const char *separator = strchr(path, ':');
902
903 while (node && *path == '/') {
904 struct device_node *tmp = node;
905
906 path++; /* Increment past '/' delimiter */
907 node = __of_find_node_by_path(node, path);
908 of_node_put(tmp);
909 path = strchrnul(path, '/');
910 if (separator && separator < path)
911 break;
912 }
913 return node;
914 }
915
916 /**
917 * of_find_node_opts_by_path - Find a node matching a full OF path
918 * @path: Either the full path to match, or if the path does not
919 * start with '/', the name of a property of the /aliases
920 * node (an alias). In the case of an alias, the node
921 * matching the alias' value will be returned.
922 * @opts: Address of a pointer into which to store the start of
923 * an options string appended to the end of the path with
924 * a ':' separator.
925 *
926 * Valid paths:
927 * * /foo/bar Full path
928 * * foo Valid alias
929 * * foo/bar Valid alias + relative path
930 *
931 * Return: A node pointer with refcount incremented, use
932 * of_node_put() on it when done.
933 */
of_find_node_opts_by_path(const char * path,const char ** opts)934 struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
935 {
936 struct device_node *np = NULL;
937 struct property *pp;
938 unsigned long flags;
939 const char *separator = strchr(path, ':');
940
941 if (opts)
942 *opts = separator ? separator + 1 : NULL;
943
944 if (strcmp(path, "/") == 0)
945 return of_node_get(of_root);
946
947 /* The path could begin with an alias */
948 if (*path != '/') {
949 int len;
950 const char *p = separator;
951
952 if (!p)
953 p = strchrnul(path, '/');
954 len = p - path;
955
956 /* of_aliases must not be NULL */
957 if (!of_aliases)
958 return NULL;
959
960 for_each_property_of_node(of_aliases, pp) {
961 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
962 np = of_find_node_by_path(pp->value);
963 break;
964 }
965 }
966 if (!np)
967 return NULL;
968 path = p;
969 }
970
971 /* Step down the tree matching path components */
972 raw_spin_lock_irqsave(&devtree_lock, flags);
973 if (!np)
974 np = of_node_get(of_root);
975 np = __of_find_node_by_full_path(np, path);
976 raw_spin_unlock_irqrestore(&devtree_lock, flags);
977 return np;
978 }
979 EXPORT_SYMBOL(of_find_node_opts_by_path);
980
981 /**
982 * of_find_node_by_name - Find a node by its "name" property
983 * @from: The node to start searching from or NULL; the node
984 * you pass will not be searched, only the next one
985 * will. Typically, you pass what the previous call
986 * returned. of_node_put() will be called on @from.
987 * @name: The name string to match against
988 *
989 * Return: A node pointer with refcount incremented, use
990 * of_node_put() on it when done.
991 */
of_find_node_by_name(struct device_node * from,const char * name)992 struct device_node *of_find_node_by_name(struct device_node *from,
993 const char *name)
994 {
995 struct device_node *np;
996 unsigned long flags;
997
998 raw_spin_lock_irqsave(&devtree_lock, flags);
999 for_each_of_allnodes_from(from, np)
1000 if (of_node_name_eq(np, name) && of_node_get(np))
1001 break;
1002 of_node_put(from);
1003 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1004 return np;
1005 }
1006 EXPORT_SYMBOL(of_find_node_by_name);
1007
1008 /**
1009 * of_find_node_by_type - Find a node by its "device_type" property
1010 * @from: The node to start searching from, or NULL to start searching
1011 * the entire device tree. The node you pass will not be
1012 * searched, only the next one will; typically, you pass
1013 * what the previous call returned. of_node_put() will be
1014 * called on from for you.
1015 * @type: The type string to match against
1016 *
1017 * Return: A node pointer with refcount incremented, use
1018 * of_node_put() on it when done.
1019 */
of_find_node_by_type(struct device_node * from,const char * type)1020 struct device_node *of_find_node_by_type(struct device_node *from,
1021 const char *type)
1022 {
1023 struct device_node *np;
1024 unsigned long flags;
1025
1026 raw_spin_lock_irqsave(&devtree_lock, flags);
1027 for_each_of_allnodes_from(from, np)
1028 if (__of_node_is_type(np, type) && of_node_get(np))
1029 break;
1030 of_node_put(from);
1031 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1032 return np;
1033 }
1034 EXPORT_SYMBOL(of_find_node_by_type);
1035
1036 /**
1037 * of_find_compatible_node - Find a node based on type and one of the
1038 * tokens in its "compatible" property
1039 * @from: The node to start searching from or NULL, the node
1040 * you pass will not be searched, only the next one
1041 * will; typically, you pass what the previous call
1042 * returned. of_node_put() will be called on it
1043 * @type: The type string to match "device_type" or NULL to ignore
1044 * @compatible: The string to match to one of the tokens in the device
1045 * "compatible" list.
1046 *
1047 * Return: A node pointer with refcount incremented, use
1048 * of_node_put() on it when done.
1049 */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)1050 struct device_node *of_find_compatible_node(struct device_node *from,
1051 const char *type, const char *compatible)
1052 {
1053 struct device_node *np;
1054 unsigned long flags;
1055
1056 raw_spin_lock_irqsave(&devtree_lock, flags);
1057 for_each_of_allnodes_from(from, np)
1058 if (__of_device_is_compatible(np, compatible, type, NULL) &&
1059 of_node_get(np))
1060 break;
1061 of_node_put(from);
1062 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1063 return np;
1064 }
1065 EXPORT_SYMBOL(of_find_compatible_node);
1066
1067 /**
1068 * of_find_node_with_property - Find a node which has a property with
1069 * the given name.
1070 * @from: The node to start searching from or NULL, the node
1071 * you pass will not be searched, only the next one
1072 * will; typically, you pass what the previous call
1073 * returned. of_node_put() will be called on it
1074 * @prop_name: The name of the property to look for.
