1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright IBM Corp. 2006, 2021
4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5 * Martin Schwidefsky <schwidefsky@de.ibm.com>
6 * Ralph Wuerthner <rwuerthn@de.ibm.com>
7 * Felix Beck <felix.beck@de.ibm.com>
8 * Holger Dengler <hd@linux.vnet.ibm.com>
9 * Harald Freudenberger <freude@linux.ibm.com>
10 *
11 * Adjunct processor bus.
12 */
13
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/airq.h>
30 #include <linux/atomic.h>
31 #include <asm/isc.h>
32 #include <linux/hrtimer.h>
33 #include <linux/ktime.h>
34 #include <asm/facility.h>
35 #include <linux/crypto.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/debugfs.h>
38 #include <linux/ctype.h>
39
40 #include "ap_bus.h"
41 #include "ap_debug.h"
42
43 /*
44 * Module parameters; note though this file itself isn't modular.
45 */
46 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
47 static DEFINE_SPINLOCK(ap_domain_lock);
48 module_param_named(domain, ap_domain_index, int, 0440);
49 MODULE_PARM_DESC(domain, "domain index for ap devices");
50 EXPORT_SYMBOL(ap_domain_index);
51
52 static int ap_thread_flag;
53 module_param_named(poll_thread, ap_thread_flag, int, 0440);
54 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
55
56 static char *apm_str;
57 module_param_named(apmask, apm_str, charp, 0440);
58 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
59
60 static char *aqm_str;
61 module_param_named(aqmask, aqm_str, charp, 0440);
62 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
63
64 static int ap_useirq = 1;
65 module_param_named(useirq, ap_useirq, int, 0440);
66 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
67
68 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
69 EXPORT_SYMBOL(ap_max_msg_size);
70
71 static struct device *ap_root_device;
72
73 /* Hashtable of all queue devices on the AP bus */
74 DEFINE_HASHTABLE(ap_queues, 8);
75 /* lock used for the ap_queues hashtable */
76 DEFINE_SPINLOCK(ap_queues_lock);
77
78 /* Default permissions (ioctl, card and domain masking) */
79 struct ap_perms ap_perms;
80 EXPORT_SYMBOL(ap_perms);
81 DEFINE_MUTEX(ap_perms_mutex);
82 EXPORT_SYMBOL(ap_perms_mutex);
83
84 /* # of bus scans since init */
85 static atomic64_t ap_scan_bus_count;
86
87 /* # of bindings complete since init */
88 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
89
90 /* completion for initial APQN bindings complete */
91 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete);
92
93 static struct ap_config_info *ap_qci_info;
94
95 /*
96 * AP bus related debug feature things.
97 */
98 debug_info_t *ap_dbf_info;
99
100 /*
101 * Workqueue timer for bus rescan.
102 */
103 static struct timer_list ap_config_timer;
104 static int ap_config_time = AP_CONFIG_TIME;
105 static void ap_scan_bus(struct work_struct *);
106 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
107
108 /*
109 * Tasklet & timer for AP request polling and interrupts
110 */
111 static void ap_tasklet_fn(unsigned long);
112 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
113 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
114 static struct task_struct *ap_poll_kthread;
115 static DEFINE_MUTEX(ap_poll_thread_mutex);
116 static DEFINE_SPINLOCK(ap_poll_timer_lock);
117 static struct hrtimer ap_poll_timer;
118 /*
119 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
120 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
121 */
122 static unsigned long long poll_timeout = 250000;
123
124 /* Maximum domain id, if not given via qci */
125 static int ap_max_domain_id = 15;
126 /* Maximum adapter id, if not given via qci */
127 static int ap_max_adapter_id = 63;
128
129 static struct bus_type ap_bus_type;
130
131 /* Adapter interrupt definitions */
132 static void ap_interrupt_handler(struct airq_struct *airq, bool floating);
133
134 static bool ap_irq_flag;
135
136 static struct airq_struct ap_airq = {
137 .handler = ap_interrupt_handler,
138 .isc = AP_ISC,
139 };
140
141 /**
142 * ap_airq_ptr() - Get the address of the adapter interrupt indicator
143 *
144 * Returns the address of the local-summary-indicator of the adapter
145 * interrupt handler for AP, or NULL if adapter interrupts are not
146 * available.
147 */
ap_airq_ptr(void)148 void *ap_airq_ptr(void)
149 {
150 if (ap_irq_flag)
151 return ap_airq.lsi_ptr;
152 return NULL;
153 }
154
155 /**
156 * ap_interrupts_available(): Test if AP interrupts are available.
157 *
158 * Returns 1 if AP interrupts are available.
159 */
ap_interrupts_available(void)160 static int ap_interrupts_available(void)
161 {
162 return test_facility(65);
163 }
164
165 /**
166 * ap_qci_available(): Test if AP configuration
167 * information can be queried via QCI subfunction.
168 *
169 * Returns 1 if subfunction PQAP(QCI) is available.
170 */
ap_qci_available(void)171 static int ap_qci_available(void)
172 {
173 return test_facility(12);
174 }
175
176 /**
177 * ap_apft_available(): Test if AP facilities test (APFT)
178 * facility is available.
179 *
180 * Returns 1 if APFT is is available.
181 */
ap_apft_available(void)182 static int ap_apft_available(void)
183 {
184 return test_facility(15);
185 }
186
187 /*
188 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
189 *
190 * Returns 1 if the QACT subfunction is available.
191 */
ap_qact_available(void)192 static inline int ap_qact_available(void)
193 {
194 if (ap_qci_info)
195 return ap_qci_info->qact;
196 return 0;
197 }
198
199 /*
200 * ap_fetch_qci_info(): Fetch cryptographic config info
201 *
202 * Returns the ap configuration info fetched via PQAP(QCI).
203 * On success 0 is returned, on failure a negative errno
204 * is returned, e.g. if the PQAP(QCI) instruction is not
205 * available, the return value will be -EOPNOTSUPP.
206 */
ap_fetch_qci_info(struct ap_config_info * info)207 static inline int ap_fetch_qci_info(struct ap_config_info *info)
208 {
209 if (!ap_qci_available())
210 return -EOPNOTSUPP;
211 if (!info)
212 return -EINVAL;
213 return ap_qci(info);
214 }
215
216 /**
217 * ap_init_qci_info(): Allocate and query qci config info.
218 * Does also update the static variables ap_max_domain_id
219 * and ap_max_adapter_id if this info is available.
220 */
ap_init_qci_info(void)221 static void __init ap_init_qci_info(void)
222 {
223 if (!ap_qci_available()) {
224 AP_DBF_INFO("%s QCI not supported\n", __func__);
225 return;
226 }
227
228 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
229 if (!ap_qci_info)
230 return;
231 if (ap_fetch_qci_info(ap_qci_info) != 0) {
232 kfree(ap_qci_info);
233 ap_qci_info = NULL;
234 return;
235 }
236 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
237
238 if (ap_qci_info->apxa) {
239 if (ap_qci_info->Na) {
240 ap_max_adapter_id = ap_qci_info->Na;
241 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
242 __func__, ap_max_adapter_id);
243 }
244 if (ap_qci_info->Nd) {
245 ap_max_domain_id = ap_qci_info->Nd;
246 AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
247 __func__, ap_max_domain_id);
248 }
249 }
250 }
251
252 /*
253 * ap_test_config(): helper function to extract the nrth bit
254 * within the unsigned int array field.
255 */
ap_test_config(unsigned int * field,unsigned int nr)256 static inline int ap_test_config(unsigned int *field, unsigned int nr)
257 {
258 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
259 }
260
261 /*
262 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
263 *
264 * Returns 0 if the card is not configured
265 * 1 if the card is configured or
266 * if the configuration information is not available
267 */
ap_test_config_card_id(unsigned int id)268 static inline int ap_test_config_card_id(unsigned int id)
269 {
270 if (id > ap_max_adapter_id)
271 return 0;
272 if (ap_qci_info)
273 return ap_test_config(ap_qci_info->apm, id);
274 return 1;
275 }
276
277 /*
278 * ap_test_config_usage_domain(): Test, whether an AP usage domain
279 * is configured.