1075 *
1076 * Return: A node pointer with refcount incremented, use
1077 * of_node_put() on it when done.
1078 */
of_find_node_with_property(struct device_node * from,const char * prop_name)1079 struct device_node *of_find_node_with_property(struct device_node *from,
1080 const char *prop_name)
1081 {
1082 struct device_node *np;
1083 struct property *pp;
1084 unsigned long flags;
1085
1086 raw_spin_lock_irqsave(&devtree_lock, flags);
1087 for_each_of_allnodes_from(from, np) {
1088 for (pp = np->properties; pp; pp = pp->next) {
1089 if (of_prop_cmp(pp->name, prop_name) == 0) {
1090 of_node_get(np);
1091 goto out;
1092 }
1093 }
1094 }
1095 out:
1096 of_node_put(from);
1097 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1098 return np;
1099 }
1100 EXPORT_SYMBOL(of_find_node_with_property);
1101
1102 static
__of_match_node(const struct of_device_id * matches,const struct device_node * node)1103 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
1104 const struct device_node *node)
1105 {
1106 const struct of_device_id *best_match = NULL;
1107 int score, best_score = 0;
1108
1109 if (!matches)
1110 return NULL;
1111
1112 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1113 score = __of_device_is_compatible(node, matches->compatible,
1114 matches->type, matches->name);
1115 if (score > best_score) {
1116 best_match = matches;
1117 best_score = score;
1118 }
1119 }
1120
1121 return best_match;
1122 }
1123
1124 /**
1125 * of_match_node - Tell if a device_node has a matching of_match structure
1126 * @matches: array of of device match structures to search in
1127 * @node: the of device structure to match against
1128 *
1129 * Low level utility function used by device matching.
1130 */
of_match_node(const struct of_device_id * matches,const struct device_node * node)1131 const struct of_device_id *of_match_node(const struct of_device_id *matches,
1132 const struct device_node *node)
1133 {
1134 const struct of_device_id *match;
1135 unsigned long flags;
1136
1137 raw_spin_lock_irqsave(&devtree_lock, flags);
1138 match = __of_match_node(matches, node);
1139 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1140 return match;
1141 }
1142 EXPORT_SYMBOL(of_match_node);
1143
1144 /**
1145 * of_find_matching_node_and_match - Find a node based on an of_device_id
1146 * match table.
1147 * @from: The node to start searching from or NULL, the node
1148 * you pass will not be searched, only the next one
1149 * will; typically, you pass what the previous call
1150 * returned. of_node_put() will be called on it
1151 * @matches: array of of device match structures to search in
1152 * @match: Updated to point at the matches entry which matched
1153 *
1154 * Return: A node pointer with refcount incremented, use
1155 * of_node_put() on it when done.
1156 */
of_find_matching_node_and_match(struct device_node * from,const struct of_device_id * matches,const struct of_device_id ** match)1157 struct device_node *of_find_matching_node_and_match(struct device_node *from,
1158 const struct of_device_id *matches,
1159 const struct of_device_id **match)
1160 {
1161 struct device_node *np;
1162 const struct of_device_id *m;
1163 unsigned long flags;
1164
1165 if (match)
1166 *match = NULL;
1167
1168 raw_spin_lock_irqsave(&devtree_lock, flags);
1169 for_each_of_allnodes_from(from, np) {
1170 m = __of_match_node(matches, np);
1171 if (m && of_node_get(np)) {
1172 if (match)
1173 *match = m;
1174 break;
1175 }
1176 }
1177 of_node_put(from);
1178 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1179 return np;
1180 }
1181 EXPORT_SYMBOL(of_find_matching_node_and_match);
1182
1183 /**
1184 * of_modalias_node - Lookup appropriate modalias for a device node
1185 * @node: pointer to a device tree node
1186 * @modalias: Pointer to buffer that modalias value will be copied into
1187 * @len: Length of modalias value
1188 *
1189 * Based on the value of the compatible property, this routine will attempt
1190 * to choose an appropriate modalias value for a particular device tree node.
1191 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1192 * from the first entry in the compatible list property.
1193 *
1194 * Return: This routine returns 0 on success, <0 on failure.
1195 */
of_modalias_node(struct device_node * node,char * modalias,int len)1196 int of_modalias_node(struct device_node *node, char *modalias, int len)
1197 {
1198 const char *compatible, *p;
1199 int cplen;
1200
1201 compatible = of_get_property(node, "compatible", &cplen);
1202 if (!compatible || strlen(compatible) > cplen)
1203 return -ENODEV;
1204 p = strchr(compatible, ',');
1205 strlcpy(modalias, p ? p + 1 : compatible, len);
1206 return 0;
1207 }
1208 EXPORT_SYMBOL_GPL(of_modalias_node);
1209
1210 /**
1211 * of_find_node_by_phandle - Find a node given a phandle
1212 * @handle: phandle of the node to find
1213 *
1214 * Return: A node pointer with refcount incremented, use
1215 * of_node_put() on it when done.
1216 */
of_find_node_by_phandle(phandle handle)1217 struct device_node *of_find_node_by_phandle(phandle handle)
1218 {
1219 struct device_node *np = NULL;
1220 unsigned long flags;
1221 u32 handle_hash;
1222
1223 if (!handle)
1224 return NULL;
1225
1226 handle_hash = of_phandle_cache_hash(handle);
1227
1228 raw_spin_lock_irqsave(&devtree_lock, flags);
1229
1230 if (phandle_cache[handle_hash] &&
1231 handle == phandle_cache[handle_hash]->phandle)
1232 np = phandle_cache[handle_hash];
1233
1234 if (!np) {
1235 for_each_of_allnodes(np)
1236 if (np->phandle == handle &&
1237 !of_node_check_flag(np, OF_DETACHED)) {
1238 phandle_cache[handle_hash] = np;
1239 break;
1240 }
1241 }
1242
1243 of_node_get(np);
1244 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1245 return np;
1246 }
1247 EXPORT_SYMBOL(of_find_node_by_phandle);
1248
of_print_phandle_args(const char * msg,const struct of_phandle_args * args)1249 void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1250 {
1251 int i;
1252 printk("%s %pOF", msg, args->np);
1253 for (i = 0; i < args->args_count; i++) {
1254 const char delim = i ? ',' : ':';
1255
1256 pr_cont("%c%08x", delim, args->args[i]);
1257 }
1258 pr_cont("\n");
1259 }
1260
of_phandle_iterator_init(struct of_phandle_iterator * it,const struct device_node * np,const char * list_name,const char * cells_name,int cell_count)1261 int of_phandle_iterator_init(struct of_phandle_iterator *it,
1262 const struct device_node *np,
1263 const char *list_name,
1264 const char *cells_name,
1265 int cell_count)
1266 {
1267 const __be32 *list;
1268 int size;
1269
1270 memset(it, 0, sizeof(*it));
1271
1272 /*
1273 * one of cell_count or cells_name must be provided to determine the
1274 * argument length.
1275 */
1276 if (cell_count < 0 && !cells_name)
1277 return -EINVAL;
1278
1279 list = of_get_property(np, list_name, &size);
1280 if (!list)
1281 return -ENOENT;
1282
1283 it->cells_name = cells_name;
1284 it->cell_count = cell_count;
1285 it->parent = np;
1286 it->list_end = list + size / sizeof(*list);
1287 it->phandle_end = list;
1288 it->cur = list;
1289
1290 return 0;
1291 }
1292 EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1293
of_phandle_iterator_next(struct of_phandle_iterator * it)1294 int of_phandle_iterator_next(struct of_phandle_iterator *it)
1295 {
1296 uint32_t count = 0;
1297
1298 if (it->node) {
1299 of_node_put(it->node);
1300 it->node = NULL;
1301 }
1302
1303 if (!it->cur || it->phandle_end >= it->list_end)
1304 return -ENOENT;
1305
1306 it->cur = it->phandle_end;
1307
1308 /* If phandle is 0, then it is an empty entry with no arguments. */
1309 it->phandle = be32_to_cpup(it->cur++);
1310
1311 if (it->phandle) {
1312
1313 /*
1314 * Find the provider node and parse the #*-cells property to
1315 * determine the argument length.
1316 */
1317 it->node = of_find_node_by_phandle(it->phandle);
1318
1319 if (it->cells_name) {
1320 if (!it->node) {
1321 pr_err("%pOF: could not find phandle %d\n",
1322 it->parent, it->phandle);
1323 goto err;
1324 }
1325
1326 if (of_property_read_u32(it->node, it->cells_name,
1327 &count)) {
1328 /*
1329 * If both cell_count and cells_name is given,
1330 * fall back to cell_count in absence
1331 * of the cells_name property
1332 */
1333 if (it->cell_count >= 0) {
1334 count = it->cell_count;
1335 } else {
1336 pr_err("%pOF: could not get %s for %pOF\n",
1337 it->parent,
1338 it->cells_name,
1339 it->node);
1340 goto err;
1341 }
1342 }
1343 } else {
1344 count = it->cell_count;
1345 }
1346
1347 /*
1348 * Make sure that the arguments actually fit in the remaining
1349 * property data length
1350 */
1351 if (it->cur + count > it->list_end) {
1352 pr_err("%pOF: %s = %d found %d\n",
1353 it->parent, it->cells_name,
1354 count, it->cell_count);
1355 goto err;
1356 }
1357 }
1358
1359 it->phandle_end = it->cur + count;
1360 it->cur_count = count;
1361
1362 return 0;
1363
1364 err:
1365 if (it->node) {
1366 of_node_put(it->node);
1367 it->node = NULL;
1368 }
1369
1370 return -EINVAL;
1371 }
1372 EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1373
of_phandle_iterator_args(struct of_phandle_iterator * it,uint32_t * args,int size)1374 int of_phandle_iterator_args(struct of_phandle_iterator *it,
1375 uint32_t *args,
1376 int size)
1377 {
1378 int i, count;
1379
1380 count = it->cur_count;
1381
1382 if (WARN_ON(size < count))
1383 count = size;
1384
1385 for (i = 0; i < count; i++)
1386 args[i] = be32_to_cpup(it->cur++);
1387
1388 return count;
1389 }
1390
__of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int cell_count,int index,struct of_phandle_args * out_args)1391 static int __of_parse_phandle_with_args(const struct device_node *np,
1392 const char *list_name,
1393 const char *cells_name,
1394 int cell_count, int index,
1395 struct of_phandle_args *out_args)
1396 {
1397 struct of_phandle_iterator it;
1398 int rc, cur_index = 0;
1399
1400 /* Loop over the phandles until all the requested entry is found */
1401 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1402 /*
1403 * All of the error cases bail out of the loop, so at
1404 * this point, the parsing is successful. If the requested
1405 * index matches, then fill the out_args structure and return,
1406 * or return -ENOENT for an empty entry.
1407 */
1408 rc = -ENOENT;
1409 if (cur_index == index) {
1410 if (!it.phandle)
1411 goto err;
1412
1413 if (out_args) {
1414 int c;
1415
1416 c = of_phandle_iterator_args(&it,
1417 out_args->args,
1418 MAX_PHANDLE_ARGS);
1419 out_args->np = it.node;
1420 out_args->args_count = c;
1421 } else {
1422 of_node_put(it.node);
1423 }
1424
1425 /* Found it! return success */
1426 return 0;
1427 }
1428
1429 cur_index++;
1430 }
1431
1432 /*
1433 * Unlock node before returning result; will be one of:
1434 * -ENOENT : index is for empty phandle
1435 * -EINVAL : parsing error on data
1436 */
1437
1438 err:
1439 of_node_put(it.node);
1440 return rc;
1441 }
1442
1443 /**
1444 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1445 * @np: Pointer to device node holding phandle property
1446 * @phandle_name: Name of property holding a phandle value
1447 * @index: For properties holding a table of phandles, this is the index into
1448 * the table
1449 *
1450 * Return: The device_node pointer with refcount incremented. Use
1451 * of_node_put() on it when done.