280 *
281 * Returns 0 if the usage domain is not configured
282 * 1 if the usage domain is configured or
283 * if the configuration information is not available
284 */
ap_test_config_usage_domain(unsigned int domain)285 int ap_test_config_usage_domain(unsigned int domain)
286 {
287 if (domain > ap_max_domain_id)
288 return 0;
289 if (ap_qci_info)
290 return ap_test_config(ap_qci_info->aqm, domain);
291 return 1;
292 }
293 EXPORT_SYMBOL(ap_test_config_usage_domain);
294
295 /*
296 * ap_test_config_ctrl_domain(): Test, whether an AP control domain
297 * is configured.
298 * @domain AP control domain ID
299 *
300 * Returns 1 if the control domain is configured
301 * 0 in all other cases
302 */
ap_test_config_ctrl_domain(unsigned int domain)303 int ap_test_config_ctrl_domain(unsigned int domain)
304 {
305 if (!ap_qci_info || domain > ap_max_domain_id)
306 return 0;
307 return ap_test_config(ap_qci_info->adm, domain);
308 }
309 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
310
311 /*
312 * ap_queue_info(): Check and get AP queue info.
313 * Returns true if TAPQ succeeded and the info is filled or
314 * false otherwise.
315 */
ap_queue_info(ap_qid_t qid,int * q_type,unsigned int * q_fac,int * q_depth,int * q_ml,bool * q_decfg)316 static bool ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac,
317 int *q_depth, int *q_ml, bool *q_decfg)
318 {
319 struct ap_queue_status status;
320 union {
321 unsigned long value;
322 struct {
323 unsigned int fac : 32; /* facility bits */
324 unsigned int at : 8; /* ap type */
325 unsigned int _res1 : 8;
326 unsigned int _res2 : 4;
327 unsigned int ml : 4; /* apxl ml */
328 unsigned int _res3 : 4;
329 unsigned int qd : 4; /* queue depth */
330 } tapq_gr2;
331 } tapq_info;
332
333 tapq_info.value = 0;
334
335 /* make sure we don't run into a specifiation exception */
336 if (AP_QID_CARD(qid) > ap_max_adapter_id ||
337 AP_QID_QUEUE(qid) > ap_max_domain_id)
338 return false;
339
340 /* call TAPQ on this APQN */
341 status = ap_test_queue(qid, ap_apft_available(), &tapq_info.value);
342 switch (status.response_code) {
343 case AP_RESPONSE_NORMAL:
344 case AP_RESPONSE_RESET_IN_PROGRESS:
345 case AP_RESPONSE_DECONFIGURED:
346 case AP_RESPONSE_CHECKSTOPPED:
347 case AP_RESPONSE_BUSY:
348 /*
349 * According to the architecture in all these cases the
350 * info should be filled. All bits 0 is not possible as
351 * there is at least one of the mode bits set.
352 */
353 if (WARN_ON_ONCE(!tapq_info.value))
354 return false;
355 *q_type = tapq_info.tapq_gr2.at;
356 *q_fac = tapq_info.tapq_gr2.fac;
357 *q_depth = tapq_info.tapq_gr2.qd;
358 *q_ml = tapq_info.tapq_gr2.ml;
359 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
360 switch (*q_type) {
361 /* For CEX2 and CEX3 the available functions
362 * are not reflected by the facilities bits.
363 * Instead it is coded into the type. So here
364 * modify the function bits based on the type.
365 */
366 case AP_DEVICE_TYPE_CEX2A:
367 case AP_DEVICE_TYPE_CEX3A:
368 *q_fac |= 0x08000000;
369 break;
370 case AP_DEVICE_TYPE_CEX2C:
371 case AP_DEVICE_TYPE_CEX3C:
372 *q_fac |= 0x10000000;
373 break;
374 default:
375 break;
376 }
377 return true;
378 default:
379 /*
380 * A response code which indicates, there is no info available.
381 */
382 return false;
383 }
384 }
385
ap_wait(enum ap_sm_wait wait)386 void ap_wait(enum ap_sm_wait wait)
387 {
388 ktime_t hr_time;
389
390 switch (wait) {
391 case AP_SM_WAIT_AGAIN:
392 case AP_SM_WAIT_INTERRUPT:
393 if (ap_irq_flag)
394 break;
395 if (ap_poll_kthread) {
396 wake_up(&ap_poll_wait);
397 break;
398 }
399 fallthrough;
400 case AP_SM_WAIT_TIMEOUT:
401 spin_lock_bh(&ap_poll_timer_lock);
402 if (!hrtimer_is_queued(&ap_poll_timer)) {
403 hr_time = poll_timeout;
404 hrtimer_forward_now(&ap_poll_timer, hr_time);
405 hrtimer_restart(&ap_poll_timer);
406 }
407 spin_unlock_bh(&ap_poll_timer_lock);
408 break;
409 case AP_SM_WAIT_NONE:
410 default:
411 break;
412 }
413 }
414
415 /**
416 * ap_request_timeout(): Handling of request timeouts
417 * @t: timer making this callback
418 *
419 * Handles request timeouts.
420 */
ap_request_timeout(struct timer_list * t)421 void ap_request_timeout(struct timer_list *t)
422 {
423 struct ap_queue *aq = from_timer(aq, t, timeout);
424
425 spin_lock_bh(&aq->lock);
426 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
427 spin_unlock_bh(&aq->lock);
428 }
429
430 /**
431 * ap_poll_timeout(): AP receive polling for finished AP requests.
432 * @unused: Unused pointer.
433 *
434 * Schedules the AP tasklet using a high resolution timer.
435 */
ap_poll_timeout(struct hrtimer * unused)436 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
437 {
438 tasklet_schedule(&ap_tasklet);
439 return HRTIMER_NORESTART;
440 }
441
442 /**
443 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
444 * @airq: pointer to adapter interrupt descriptor
445 * @floating: ignored
446 */
ap_interrupt_handler(struct airq_struct * airq,bool floating)447 static void ap_interrupt_handler(struct airq_struct *airq, bool floating)
448 {
449 inc_irq_stat(IRQIO_APB);
450 tasklet_schedule(&ap_tasklet);
451 }
452
453 /**
454 * ap_tasklet_fn(): Tasklet to poll all AP devices.
455 * @dummy: Unused variable
456 *
457 * Poll all AP devices on the bus.
458 */
ap_tasklet_fn(unsigned long dummy)459 static void ap_tasklet_fn(unsigned long dummy)
460 {
461 int bkt;
462 struct ap_queue *aq;
463 enum ap_sm_wait wait = AP_SM_WAIT_NONE;
464
465 /* Reset the indicator if interrupts are used. Thus new interrupts can
466 * be received. Doing it in the beginning of the tasklet is therefor
467 * important that no requests on any AP get lost.
468 */
469 if (ap_irq_flag)
470 xchg(ap_airq.lsi_ptr, 0);
471
472 spin_lock_bh(&ap_queues_lock);
473 hash_for_each(ap_queues, bkt, aq, hnode) {
474 spin_lock_bh(&aq->lock);
475 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
476 spin_unlock_bh(&aq->lock);
477 }
478 spin_unlock_bh(&ap_queues_lock);
479
480 ap_wait(wait);
481 }
482
ap_pending_requests(void)483 static int ap_pending_requests(void)
484 {
485 int bkt;
486 struct ap_queue *aq;
487
488 spin_lock_bh(&ap_queues_lock);
489 hash_for_each(ap_queues, bkt, aq, hnode) {
490 if (aq->queue_count == 0)
491 continue;
492 spin_unlock_bh(&ap_queues_lock);
493 return 1;
494 }
495 spin_unlock_bh(&ap_queues_lock);
496 return 0;
497 }
498
499 /**
500 * ap_poll_thread(): Thread that polls for finished requests.