1452 */
of_parse_phandle(const struct device_node * np,const char * phandle_name,int index)1453 struct device_node *of_parse_phandle(const struct device_node *np,
1454 const char *phandle_name, int index)
1455 {
1456 struct of_phandle_args args;
1457
1458 if (index < 0)
1459 return NULL;
1460
1461 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1462 index, &args))
1463 return NULL;
1464
1465 return args.np;
1466 }
1467 EXPORT_SYMBOL(of_parse_phandle);
1468
1469 /**
1470 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1471 * @np: pointer to a device tree node containing a list
1472 * @list_name: property name that contains a list
1473 * @cells_name: property name that specifies phandles' arguments count
1474 * @index: index of a phandle to parse out
1475 * @out_args: optional pointer to output arguments structure (will be filled)
1476 *
1477 * This function is useful to parse lists of phandles and their arguments.
1478 * Returns 0 on success and fills out_args, on error returns appropriate
1479 * errno value.
1480 *
1481 * Caller is responsible to call of_node_put() on the returned out_args->np
1482 * pointer.
1483 *
1484 * Example::
1485 *
1486 * phandle1: node1 {
1487 * #list-cells = <2>;
1488 * };
1489 *
1490 * phandle2: node2 {
1491 * #list-cells = <1>;
1492 * };
1493 *
1494 * node3 {
1495 * list = <&phandle1 1 2 &phandle2 3>;
1496 * };
1497 *
1498 * To get a device_node of the ``node2`` node you may call this:
1499 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1500 */
of_parse_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name,int index,struct of_phandle_args * out_args)1501 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1502 const char *cells_name, int index,
1503 struct of_phandle_args *out_args)
1504 {
1505 int cell_count = -1;
1506
1507 if (index < 0)
1508 return -EINVAL;
1509
1510 /* If cells_name is NULL we assume a cell count of 0 */
1511 if (!cells_name)
1512 cell_count = 0;
1513
1514 return __of_parse_phandle_with_args(np, list_name, cells_name,
1515 cell_count, index, out_args);
1516 }
1517 EXPORT_SYMBOL(of_parse_phandle_with_args);
1518
1519 /**
1520 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1521 * @np: pointer to a device tree node containing a list
1522 * @list_name: property name that contains a list
1523 * @stem_name: stem of property names that specify phandles' arguments count
1524 * @index: index of a phandle to parse out
1525 * @out_args: optional pointer to output arguments structure (will be filled)
1526 *
1527 * This function is useful to parse lists of phandles and their arguments.
1528 * Returns 0 on success and fills out_args, on error returns appropriate errno
1529 * value. The difference between this function and of_parse_phandle_with_args()
1530 * is that this API remaps a phandle if the node the phandle points to has
1531 * a <@stem_name>-map property.
1532 *
1533 * Caller is responsible to call of_node_put() on the returned out_args->np
1534 * pointer.
1535 *
1536 * Example::
1537 *
1538 * phandle1: node1 {
1539 * #list-cells = <2>;
1540 * };
1541 *
1542 * phandle2: node2 {
1543 * #list-cells = <1>;
1544 * };
1545 *
1546 * phandle3: node3 {
1547 * #list-cells = <1>;
1548 * list-map = <0 &phandle2 3>,
1549 * <1 &phandle2 2>,
1550 * <2 &phandle1 5 1>;
1551 * list-map-mask = <0x3>;
1552 * };
1553 *
1554 * node4 {
1555 * list = <&phandle1 1 2 &phandle3 0>;
1556 * };
1557 *
1558 * To get a device_node of the ``node2`` node you may call this:
1559 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1560 */
of_parse_phandle_with_args_map(const struct device_node * np,const char * list_name,const char * stem_name,int index,struct of_phandle_args * out_args)1561 int of_parse_phandle_with_args_map(const struct device_node *np,
1562 const char *list_name,
1563 const char *stem_name,
1564 int index, struct of_phandle_args *out_args)
1565 {
1566 char *cells_name, *map_name = NULL, *mask_name = NULL;
1567 char *pass_name = NULL;
1568 struct device_node *cur, *new = NULL;
1569 const __be32 *map, *mask, *pass;
1570 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1571 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1572 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1573 const __be32 *match_array = initial_match_array;
1574 int i, ret, map_len, match;
1575 u32 list_size, new_size;
1576
1577 if (index < 0)
1578 return -EINVAL;
1579
1580 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1581 if (!cells_name)
1582 return -ENOMEM;
1583
1584 ret = -ENOMEM;
1585 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1586 if (!map_name)
1587 goto free;
1588
1589 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1590 if (!mask_name)
1591 goto free;
1592
1593 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1594 if (!pass_name)
1595 goto free;
1596
1597 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1598 out_args);
1599 if (ret)
1600 goto free;
1601
1602 /* Get the #<list>-cells property */
1603 cur = out_args->np;
1604 ret = of_property_read_u32(cur, cells_name, &list_size);
1605 if (ret < 0)
1606 goto put;
1607
1608 /* Precalculate the match array - this simplifies match loop */
1609 for (i = 0; i < list_size; i++)
1610 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1611
1612 ret = -EINVAL;
1613 while (cur) {
1614 /* Get the <list>-map property */
1615 map = of_get_property(cur, map_name, &map_len);
1616 if (!map) {
1617 ret = 0;
1618 goto free;
1619 }
1620 map_len /= sizeof(u32);
1621
1622 /* Get the <list>-map-mask property (optional) */
1623 mask = of_get_property(cur, mask_name, NULL);
1624 if (!mask)
1625 mask = dummy_mask;
1626 /* Iterate through <list>-map property */
1627 match = 0;
1628 while (map_len > (list_size + 1) && !match) {
1629 /* Compare specifiers */
1630 match = 1;
1631 for (i = 0; i < list_size; i++, map_len--)
1632 match &= !((match_array[i] ^ *map++) & mask[i]);
1633
1634 of_node_put(new);
1635 new = of_find_node_by_phandle(be32_to_cpup(map));
1636 map++;
1637 map_len--;
1638
1639 /* Check if not found */
1640 if (!new)
1641 goto put;
1642
1643 if (!of_device_is_available(new))
1644 match = 0;
1645
1646 ret = of_property_read_u32(new, cells_name, &new_size);
1647 if (ret)
1648 goto put;
1649
1650 /* Check for malformed properties */
1651 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1652 goto put;
1653 if (map_len < new_size)
1654 goto put;
1655
1656 /* Move forward by new node's #<list>-cells amount */
1657 map += new_size;
1658 map_len -= new_size;
1659 }
1660 if (!match)
1661 goto put;
1662
1663 /* Get the <list>-map-pass-thru property (optional) */
1664 pass = of_get_property(cur, pass_name, NULL);
1665 if (!pass)
1666 pass = dummy_pass;
1667
1668 /*
1669 * Successfully parsed a <list>-map translation; copy new
1670 * specifier into the out_args structure, keeping the
1671 * bits specified in <list>-map-pass-thru.
1672 */
1673 match_array = map - new_size;
1674 for (i = 0; i < new_size; i++) {
1675 __be32 val = *(map - new_size + i);
1676
1677 if (i < list_size) {
1678 val &= ~pass[i];
1679 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1680 }
1681
1682 out_args->args[i] = be32_to_cpu(val);
1683 }
1684 out_args->args_count = list_size = new_size;
1685 /* Iterate again with new provider */
1686 out_args->np = new;
1687 of_node_put(cur);
1688 cur = new;
1689 }
1690 put:
1691 of_node_put(cur);
1692 of_node_put(new);
1693 free:
1694 kfree(mask_name);
1695 kfree(map_name);
1696 kfree(cells_name);
1697 kfree(pass_name);
1698
1699 return ret;
1700 }
1701 EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1702
1703 /**
1704 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1705 * @np: pointer to a device tree node containing a list
1706 * @list_name: property name that contains a list
1707 * @cell_count: number of argument cells following the phandle
1708 * @index: index of a phandle to parse out
1709 * @out_args: optional pointer to output arguments structure (will be filled)
1710 *
1711 * This function is useful to parse lists of phandles and their arguments.
1712 * Returns 0 on success and fills out_args, on error returns appropriate
1713 * errno value.
1714 *
1715 * Caller is responsible to call of_node_put() on the returned out_args->np
1716 * pointer.
1717 *
1718 * Example::
1719 *
1720 * phandle1: node1 {
1721 * };
1722 *
1723 * phandle2: node2 {
1724 * };
1725 *
1726 * node3 {
1727 * list = <&phandle1 0 2 &phandle2 2 3>;
1728 * };
1729 *
1730 * To get a device_node of the ``node2`` node you may call this:
1731 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1732 */
of_parse_phandle_with_fixed_args(const struct device_node * np,const char * list_name,int cell_count,int index,struct of_phandle_args * out_args)1733 int of_parse_phandle_with_fixed_args(const struct device_node *np,
1734 const char *list_name, int cell_count,
1735 int index, struct of_phandle_args *out_args)
1736 {
1737 if (index < 0)
1738 return -EINVAL;
1739 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1740 index, out_args);
1741 }
1742 EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1743
1744 /**
1745 * of_count_phandle_with_args() - Find the number of phandles references in a property
1746 * @np: pointer to a device tree node containing a list
1747 * @list_name: property name that contains a list
1748 * @cells_name: property name that specifies phandles' arguments count
1749 *
1750 * Return: The number of phandle + argument tuples within a property. It
1751 * is a typical pattern to encode a list of phandle and variable
1752 * arguments into a single property. The number of arguments is encoded
1753 * by a property in the phandle-target node. For example, a gpios
1754 * property would contain a list of GPIO specifies consisting of a
1755 * phandle and 1 or more arguments. The number of arguments are
1756 * determined by the #gpio-cells property in the node pointed to by the
1757 * phandle.
1758 */
of_count_phandle_with_args(const struct device_node * np,const char * list_name,const char * cells_name)1759 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1760 const char *cells_name)
1761 {
1762 struct of_phandle_iterator it;
1763 int rc, cur_index = 0;
1764
1765 /*
1766 * If cells_name is NULL we assume a cell count of 0. This makes
1767 * counting the phandles trivial as each 32bit word in the list is a
1768 * phandle and no arguments are to consider. So we don't iterate through
1769 * the list but just use the length to determine the phandle count.