501 * @data: Unused pointer
502 *
503 * AP bus poll thread. The purpose of this thread is to poll for
504 * finished requests in a loop if there is a "free" cpu - that is
505 * a cpu that doesn't have anything better to do. The polling stops
506 * as soon as there is another task or if all messages have been
507 * delivered.
508 */
ap_poll_thread(void * data)509 static int ap_poll_thread(void *data)
510 {
511 DECLARE_WAITQUEUE(wait, current);
512
513 set_user_nice(current, MAX_NICE);
514 set_freezable();
515 while (!kthread_should_stop()) {
516 add_wait_queue(&ap_poll_wait, &wait);
517 set_current_state(TASK_INTERRUPTIBLE);
518 if (!ap_pending_requests()) {
519 schedule();
520 try_to_freeze();
521 }
522 set_current_state(TASK_RUNNING);
523 remove_wait_queue(&ap_poll_wait, &wait);
524 if (need_resched()) {
525 schedule();
526 try_to_freeze();
527 continue;
528 }
529 ap_tasklet_fn(0);
530 }
531
532 return 0;
533 }
534
ap_poll_thread_start(void)535 static int ap_poll_thread_start(void)
536 {
537 int rc;
538
539 if (ap_irq_flag || ap_poll_kthread)
540 return 0;
541 mutex_lock(&ap_poll_thread_mutex);
542 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
543 rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
544 if (rc)
545 ap_poll_kthread = NULL;
546 mutex_unlock(&ap_poll_thread_mutex);
547 return rc;
548 }
549
ap_poll_thread_stop(void)550 static void ap_poll_thread_stop(void)
551 {
552 if (!ap_poll_kthread)
553 return;
554 mutex_lock(&ap_poll_thread_mutex);
555 kthread_stop(ap_poll_kthread);
556 ap_poll_kthread = NULL;
557 mutex_unlock(&ap_poll_thread_mutex);
558 }
559
560 #define is_card_dev(x) ((x)->parent == ap_root_device)
561 #define is_queue_dev(x) ((x)->parent != ap_root_device)
562
563 /**
564 * ap_bus_match()
565 * @dev: Pointer to device
566 * @drv: Pointer to device_driver
567 *
568 * AP bus driver registration/unregistration.
569 */
ap_bus_match(struct device * dev,struct device_driver * drv)570 static int ap_bus_match(struct device *dev, struct device_driver *drv)
571 {
572 struct ap_driver *ap_drv = to_ap_drv(drv);
573 struct ap_device_id *id;
574
575 /*
576 * Compare device type of the device with the list of
577 * supported types of the device_driver.
578 */
579 for (id = ap_drv->ids; id->match_flags; id++) {
580 if (is_card_dev(dev) &&
581 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
582 id->dev_type == to_ap_dev(dev)->device_type)
583 return 1;
584 if (is_queue_dev(dev) &&
585 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
586 id->dev_type == to_ap_dev(dev)->device_type)
587 return 1;
588 }
589 return 0;
590 }
591
592 /**
593 * ap_uevent(): Uevent function for AP devices.
594 * @dev: Pointer to device
595 * @env: Pointer to kobj_uevent_env
596 *
597 * It sets up a single environment variable DEV_TYPE which contains the
598 * hardware device type.
599 */
ap_uevent(struct device * dev,struct kobj_uevent_env * env)600 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
601 {
602 int rc = 0;
603 struct ap_device *ap_dev = to_ap_dev(dev);
604
605 /* Uevents from ap bus core don't need extensions to the env */
606 if (dev == ap_root_device)
607 return 0;
608
609 if (is_card_dev(dev)) {
610 struct ap_card *ac = to_ap_card(&ap_dev->device);
611
612 /* Set up DEV_TYPE environment variable. */
613 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
614 if (rc)
615 return rc;
616 /* Add MODALIAS= */
617 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
618 if (rc)
619 return rc;
620
621 /* Add MODE=<accel|cca|ep11> */
622 if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL))
623 rc = add_uevent_var(env, "MODE=accel");
624 else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
625 rc = add_uevent_var(env, "MODE=cca");
626 else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
627 rc = add_uevent_var(env, "MODE=ep11");
628 if (rc)
629 return rc;
630 } else {
631 struct ap_queue *aq = to_ap_queue(&ap_dev->device);
632
633 /* Add MODE=<accel|cca|ep11> */
634 if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL))
635 rc = add_uevent_var(env, "MODE=accel");
636 else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
637 rc = add_uevent_var(env, "MODE=cca");
638 else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
639 rc = add_uevent_var(env, "MODE=ep11");
640 if (rc)
641 return rc;
642 }
643
644 return 0;
645 }
646
ap_send_init_scan_done_uevent(void)647 static void ap_send_init_scan_done_uevent(void)
648 {
649 char *envp[] = { "INITSCAN=done", NULL };
650
651 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
652 }
653
ap_send_bindings_complete_uevent(void)654 static void ap_send_bindings_complete_uevent(void)
655 {
656 char buf[32];
657 char *envp[] = { "BINDINGS=complete", buf, NULL };
658
659 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
660 atomic64_inc_return(&ap_bindings_complete_count));
661 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
662 }
663
ap_send_config_uevent(struct ap_device * ap_dev,bool cfg)664 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
665 {
666 char buf[16];
667 char *envp[] = { buf, NULL };
668
669 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
670
671 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
672 }
673 EXPORT_SYMBOL(ap_send_config_uevent);
674
ap_send_online_uevent(struct ap_device * ap_dev,int online)675 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
676 {
677 char buf[16];
678 char *envp[] = { buf, NULL };
679
680 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
681
682 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
683 }
684 EXPORT_SYMBOL(ap_send_online_uevent);
685
686 /*
687 * calc # of bound APQNs
688 */
689
690 struct __ap_calc_ctrs {
691 unsigned int apqns;
692 unsigned int bound;
693 };
694
__ap_calc_helper(struct device * dev,void * arg)695 static int __ap_calc_helper(struct device *dev, void *arg)
696 {
697 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *) arg;
698
699 if (is_queue_dev(dev)) {
700 pctrs->apqns++;
701 if (dev->driver)
702 pctrs->bound++;
703 }
704
705 return 0;
706 }
707
ap_calc_bound_apqns(unsigned int * apqns,unsigned int * bound)708 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
709 {
710 struct __ap_calc_ctrs ctrs;
711
712 memset(&ctrs, 0, sizeof(ctrs));
713 bus_for_each_dev(&ap_bus_type, NULL, (void *) &ctrs, __ap_calc_helper);
714
715 *apqns = ctrs.apqns;
716 *bound = ctrs.bound;
717 }
718
719 /*
720 * After initial ap bus scan do check if all existing APQNs are
721 * bound to device drivers.
722 */
ap_check_bindings_complete(void)723 static void ap_check_bindings_complete(void)
724 {
725 unsigned int apqns, bound;
726
727 if (atomic64_read(&ap_scan_bus_count) >= 1) {
728 ap_calc_bound_apqns(&apqns, &bound);
729 if (bound == apqns) {
730 if (!completion_done(&ap_init_apqn_bindings_complete)) {
731 complete_all(&ap_init_apqn_bindings_complete);
732 AP_DBF_INFO("%s complete\n", __func__);
733 }
734 ap_send_bindings_complete_uevent();
735 }
736 }
737 }
738
739 /*
740 * Interface to wait for the AP bus to have done one initial ap bus
741 * scan and all detected APQNs have been bound to device drivers.
742 * If these both conditions are not fulfilled, this function blocks
743 * on a condition with wait_for_completion_interruptible_timeout().
744 * If these both conditions are fulfilled (before the timeout hits)
745 * the return value is 0. If the timeout (in jiffies) hits instead
746 * -ETIME is returned. On failures negative return values are
747 * returned to the caller.
748 */
ap_wait_init_apqn_bindings_complete(unsigned long timeout)749 int ap_wait_init_apqn_bindings_complete(unsigned long timeout)
750 {
751 long l;
752
753 if (completion_done(&ap_init_apqn_bindings_complete))
754 return 0;
755
756 if (timeout)
757 l = wait_for_completion_interruptible_timeout(
758 &ap_init_apqn_bindings_complete, timeout);
759 else
760 l = wait_for_completion_interruptible(
761 &ap_init_apqn_bindings_complete);
762 if (l < 0)
763 return l == -ERESTARTSYS ? -EINTR : l;
764 else if (l == 0 && timeout)
765 return -ETIME;
766
767 return 0;
768 }
769 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete);
770
__ap_queue_devices_with_id_unregister(struct device * dev,void * data)771 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
772 {
773 if (is_queue_dev(dev) &&
774 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data)
775 device_unregister(dev);
776 return 0;
777 }
778
__ap_revise_reserved(struct device * dev,void * dummy)779 static int __ap_revise_reserved(struct device *dev, void *dummy)
780 {
781 int rc, card, queue, devres, drvres;
782
783 if (is_queue_dev(dev)) {
784 card = AP_QID_CARD(to_ap_queue(dev)->qid);
785 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
786 mutex_lock(&ap_perms_mutex);
787 devres = test_bit_inv(card, ap_perms.apm)
788 && test_bit_inv(queue, ap_perms.aqm);
789 mutex_unlock(&ap_perms_mutex);
790 drvres = to_ap_drv(dev->driver)->flags
791 & AP_DRIVER_FLAG_DEFAULT;
792 if (!!devres != !!drvres) {
793 AP_DBF_DBG("%s reprobing queue=%02x.%04x\n",
794 __func__, card, queue);
795 rc = device_reprobe(dev);
796 if (rc)
797 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
798 __func__, card, queue);
799 }
800 }
801
802 return 0;
803 }
804
ap_bus_revise_bindings(void)805 static void ap_bus_revise_bindings(void)
806 {
807 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
808 }
809
ap_owned_by_def_drv(int card,int queue)810 int ap_owned_by_def_drv(int card, int queue)
811 {
812 int rc = 0;
813
814 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
815 return -EINVAL;
816
817 mutex_lock(&ap_perms_mutex);
818
819 if (test_bit_inv(card, ap_perms.apm)
820 && test_bit_inv(queue, ap_perms.aqm))
821 rc = 1;
822
823 mutex_unlock(&ap_perms_mutex);
824
825 return rc;
826 }
827 EXPORT_SYMBOL(ap_owned_by_def_drv);
828
ap_apqn_in_matrix_owned_by_def_drv(unsigned long * apm,unsigned long * aqm)829 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
830 unsigned long *aqm)
831 {
832 int card, queue, rc = 0;
833
834 mutex_lock(&ap_perms_mutex);
835
836 for (card = 0; !rc && card < AP_DEVICES; card++)
837 if (test_bit_inv(card, apm) &&
838 test_bit_inv(card, ap_perms.apm))
839 for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
840 if (test_bit_inv(queue, aqm) &&
841 test_bit_inv(queue, ap_perms.aqm))
842 rc = 1;
843
844 mutex_unlock(&ap_perms_mutex);
845
846 return rc;
847 }
848 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
849
ap_device_probe(struct device * dev)850 static int ap_device_probe(struct device *dev)
851 {
852 struct ap_device *ap_dev = to_ap_dev(dev);
853 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
854 int card, queue, devres, drvres, rc = -ENODEV;
855
856 if (!get_device(dev))
857 return rc;
858
859 if (is_queue_dev(dev)) {
860 /*
861 * If the apqn is marked as reserved/used by ap bus and
862 * default drivers, only probe with drivers with the default
863 * flag set. If it is not marked, only probe with drivers
864 * with the default flag not set.
865 */
866 card = AP_QID_CARD(to_ap_queue(dev)->qid);
867 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
868 mutex_lock(&ap_perms_mutex);
869 devres = test_bit_inv(card, ap_perms.apm)
870 && test_bit_inv(queue, ap_perms.aqm);
871 mutex_unlock(&ap_perms_mutex);
872 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
873 if (!!devres != !!drvres)
874 goto out;
875 }
876
877 /* Add queue/card to list of active queues/cards */
878 spin_lock_bh(&ap_queues_lock);
879 if (is_queue_dev(dev))
880 hash_add(ap_queues, &to_ap_queue(dev)->hnode,
881 to_ap_queue(dev)->qid);
882 spin_unlock_bh(&ap_queues_lock);
883
884 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
885
886 if (rc) {
887 spin_lock_bh(&ap_queues_lock);
888 if (is_queue_dev(dev))
889 hash_del(&to_ap_queue(dev)->hnode);
890 spin_unlock_bh(&ap_queues_lock);
891 } else
892 ap_check_bindings_complete();
893
894 out:
895 if (rc)
896 put_device(dev);
897 return rc;
898 }
899
ap_device_remove(struct device * dev)900 static void ap_device_remove(struct device *dev)
901 {
902 struct ap_device *ap_dev = to_ap_dev(dev);
903 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
904
905 /* prepare ap queue device removal */
906 if (is_queue_dev(dev))
907 ap_queue_prepare_remove(to_ap_queue(dev));
908
909 /* driver's chance to clean up gracefully */
910 if (ap_drv->remove)
911 ap_drv->remove(ap_dev);
912
913 /* now do the ap queue device remove */
914 if (is_queue_dev(dev))
915 ap_queue_remove(to_ap_queue(dev));
916
917 /* Remove queue/card from list of active queues/cards */
918 spin_lock_bh(&ap_queues_lock);
919 if (is_queue_dev(dev))
920 hash_del(&to_ap_queue(dev)->hnode);
921 spin_unlock_bh(&ap_queues_lock);
922
923 put_device(dev);
924 }
925
ap_get_qdev(ap_qid_t qid)926 struct ap_queue *ap_get_qdev(ap_qid_t qid)
927 {
928 int bkt;
929 struct ap_queue *aq;
930
931 spin_lock_bh(&ap_queues_lock);
932 hash_for_each(ap_queues, bkt, aq, hnode) {
933 if (aq->qid == qid) {
934 get_device(&aq->ap_dev.device);
935 spin_unlock_bh(&ap_queues_lock);
936 return aq;
937 }
938 }
939 spin_unlock_bh(&ap_queues_lock);
940
941 return NULL;
942 }
943 EXPORT_SYMBOL(ap_get_qdev);
944
ap_driver_register(struct ap_driver * ap_drv,struct module * owner,char * name)945 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
946 char *name)
947 {
948 struct device_driver *drv = &ap_drv->driver;
949
950 drv->bus = &ap_bus_type;
951 drv->owner = owner;
952 drv->name = name;
953 return driver_register(drv);
954 }
955 EXPORT_SYMBOL(ap_driver_register);
956
ap_driver_unregister(struct ap_driver * ap_drv)957 void ap_driver_unregister(struct ap_driver *ap_drv)
958 {
959 driver_unregister(&ap_drv->driver);
960 }
961 EXPORT_SYMBOL(ap_driver_unregister);
962
ap_bus_force_rescan(void)963 void ap_bus_force_rescan(void)
964 {
965 /* processing a asynchronous bus rescan */
966 del_timer(&ap_config_timer);
967 queue_work(system_long_wq, &ap_scan_work);
968 flush_work(&ap_scan_work);
969 }
970 EXPORT_SYMBOL(ap_bus_force_rescan);
971
972 /*
973 * A config change has happened, force an ap bus rescan.