1770 */
1771 if (!cells_name) {
1772 const __be32 *list;
1773 int size;
1774
1775 list = of_get_property(np, list_name, &size);
1776 if (!list)
1777 return -ENOENT;
1778
1779 return size / sizeof(*list);
1780 }
1781
1782 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1783 if (rc)
1784 return rc;
1785
1786 while ((rc = of_phandle_iterator_next(&it)) == 0)
1787 cur_index += 1;
1788
1789 if (rc != -ENOENT)
1790 return rc;
1791
1792 return cur_index;
1793 }
1794 EXPORT_SYMBOL(of_count_phandle_with_args);
1795
1796 /**
1797 * __of_add_property - Add a property to a node without lock operations
1798 * @np: Caller's Device Node
1799 * @prop: Property to add
1800 */
__of_add_property(struct device_node * np,struct property * prop)1801 int __of_add_property(struct device_node *np, struct property *prop)
1802 {
1803 struct property **next;
1804
1805 prop->next = NULL;
1806 next = &np->properties;
1807 while (*next) {
1808 if (strcmp(prop->name, (*next)->name) == 0)
1809 /* duplicate ! don't insert it */
1810 return -EEXIST;
1811
1812 next = &(*next)->next;
1813 }
1814 *next = prop;
1815
1816 return 0;
1817 }
1818
1819 /**
1820 * of_add_property - Add a property to a node
1821 * @np: Caller's Device Node
1822 * @prop: Property to add
1823 */
of_add_property(struct device_node * np,struct property * prop)1824 int of_add_property(struct device_node *np, struct property *prop)
1825 {
1826 unsigned long flags;
1827 int rc;
1828
1829 mutex_lock(&of_mutex);
1830
1831 raw_spin_lock_irqsave(&devtree_lock, flags);
1832 rc = __of_add_property(np, prop);
1833 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1834
1835 if (!rc)
1836 __of_add_property_sysfs(np, prop);
1837
1838 mutex_unlock(&of_mutex);
1839
1840 if (!rc)
1841 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1842
1843 return rc;
1844 }
1845 EXPORT_SYMBOL_GPL(of_add_property);
1846
__of_remove_property(struct device_node * np,struct property * prop)1847 int __of_remove_property(struct device_node *np, struct property *prop)
1848 {
1849 struct property **next;
1850
1851 for (next = &np->properties; *next; next = &(*next)->next) {
1852 if (*next == prop)
1853 break;
1854 }
1855 if (*next == NULL)
1856 return -ENODEV;
1857
1858 /* found the node */
1859 *next = prop->next;
1860 prop->next = np->deadprops;
1861 np->deadprops = prop;
1862
1863 return 0;
1864 }
1865
1866 /**
1867 * of_remove_property - Remove a property from a node.
1868 * @np: Caller's Device Node
1869 * @prop: Property to remove
1870 *
1871 * Note that we don't actually remove it, since we have given out
1872 * who-knows-how-many pointers to the data using get-property.
1873 * Instead we just move the property to the "dead properties"
1874 * list, so it won't be found any more.
1875 */
of_remove_property(struct device_node * np,struct property * prop)1876 int of_remove_property(struct device_node *np, struct property *prop)
1877 {
1878 unsigned long flags;
1879 int rc;
1880
1881 if (!prop)
1882 return -ENODEV;
1883
1884 mutex_lock(&of_mutex);
1885
1886 raw_spin_lock_irqsave(&devtree_lock, flags);
1887 rc = __of_remove_property(np, prop);
1888 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1889
1890 if (!rc)
1891 __of_remove_property_sysfs(np, prop);
1892
1893 mutex_unlock(&of_mutex);
1894
1895 if (!rc)
1896 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1897
1898 return rc;
1899 }
1900 EXPORT_SYMBOL_GPL(of_remove_property);
1901
__of_update_property(struct device_node * np,struct property * newprop,struct property ** oldpropp)1902 int __of_update_property(struct device_node *np, struct property *newprop,
1903 struct property **oldpropp)
1904 {
1905 struct property **next, *oldprop;
1906
1907 for (next = &np->properties; *next; next = &(*next)->next) {
1908 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1909 break;
1910 }
1911 *oldpropp = oldprop = *next;
1912
1913 if (oldprop) {
1914 /* replace the node */
1915 newprop->next = oldprop->next;
1916 *next = newprop;
1917 oldprop->next = np->deadprops;
1918 np->deadprops = oldprop;
1919 } else {
1920 /* new node */
1921 newprop->next = NULL;
1922 *next = newprop;
1923 }
1924
1925 return 0;
1926 }
1927
1928 /*
1929 * of_update_property - Update a property in a node, if the property does
1930 * not exist, add it.
1931 *
1932 * Note that we don't actually remove it, since we have given out
1933 * who-knows-how-many pointers to the data using get-property.
1934 * Instead we just move the property to the "dead properties" list,
1935 * and add the new property to the property list
1936 */
of_update_property(struct device_node * np,struct property * newprop)1937 int of_update_property(struct device_node *np, struct property *newprop)
1938 {
1939 struct property *oldprop;
1940 unsigned long flags;
1941 int rc;
1942
1943 if (!newprop->name)
1944 return -EINVAL;
1945
1946 mutex_lock(&of_mutex);
1947
1948 raw_spin_lock_irqsave(&devtree_lock, flags);
1949 rc = __of_update_property(np, newprop, &oldprop);
1950 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1951
1952 if (!rc)
1953 __of_update_property_sysfs(np, newprop, oldprop);
1954
1955 mutex_unlock(&of_mutex);
1956
1957 if (!rc)
1958 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1959
1960 return rc;
1961 }
1962
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1963 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1964 int id, const char *stem, int stem_len)
1965 {
1966 ap->np = np;
1967 ap->id = id;
1968 strncpy(ap->stem, stem, stem_len);
1969 ap->stem[stem_len] = 0;
1970 list_add_tail(&ap->link, &aliases_lookup);
1971 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1972 ap->alias, ap->stem, ap->id, np);
1973 }
1974
1975 /**
1976 * of_alias_scan - Scan all properties of the 'aliases' node
1977 * @dt_alloc: An allocator that provides a virtual address to memory
1978 * for storing the resulting tree
1979 *
1980 * The function scans all the properties of the 'aliases' node and populates
1981 * the global lookup table with the properties. It returns the
1982 * number of alias properties found, or an error code in case of failure.
1983 */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1984 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1985 {
1986 struct property *pp;
1987
1988 of_aliases = of_find_node_by_path("/aliases");
1989 of_chosen = of_find_node_by_path("/chosen");
1990 if (of_chosen == NULL)
1991 of_chosen = of_find_node_by_path("/chosen@0");
1992
1993 if (of_chosen) {
1994 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1995 const char *name = NULL;
1996
1997 if (of_property_read_string(of_chosen, "stdout-path", &name))
1998 of_property_read_string(of_chosen, "linux,stdout-path",
1999 &name);
2000 if (IS_ENABLED(CONFIG_PPC) && !name)
2001 of_property_read_string(of_aliases, "stdout", &name);
2002 if (name)
2003 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
2004 }
2005
2006 if (!of_aliases)
2007 return;
2008
2009 for_each_property_of_node(of_aliases, pp) {
2010 const char *start = pp->name;
2011 const char *end = start + strlen(start);
2012 struct device_node *np;
2013 struct alias_prop *ap;
2014 int id, len;
2015
2016 /* Skip those we do not want to proceed */
2017 if (!strcmp(pp->name, "name") ||
2018 !strcmp(pp->name, "phandle") ||
2019 !strcmp(pp->name, "linux,phandle"))
2020 continue;
2021
2022 np = of_find_node_by_path(pp->value);
2023 if (!np)
2024 continue;
2025
2026 /* walk the alias backwards to extract the id and work out
2027 * the 'stem' string */
2028 while (isdigit(*(end-1)) && end > start)
2029 end--;
2030 len = end - start;
2031
2032 if (kstrtoint(end, 10, &id) < 0)
2033 continue;
2034
2035 /* Allocate an alias_prop with enough space for the stem */
2036 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
2037 if (!ap)
2038 continue;
2039 memset(ap, 0, sizeof(*ap) + len + 1);
2040 ap->alias = start;
2041 of_alias_add(ap, np, id, start, len);
2042 }
2043 }
2044
2045 /**
2046 * of_alias_get_id - Get alias id for the given device_node
2047 * @np: Pointer to the given device_node
2048 * @stem: Alias stem of the given device_node
2049 *
2050 * The function travels the lookup table to get the alias id for the given
2051 * device_node and alias stem.
2052 *
2053 * Return: The alias id if found.
2054 */
of_alias_get_id(struct device_node * np,const char * stem)2055 int of_alias_get_id(struct device_node *np, const char *stem)
2056 {
2057 struct alias_prop *app;
2058 int id = -ENODEV;
2059
2060 mutex_lock(&of_mutex);
2061 list_for_each_entry(app, &aliases_lookup, link) {
2062 if (strcmp(app->stem, stem) != 0)
2063 continue;
2064
2065 if (np == app->np) {
2066 id = app->id;
2067 break;
2068 }
2069 }
2070 mutex_unlock(&of_mutex);
2071
2072 return id;
2073 }
2074 EXPORT_SYMBOL_GPL(of_alias_get_id);
2075
2076 /**
2077 * of_alias_get_alias_list - Get alias list for the given device driver
2078 * @matches: Array of OF device match structures to search in
2079 * @stem: Alias stem of the given device_node
2080 * @bitmap: Bitmap field pointer
2081 * @nbits: Maximum number of alias IDs which can be recorded in bitmap
2082 *
2083 * The function travels the lookup table to record alias ids for the given
2084 * device match structures and alias stem.
2085 *
2086 * Return: 0 or -ENOSYS when !CONFIG_OF or
2087 * -EOVERFLOW if alias ID is greater then allocated nbits
2088 */
of_alias_get_alias_list(const struct of_device_id * matches,const char * stem,unsigned long * bitmap,unsigned int nbits)2089 int of_alias_get_alias_list(const struct of_device_id *matches,
2090 const char *stem, unsigned long *bitmap,
2091 unsigned int nbits)
2092 {
2093 struct alias_prop *app;
2094 int ret = 0;
2095
2096 /* Zero bitmap field to make sure that all the time it is clean */
2097 bitmap_zero(bitmap, nbits);
2098
2099 mutex_lock(&of_mutex);
2100 pr_debug("%s: Looking for stem: %s\n", __func__, stem);
2101 list_for_each_entry(app, &aliases_lookup, link) {
2102 pr_debug("%s: stem: %s, id: %d\n",
2103 __func__, app->stem, app->id);
2104
2105 if (strcmp(app->stem, stem) != 0) {
2106 pr_debug("%s: stem comparison didn't pass %s\n",
2107 __func__, app->stem);
2108 continue;
2109 }
2110
2111 if (of_match_node(matches, app->np)) {
2112 pr_debug("%s: Allocated ID %d\n", __func__, app->id);
2113
2114 if (app->id >= nbits) {
2115 pr_warn("%s: ID %d >= than bitmap field %d\n",
2116 __func__, app->id, nbits);
2117 ret = -EOVERFLOW;
2118 } else {
2119 set_bit(app->id, bitmap);
2120 }
2121 }
2122 }
2123 mutex_unlock(&of_mutex);
2124
2125 return ret;
2126 }
2127 EXPORT_SYMBOL_GPL(of_alias_get_alias_list);
2128
2129 /**
2130 * of_alias_get_highest_id - Get highest alias id for the given stem
2131 * @stem: Alias stem to be examined
2132 *
2133 * The function travels the lookup table to get the highest alias id for the
2134 * given alias stem. It returns the alias id if found.
2135 */
of_alias_get_highest_id(const char * stem)2136 int of_alias_get_highest_id(const char *stem)
2137 {
2138 struct alias_prop *app;
2139 int id = -ENODEV;
2140
2141 mutex_lock(&of_mutex);
2142 list_for_each_entry(app, &aliases_lookup, link) {
2143 if (strcmp(app->stem, stem) != 0)
2144 continue;
2145
2146 if (app->id > id)
2147 id = app->id;
2148 }
2149 mutex_unlock(&of_mutex);
2150
2151 return id;
2152 }
2153 EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
2154
2155 /**
2156 * of_console_check() - Test and setup console for DT setup
2157 * @dn: Pointer to device node
2158 * @name: Name to use for preferred console without index. ex. "ttyS"
2159 * @index: Index to use for preferred console.
2160 *
2161 * Check if the given device node matches the stdout-path property in the
2162 * /chosen node. If it does then register it as the preferred console.
2163 *
2164 * Return: TRUE if console successfully setup. Otherwise return FALSE.