974 */
ap_bus_cfg_chg(void)975 void ap_bus_cfg_chg(void)
976 {
977 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
978
979 ap_bus_force_rescan();
980 }
981
982 /*
983 * hex2bitmap() - parse hex mask string and set bitmap.
984 * Valid strings are "0x012345678" with at least one valid hex number.
985 * Rest of the bitmap to the right is padded with 0. No spaces allowed
986 * within the string, the leading 0x may be omitted.
987 * Returns the bitmask with exactly the bits set as given by the hex
988 * string (both in big endian order).
989 */
hex2bitmap(const char * str,unsigned long * bitmap,int bits)990 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
991 {
992 int i, n, b;
993
994 /* bits needs to be a multiple of 8 */
995 if (bits & 0x07)
996 return -EINVAL;
997
998 if (str[0] == '0' && str[1] == 'x')
999 str++;
1000 if (*str == 'x')
1001 str++;
1002
1003 for (i = 0; isxdigit(*str) && i < bits; str++) {
1004 b = hex_to_bin(*str);
1005 for (n = 0; n < 4; n++)
1006 if (b & (0x08 >> n))
1007 set_bit_inv(i + n, bitmap);
1008 i += 4;
1009 }
1010
1011 if (*str == '\n')
1012 str++;
1013 if (*str)
1014 return -EINVAL;
1015 return 0;
1016 }
1017
1018 /*
1019 * modify_bitmap() - parse bitmask argument and modify an existing
1020 * bit mask accordingly. A concatenation (done with ',') of these
1021 * terms is recognized:
1022 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1023 * <bitnr> may be any valid number (hex, decimal or octal) in the range
1024 * 0...bits-1; the leading + or - is required. Here are some examples:
1025 * +0-15,+32,-128,-0xFF
1026 * -0-255,+1-16,+0x128
1027 * +1,+2,+3,+4,-5,-7-10
1028 * Returns the new bitmap after all changes have been applied. Every
1029 * positive value in the string will set a bit and every negative value
1030 * in the string will clear a bit. As a bit may be touched more than once,
1031 * the last 'operation' wins:
1032 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1033 * cleared again. All other bits are unmodified.
1034 */
modify_bitmap(const char * str,unsigned long * bitmap,int bits)1035 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1036 {
1037 int a, i, z;
1038 char *np, sign;
1039
1040 /* bits needs to be a multiple of 8 */
1041 if (bits & 0x07)
1042 return -EINVAL;
1043
1044 while (*str) {
1045 sign = *str++;
1046 if (sign != '+' && sign != '-')
1047 return -EINVAL;
1048 a = z = simple_strtoul(str, &np, 0);
1049 if (str == np || a >= bits)
1050 return -EINVAL;
1051 str = np;
1052 if (*str == '-') {
1053 z = simple_strtoul(++str, &np, 0);
1054 if (str == np || a > z || z >= bits)
1055 return -EINVAL;
1056 str = np;
1057 }
1058 for (i = a; i <= z; i++)
1059 if (sign == '+')
1060 set_bit_inv(i, bitmap);
1061 else
1062 clear_bit_inv(i, bitmap);
1063 while (*str == ',' || *str == '\n')
1064 str++;
1065 }
1066
1067 return 0;
1068 }
1069
ap_parse_mask_str(const char * str,unsigned long * bitmap,int bits,struct mutex * lock)1070 int ap_parse_mask_str(const char *str,
1071 unsigned long *bitmap, int bits,
1072 struct mutex *lock)
1073 {
1074 unsigned long *newmap, size;
1075 int rc;
1076
1077 /* bits needs to be a multiple of 8 */
1078 if (bits & 0x07)
1079 return -EINVAL;
1080
1081 size = BITS_TO_LONGS(bits)*sizeof(unsigned long);
1082 newmap = kmalloc(size, GFP_KERNEL);
1083 if (!newmap)
1084 return -ENOMEM;
1085 if (mutex_lock_interruptible(lock)) {
1086 kfree(newmap);
1087 return -ERESTARTSYS;
1088 }
1089
1090 if (*str == '+' || *str == '-') {
1091 memcpy(newmap, bitmap, size);
1092 rc = modify_bitmap(str, newmap, bits);
1093 } else {
1094 memset(newmap, 0, size);
1095 rc = hex2bitmap(str, newmap, bits);
1096 }
1097 if (rc == 0)
1098 memcpy(bitmap, newmap, size);
1099 mutex_unlock(lock);
1100 kfree(newmap);
1101 return rc;
1102 }
1103 EXPORT_SYMBOL(ap_parse_mask_str);
1104
1105 /*
1106 * AP bus attributes.
1107 */
1108
ap_domain_show(struct bus_type * bus,char * buf)1109 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1110 {
1111 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1112 }
1113
ap_domain_store(struct bus_type * bus,const char * buf,size_t count)1114 static ssize_t ap_domain_store(struct bus_type *bus,
1115 const char *buf, size_t count)
1116 {
1117 int domain;
1118
1119 if (sscanf(buf, "%i\n", &domain) != 1 ||
1120 domain < 0 || domain > ap_max_domain_id ||
1121 !test_bit_inv(domain, ap_perms.aqm))
1122 return -EINVAL;
1123
1124 spin_lock_bh(&ap_domain_lock);
1125 ap_domain_index = domain;
1126 spin_unlock_bh(&ap_domain_lock);
1127
1128 AP_DBF_INFO("%s stored new default domain=%d\n",
1129 __func__, domain);
1130
1131 return count;
1132 }
1133
1134 static BUS_ATTR_RW(ap_domain);
1135
ap_control_domain_mask_show(struct bus_type * bus,char * buf)1136 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1137 {
1138 if (!ap_qci_info) /* QCI not supported */
1139 return scnprintf(buf, PAGE_SIZE, "not supported\n");
1140
1141 return scnprintf(buf, PAGE_SIZE,
1142 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1143 ap_qci_info->adm[0], ap_qci_info->adm[1],
1144 ap_qci_info->adm[2], ap_qci_info->adm[3],
1145 ap_qci_info->adm[4], ap_qci_info->adm[5],
1146 ap_qci_info->adm[6], ap_qci_info->adm[7]);
1147 }
1148
1149 static BUS_ATTR_RO(ap_control_domain_mask);
1150
ap_usage_domain_mask_show(struct bus_type * bus,char * buf)1151 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
1152 {
1153 if (!ap_qci_info) /* QCI not supported */
1154 return scnprintf(buf, PAGE_SIZE, "not supported\n");
1155
1156 return scnprintf(buf, PAGE_SIZE,
1157 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1158 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1159 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1160 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1161 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1162 }
1163
1164 static BUS_ATTR_RO(ap_usage_domain_mask);
1165
ap_adapter_mask_show(struct bus_type * bus,char * buf)1166 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf)
1167 {
1168 if (!ap_qci_info) /* QCI not supported */
1169 return scnprintf(buf, PAGE_SIZE, "not supported\n");
1170
1171 return scnprintf(buf, PAGE_SIZE,
1172 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1173 ap_qci_info->apm[0], ap_qci_info->apm[1],
1174 ap_qci_info->apm[2], ap_qci_info->apm[3],
1175 ap_qci_info->apm[4], ap_qci_info->apm[5],
1176 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1177 }
1178
1179 static BUS_ATTR_RO(ap_adapter_mask);
1180
ap_interrupts_show(struct bus_type * bus,char * buf)1181 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1182 {
1183 return scnprintf(buf, PAGE_SIZE, "%d\n",
1184 ap_irq_flag ? 1 : 0);
1185 }
1186
1187 static BUS_ATTR_RO(ap_interrupts);
1188
config_time_show(struct bus_type * bus,char * buf)1189 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1190 {
1191 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1192 }
1193
config_time_store(struct bus_type * bus,const char * buf,size_t count)1194 static ssize_t config_time_store(struct bus_type *bus,
1195 const char *buf, size_t count)
1196 {
1197 int time;
1198
1199 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1200 return -EINVAL;
1201 ap_config_time = time;
1202 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1203 return count;
1204 }
1205
1206 static BUS_ATTR_RW(config_time);
1207
poll_thread_show(struct bus_type * bus,char * buf)1208 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1209 {
1210 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1211 }
1212
poll_thread_store(struct bus_type * bus,const char * buf,size_t count)1213 static ssize_t poll_thread_store(struct bus_type *bus,
1214 const char *buf, size_t count)
1215 {
1216 int flag, rc;
1217
1218 if (sscanf(buf, "%d\n", &flag) != 1)
1219 return -EINVAL;
1220 if (flag) {
1221 rc = ap_poll_thread_start();
1222 if (rc)
1223 count = rc;
1224 } else
1225 ap_poll_thread_stop();
1226 return count;
1227 }
1228
1229 static BUS_ATTR_RW(poll_thread);
1230
poll_timeout_show(struct bus_type * bus,char * buf)1231 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1232 {
1233 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1234 }
1235
poll_timeout_store(struct bus_type * bus,const char * buf,size_t count)1236 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1237 size_t count)
1238 {
1239 unsigned long long time;
1240 ktime_t hr_time;
1241
1242 /* 120 seconds = maximum poll interval */
1243 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1244 time > 120000000000ULL)
1245 return -EINVAL;
1246 poll_timeout = time;
1247 hr_time = poll_timeout;
1248
1249 spin_lock_bh(&ap_poll_timer_lock);
1250 hrtimer_cancel(&ap_poll_timer);
1251 hrtimer_set_expires(&ap_poll_timer, hr_time);
1252 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1253 spin_unlock_bh(&ap_poll_timer_lock);
1254
1255 return count;
1256 }
1257
1258 static BUS_ATTR_RW(poll_timeout);
1259
ap_max_domain_id_show(struct bus_type * bus,char * buf)1260 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1261 {
1262 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id);
1263 }
1264
1265 static BUS_ATTR_RO(ap_max_domain_id);
1266
ap_max_adapter_id_show(struct bus_type * bus,char * buf)1267 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf)
1268 {
1269 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id);
1270 }
1271
1272 static BUS_ATTR_RO(ap_max_adapter_id);
1273
apmask_show(struct bus_type * bus,char * buf)1274 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1275 {
1276 int rc;
1277
1278 if (mutex_lock_interruptible(&ap_perms_mutex))
1279 return -ERESTARTSYS;
1280 rc = scnprintf(buf, PAGE_SIZE,
1281 "0x%016lx%016lx%016lx%016lx\n",
1282 ap_perms.apm[0], ap_perms.apm[1],
1283 ap_perms.apm[2], ap_perms.apm[3]);
1284 mutex_unlock(&ap_perms_mutex);
1285
1286 return rc;
1287 }
1288
apmask_store(struct bus_type * bus,const char * buf,size_t count)1289 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1290 size_t count)
1291 {
1292 int rc;
1293
1294 rc = ap_parse_mask_str(buf, ap_perms.apm, AP_DEVICES, &ap_perms_mutex);
1295 if (rc)
1296 return rc;
1297
1298 ap_bus_revise_bindings();
1299
1300 return count;
1301 }
1302
1303 static BUS_ATTR_RW(apmask);
1304
aqmask_show(struct bus_type * bus,char * buf)1305 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1306 {
1307 int rc;
1308
1309 if (mutex_lock_interruptible(&ap_perms_mutex))
1310 return -ERESTARTSYS;
1311 rc = scnprintf(buf, PAGE_SIZE,
1312 "0x%016lx%016lx%016lx%016lx\n",
1313 ap_perms.aqm[0], ap_perms.aqm[1],
1314 ap_perms.aqm[2], ap_perms.aqm[3]);
1315 mutex_unlock(&ap_perms_mutex);
1316
1317 return rc;
1318 }
1319
aqmask_store(struct bus_type * bus,const char * buf,size_t count)1320 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1321 size_t count)
1322 {
1323 int rc;
1324
1325 rc = ap_parse_mask_str(buf, ap_perms.aqm, AP_DOMAINS, &ap_perms_mutex);
1326 if (rc)
1327 return rc;
1328
1329 ap_bus_revise_bindings();
1330
1331 return count;
1332 }
1333
1334 static BUS_ATTR_RW(aqmask);
1335
scans_show(struct bus_type * bus,char * buf)1336 static ssize_t scans_show(struct bus_type *bus, char *buf)
1337 {
1338 return scnprintf(buf, PAGE_SIZE, "%llu\n",
1339 atomic64_read(&ap_scan_bus_count));
1340 }
1341
1342 static BUS_ATTR_RO(scans);
1343
bindings_show(struct bus_type * bus,char * buf)1344 static ssize_t bindings_show(struct bus_type *bus, char *buf)
1345 {
1346 int rc;
1347 unsigned int apqns, n;
1348
1349 ap_calc_bound_apqns(&apqns, &n);
1350 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1351 rc = scnprintf(buf, PAGE_SIZE, "%u/%u (complete)\n", n, apqns);
1352 else
1353 rc = scnprintf(buf, PAGE_SIZE, "%u/%u\n", n, apqns);
1354
1355 return rc;
1356 }
1357
1358 static BUS_ATTR_RO(bindings);
1359
1360 static struct attribute *ap_bus_attrs[] = {
1361 &bus_attr_ap_domain.attr,
1362 &bus_attr_ap_control_domain_mask.attr,
1363 &bus_attr_ap_usage_domain_mask.attr,
1364 &bus_attr_ap_adapter_mask.attr,
1365 &bus_attr_config_time.attr,
1366 &bus_attr_poll_thread.attr,
1367 &bus_attr_ap_interrupts.attr,
1368 &bus_attr_poll_timeout.attr,
1369 &bus_attr_ap_max_domain_id.attr,
1370 &bus_attr_ap_max_adapter_id.attr,
1371 &bus_attr_apmask.attr,
1372 &bus_attr_aqmask.attr,
1373 &bus_attr_scans.attr,
1374 &bus_attr_bindings.attr,
1375 NULL,
1376 };
1377 ATTRIBUTE_GROUPS(ap_bus);
1378
1379 static struct bus_type ap_bus_type = {
1380 .name = "ap",
1381 .bus_groups = ap_bus_groups,
1382 .match = &ap_bus_match,
1383 .uevent = &ap_uevent,
1384 .probe = ap_device_probe,
1385 .remove = ap_device_remove,
1386 };
1387
1388 /**
1389 * ap_select_domain(): Select an AP domain if possible and we haven't
1390 * already done so before.
1391 */
ap_select_domain(void)1392 static void ap_select_domain(void)
1393 {
1394 struct ap_queue_status status;
1395 int card, dom;
1396
1397 /*
1398 * Choose the default domain. Either the one specified with
1399 * the "domain=" parameter or the first domain with at least
1400 * one valid APQN.