2165 */
of_console_check(struct device_node * dn,char * name,int index)2166 bool of_console_check(struct device_node *dn, char *name, int index)
2167 {
2168 if (!dn || dn != of_stdout || console_set_on_cmdline)
2169 return false;
2170
2171 /*
2172 * XXX: cast `options' to char pointer to suppress complication
2173 * warnings: printk, UART and console drivers expect char pointer.
2174 */
2175 return !add_preferred_console(name, index, (char *)of_stdout_options);
2176 }
2177 EXPORT_SYMBOL_GPL(of_console_check);
2178
2179 /**
2180 * of_find_next_cache_node - Find a node's subsidiary cache
2181 * @np: node of type "cpu" or "cache"
2182 *
2183 * Return: A node pointer with refcount incremented, use
2184 * of_node_put() on it when done. Caller should hold a reference
2185 * to np.
2186 */
of_find_next_cache_node(const struct device_node * np)2187 struct device_node *of_find_next_cache_node(const struct device_node *np)
2188 {
2189 struct device_node *child, *cache_node;
2190
2191 cache_node = of_parse_phandle(np, "l2-cache", 0);
2192 if (!cache_node)
2193 cache_node = of_parse_phandle(np, "next-level-cache", 0);
2194
2195 if (cache_node)
2196 return cache_node;
2197
2198 /* OF on pmac has nodes instead of properties named "l2-cache"
2199 * beneath CPU nodes.
2200 */
2201 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
2202 for_each_child_of_node(np, child)
2203 if (of_node_is_type(child, "cache"))
2204 return child;
2205
2206 return NULL;
2207 }
2208
2209 /**
2210 * of_find_last_cache_level - Find the level at which the last cache is
2211 * present for the given logical cpu
2212 *
2213 * @cpu: cpu number(logical index) for which the last cache level is needed
2214 *
2215 * Return: The the level at which the last cache is present. It is exactly
2216 * same as the total number of cache levels for the given logical cpu.
2217 */
of_find_last_cache_level(unsigned int cpu)2218 int of_find_last_cache_level(unsigned int cpu)
2219 {
2220 u32 cache_level = 0;
2221 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
2222
2223 while (np) {
2224 prev = np;
2225 of_node_put(np);
2226 np = of_find_next_cache_node(np);
2227 }
2228
2229 of_property_read_u32(prev, "cache-level", &cache_level);
2230
2231 return cache_level;
2232 }
2233
2234 /**
2235 * of_map_id - Translate an ID through a downstream mapping.
2236 * @np: root complex device node.
2237 * @id: device ID to map.
2238 * @map_name: property name of the map to use.
2239 * @map_mask_name: optional property name of the mask to use.
2240 * @target: optional pointer to a target device node.
2241 * @id_out: optional pointer to receive the translated ID.
2242 *
2243 * Given a device ID, look up the appropriate implementation-defined
2244 * platform ID and/or the target device which receives transactions on that
2245 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2246 * @id_out may be NULL if only the other is required. If @target points to
2247 * a non-NULL device node pointer, only entries targeting that node will be
2248 * matched; if it points to a NULL value, it will receive the device node of
2249 * the first matching target phandle, with a reference held.
2250 *
2251 * Return: 0 on success or a standard error code on failure.
2252 */
of_map_id(struct device_node * np,u32 id,const char * map_name,const char * map_mask_name,struct device_node ** target,u32 * id_out)2253 int of_map_id(struct device_node *np, u32 id,
2254 const char *map_name, const char *map_mask_name,
2255 struct device_node **target, u32 *id_out)
2256 {
2257 u32 map_mask, masked_id;
2258 int map_len;
2259 const __be32 *map = NULL;
2260
2261 if (!np || !map_name || (!target && !id_out))
2262 return -EINVAL;
2263
2264 map = of_get_property(np, map_name, &map_len);
2265 if (!map) {
2266 if (target)
2267 return -ENODEV;
2268 /* Otherwise, no map implies no translation */
2269 *id_out = id;
2270 return 0;
2271 }
2272
2273 if (!map_len || map_len % (4 * sizeof(*map))) {
2274 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2275 map_name, map_len);
2276 return -EINVAL;
2277 }
2278
2279 /* The default is to select all bits. */
2280 map_mask = 0xffffffff;
2281
2282 /*
2283 * Can be overridden by "{iommu,msi}-map-mask" property.
2284 * If of_property_read_u32() fails, the default is used.
2285 */
2286 if (map_mask_name)
2287 of_property_read_u32(np, map_mask_name, &map_mask);
2288
2289 masked_id = map_mask & id;
2290 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2291 struct device_node *phandle_node;
2292 u32 id_base = be32_to_cpup(map + 0);
2293 u32 phandle = be32_to_cpup(map + 1);
2294 u32 out_base = be32_to_cpup(map + 2);
2295 u32 id_len = be32_to_cpup(map + 3);
2296
2297 if (id_base & ~map_mask) {
2298 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2299 np, map_name, map_name,
2300 map_mask, id_base);
2301 return -EFAULT;
2302 }
2303
2304 if (masked_id < id_base || masked_id >= id_base + id_len)
2305 continue;
2306
2307 phandle_node = of_find_node_by_phandle(phandle);
2308 if (!phandle_node)
2309 return -ENODEV;
2310
2311 if (target) {
2312 if (*target)
2313 of_node_put(phandle_node);
2314 else
2315 *target = phandle_node;
2316
2317 if (*target != phandle_node)
2318 continue;
2319 }
2320
2321 if (id_out)
2322 *id_out = masked_id - id_base + out_base;
2323
2324 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2325 np, map_name, map_mask, id_base, out_base,
2326 id_len, id, masked_id - id_base + out_base);
2327 return 0;
2328 }
2329
2330 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2331 id, target && *target ? *target : NULL);
2332
2333 /* Bypasses translation */
2334 if (id_out)
2335 *id_out = id;
2336 return 0;
2337 }
2338 EXPORT_SYMBOL_GPL(of_map_id);
2339