1401 */
1402 spin_lock_bh(&ap_domain_lock);
1403 if (ap_domain_index >= 0) {
1404 /* Domain has already been selected. */
1405 goto out;
1406 }
1407 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1408 if (!ap_test_config_usage_domain(dom) ||
1409 !test_bit_inv(dom, ap_perms.aqm))
1410 continue;
1411 for (card = 0; card <= ap_max_adapter_id; card++) {
1412 if (!ap_test_config_card_id(card) ||
1413 !test_bit_inv(card, ap_perms.apm))
1414 continue;
1415 status = ap_test_queue(AP_MKQID(card, dom),
1416 ap_apft_available(),
1417 NULL);
1418 if (status.response_code == AP_RESPONSE_NORMAL)
1419 break;
1420 }
1421 if (card <= ap_max_adapter_id)
1422 break;
1423 }
1424 if (dom <= ap_max_domain_id) {
1425 ap_domain_index = dom;
1426 AP_DBF_INFO("%s new default domain is %d\n",
1427 __func__, ap_domain_index);
1428 }
1429 out:
1430 spin_unlock_bh(&ap_domain_lock);
1431 }
1432
1433 /*
1434 * This function checks the type and returns either 0 for not
1435 * supported or the highest compatible type value (which may
1436 * include the input type value).
1437 */
ap_get_compatible_type(ap_qid_t qid,int rawtype,unsigned int func)1438 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1439 {
1440 int comp_type = 0;
1441
1442 /* < CEX2A is not supported */
1443 if (rawtype < AP_DEVICE_TYPE_CEX2A) {
1444 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1445 __func__, AP_QID_CARD(qid),
1446 AP_QID_QUEUE(qid), rawtype);
1447 return 0;
1448 }
1449 /* up to CEX7 known and fully supported */
1450 if (rawtype <= AP_DEVICE_TYPE_CEX7)
1451 return rawtype;
1452 /*
1453 * unknown new type > CEX7, check for compatibility
1454 * to the highest known and supported type which is
1455 * currently CEX7 with the help of the QACT function.
1456 */
1457 if (ap_qact_available()) {
1458 struct ap_queue_status status;
1459 union ap_qact_ap_info apinfo = {0};
1460
1461 apinfo.mode = (func >> 26) & 0x07;
1462 apinfo.cat = AP_DEVICE_TYPE_CEX7;
1463 status = ap_qact(qid, 0, &apinfo);
1464 if (status.response_code == AP_RESPONSE_NORMAL
1465 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A
1466 && apinfo.cat <= AP_DEVICE_TYPE_CEX7)
1467 comp_type = apinfo.cat;
1468 }
1469 if (!comp_type)
1470 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1471 __func__, AP_QID_CARD(qid),
1472 AP_QID_QUEUE(qid), rawtype);
1473 else if (comp_type != rawtype)
1474 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1475 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1476 rawtype, comp_type);
1477 return comp_type;
1478 }
1479
1480 /*
1481 * Helper function to be used with bus_find_dev
1482 * matches for the card device with the given id
1483 */
__match_card_device_with_id(struct device * dev,const void * data)1484 static int __match_card_device_with_id(struct device *dev, const void *data)
1485 {
1486 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *) data;
1487 }
1488
1489 /*
1490 * Helper function to be used with bus_find_dev
1491 * matches for the queue device with a given qid
1492 */
__match_queue_device_with_qid(struct device * dev,const void * data)1493 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1494 {
1495 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data;
1496 }
1497
1498 /*
1499 * Helper function to be used with bus_find_dev
1500 * matches any queue device with given queue id
1501 */
__match_queue_device_with_queue_id(struct device * dev,const void * data)1502 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1503 {
1504 return is_queue_dev(dev)
1505 && AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long) data;
1506 }
1507
1508 /*
1509 * Helper function for ap_scan_bus().
1510 * Remove card device and associated queue devices.
1511 */
ap_scan_rm_card_dev_and_queue_devs(struct ap_card * ac)1512 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1513 {
1514 bus_for_each_dev(&ap_bus_type, NULL,
1515 (void *)(long) ac->id,
1516 __ap_queue_devices_with_id_unregister);
1517 device_unregister(&ac->ap_dev.device);
1518 }
1519
1520 /*
1521 * Helper function for ap_scan_bus().
1522 * Does the scan bus job for all the domains within
1523 * a valid adapter given by an ap_card ptr.
1524 */
ap_scan_domains(struct ap_card * ac)1525 static inline void ap_scan_domains(struct ap_card *ac)
1526 {
1527 bool decfg;
1528 ap_qid_t qid;
1529 unsigned int func;
1530 struct device *dev;
1531 struct ap_queue *aq;
1532 int rc, dom, depth, type, ml;
1533
1534 /*
1535 * Go through the configuration for the domains and compare them
1536 * to the existing queue devices. Also take care of the config
1537 * and error state for the queue devices.
1538 */
1539
1540 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1541 qid = AP_MKQID(ac->id, dom);
1542 dev = bus_find_device(&ap_bus_type, NULL,
1543 (void *)(long) qid,
1544 __match_queue_device_with_qid);
1545 aq = dev ? to_ap_queue(dev) : NULL;
1546 if (!ap_test_config_usage_domain(dom)) {
1547 if (dev) {
1548 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1549 __func__, ac->id, dom);
1550 device_unregister(dev);
1551 put_device(dev);
1552 }
1553 continue;
1554 }
1555 /* domain is valid, get info from this APQN */
1556 if (!ap_queue_info(qid, &type, &func, &depth, &ml, &decfg)) {
1557 if (aq) {
1558 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1559 __func__, ac->id, dom);
1560 device_unregister(dev);
1561 put_device(dev);
1562 }
1563 continue;
1564 }
1565 /* if no queue device exists, create a new one */
1566 if (!aq) {
1567 aq = ap_queue_create(qid, ac->ap_dev.device_type);
1568 if (!aq) {
1569 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1570 __func__, ac->id, dom);
1571 continue;
1572 }
1573 aq->card = ac;
1574 aq->config = !decfg;
1575 dev = &aq->ap_dev.device;
1576 dev->bus = &ap_bus_type;
1577 dev->parent = &ac->ap_dev.device;
1578 dev_set_name(dev, "%02x.%04x", ac->id, dom);
1579 /* register queue device */
1580 rc = device_register(dev);
1581 if (rc) {
1582 AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1583 __func__, ac->id, dom);
1584 goto put_dev_and_continue;
1585 }
1586 /* get it and thus adjust reference counter */
1587 get_device(dev);
1588 if (decfg)
1589 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1590 __func__, ac->id, dom);
1591 else
1592 AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1593 __func__, ac->id, dom);
1594 goto put_dev_and_continue;
1595 }
1596 /* Check config state on the already existing queue device */
1597 spin_lock_bh(&aq->lock);
1598 if (decfg && aq->config) {
1599 /* config off this queue device */
1600 aq->config = false;
1601 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1602 aq->dev_state = AP_DEV_STATE_ERROR;
1603 aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1604 }
1605 spin_unlock_bh(&aq->lock);
1606 AP_DBF_INFO("%s(%d,%d) queue dev config off\n",
1607 __func__, ac->id, dom);
1608 ap_send_config_uevent(&aq->ap_dev, aq->config);
1609 /* 'receive' pending messages with -EAGAIN */
1610 ap_flush_queue(aq);
1611 goto put_dev_and_continue;
1612 }
1613 if (!decfg && !aq->config) {
1614 /* config on this queue device */
1615 aq->config = true;
1616 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1617 aq->dev_state = AP_DEV_STATE_OPERATING;
1618 aq->sm_state = AP_SM_STATE_RESET_START;
1619 }
1620 spin_unlock_bh(&aq->lock);
1621 AP_DBF_INFO("%s(%d,%d) queue dev config on\n",
1622 __func__, ac->id, dom);
1623 ap_send_config_uevent(&aq->ap_dev, aq->config);
1624 goto put_dev_and_continue;
1625 }
1626 /* handle other error states */
1627 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1628 spin_unlock_bh(&aq->lock);
1629 /* 'receive' pending messages with -EAGAIN */
1630 ap_flush_queue(aq);
1631 /* re-init (with reset) the queue device */
1632 ap_queue_init_state(aq);
1633 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1634 __func__, ac->id, dom);
1635 goto put_dev_and_continue;
1636 }
1637 spin_unlock_bh(&aq->lock);
1638 put_dev_and_continue:
1639 put_device(dev);
1640 }
1641 }
1642
1643 /*
1644 * Helper function for ap_scan_bus().
1645 * Does the scan bus job for the given adapter id.
1646 */
ap_scan_adapter(int ap)1647 static inline void ap_scan_adapter(int ap)
1648 {
1649 bool decfg;
1650 ap_qid_t qid;
1651 unsigned int func;
1652 struct device *dev;
1653 struct ap_card *ac;
1654 int rc, dom, depth, type, comp_type, ml;
1655
1656 /* Is there currently a card device for this adapter ? */
1657 dev = bus_find_device(&ap_bus_type, NULL,
1658 (void *)(long) ap,
1659 __match_card_device_with_id);
1660 ac = dev ? to_ap_card(dev) : NULL;
1661
1662 /* Adapter not in configuration ? */
1663 if (!ap_test_config_card_id(ap)) {
1664 if (ac) {
1665 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1666 __func__, ap);
1667 ap_scan_rm_card_dev_and_queue_devs(ac);
1668 put_device(dev);
1669 }
1670 return;
1671 }
1672
1673 /*
1674 * Adapter ap is valid in the current configuration. So do some checks:
1675 * If no card device exists, build one. If a card device exists, check
1676 * for type and functions changed. For all this we need to find a valid
1677 * APQN first.
1678 */
1679
1680 for (dom = 0; dom <= ap_max_domain_id; dom++)
1681 if (ap_test_config_usage_domain(dom)) {
1682 qid = AP_MKQID(ap, dom);
1683 if (ap_queue_info(qid, &type, &func,
1684 &depth, &ml, &decfg))
1685 break;
1686 }
1687 if (dom > ap_max_domain_id) {
1688 /* Could not find a valid APQN for this adapter */
1689 if (ac) {
1690 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
1691 __func__, ap);
1692 ap_scan_rm_card_dev_and_queue_devs(ac);
1693 put_device(dev);
1694 } else {
1695 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
1696 __func__, ap);
1697 }
1698 return;
1699 }
1700 if (!type) {
1701 /* No apdater type info available, an unusable adapter */
1702 if (ac) {
1703 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
1704 __func__, ap);
1705 ap_scan_rm_card_dev_and_queue_devs(ac);
1706 put_device(dev);
1707 } else {
1708 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
1709 __func__, ap);
1710 }
1711 return;
1712 }
1713
1714 if (ac) {
1715 /* Check APQN against existing card device for changes */
1716 if (ac->raw_hwtype != type) {
1717 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
1718 __func__, ap, type);
1719 ap_scan_rm_card_dev_and_queue_devs(ac);
1720 put_device(dev);
1721 ac = NULL;
1722 } else if (ac->functions != func) {
1723 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
1724 __func__, ap, type);
1725 ap_scan_rm_card_dev_and_queue_devs(ac);
1726 put_device(dev);
1727 ac = NULL;
1728 } else {
1729 if (decfg && ac->config) {
1730 ac->config = false;
1731 AP_DBF_INFO("%s(%d) card dev config off\n",
1732 __func__, ap);
1733 ap_send_config_uevent(&ac->ap_dev, ac->config);
1734 }
1735 if (!decfg && !ac->config) {
1736 ac->config = true;
1737 AP_DBF_INFO("%s(%d) card dev config on\n",
1738 __func__, ap);
1739 ap_send_config_uevent(&ac->ap_dev, ac->config);
1740 }
1741 }
1742 }
1743
1744 if (!ac) {
1745 /* Build a new card device */
1746 comp_type = ap_get_compatible_type(qid, type, func);
1747 if (!comp_type) {
1748 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
1749 __func__, ap, type);
1750 return;
1751 }
1752 ac = ap_card_create(ap, depth, type, comp_type, func, ml);
1753 if (!ac) {
1754 AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
1755 __func__, ap);
1756 return;
1757 }
1758 ac->config = !decfg;
1759 dev = &ac->ap_dev.device;
1760 dev->bus = &ap_bus_type;
1761 dev->parent = ap_root_device;
1762 dev_set_name(dev, "card%02x", ap);
1763 /* maybe enlarge ap_max_msg_size to support this card */
1764 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
1765 atomic_set(&ap_max_msg_size, ac->maxmsgsize);
1766 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
1767 __func__, ap,
1768 atomic_read(&ap_max_msg_size));
1769 }
1770 /* Register the new card device with AP bus */
1771 rc = device_register(dev);
1772 if (rc) {
1773 AP_DBF_WARN("%s(%d) device_register() failed\n",
1774 __func__, ap);
1775 put_device(dev);
1776 return;
1777 }
1778 /* get it and thus adjust reference counter */
1779 get_device(dev);
1780 if (decfg)
1781 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
1782 __func__, ap, type, func);
1783 else
1784 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
1785 __func__, ap, type, func);
1786 }
1787
1788 /* Verify the domains and the queue devices for this card */
1789 ap_scan_domains(ac);
1790
1791 /* release the card device */
1792 put_device(&ac->ap_dev.device);
1793 }
1794
1795 /**
1796 * ap_scan_bus(): Scan the AP bus for new devices
1797 * Runs periodically, workqueue timer (ap_config_time)
1798 * @unused: Unused pointer.
1799 */
ap_scan_bus(struct work_struct * unused)1800 static void ap_scan_bus(struct work_struct *unused)
1801 {
1802 int ap;
1803
1804 ap_fetch_qci_info(ap_qci_info);
1805 ap_select_domain();
1806
1807 AP_DBF_DBG("%s running\n", __func__);
1808
1809 /* loop over all possible adapters */
1810 for (ap = 0; ap <= ap_max_adapter_id; ap++)
1811 ap_scan_adapter(ap);
1812
1813 /* check if there is at least one queue available with default domain */
1814 if (ap_domain_index >= 0) {
1815 struct device *dev =
1816 bus_find_device(&ap_bus_type, NULL,
1817 (void *)(long) ap_domain_index,
1818 __match_queue_device_with_queue_id);
1819 if (dev)
1820 put_device(dev);
1821 else
1822 AP_DBF_INFO("%s no queue device with default domain %d available\n",
1823 __func__, ap_domain_index);
1824 }
1825
1826 if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
1827 AP_DBF_DBG("%s init scan complete\n", __func__);
1828 ap_send_init_scan_done_uevent();
1829 ap_check_bindings_complete();
1830 }
1831
1832 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1833 }
1834
ap_config_timeout(struct timer_list * unused)1835 static void ap_config_timeout(struct timer_list *unused)
1836 {
1837 queue_work(system_long_wq, &ap_scan_work);
1838 }
1839
ap_debug_init(void)1840 static int __init ap_debug_init(void)
1841 {
1842 ap_dbf_info = debug_register("ap", 2, 1,
1843 DBF_MAX_SPRINTF_ARGS * sizeof(long));
1844 debug_register_view(ap_dbf_info, &debug_sprintf_view);
1845 debug_set_level(ap_dbf_info, DBF_ERR);
1846
1847 return 0;
1848 }
1849
ap_perms_init(void)1850 static void __init ap_perms_init(void)
1851 {
1852 /* all resources useable if no kernel parameter string given */
1853 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
1854 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
1855 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
1856
1857 /* apm kernel parameter string */
1858 if (apm_str) {
1859 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
1860 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
1861 &ap_perms_mutex);
1862 }
1863
1864 /* aqm kernel parameter string */
1865 if (aqm_str) {
1866 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
1867 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
1868 &ap_perms_mutex);
1869 }
1870 }
1871
1872 /**
1873 * ap_module_init(): The module initialization code.
1874 *
1875 * Initializes the module.
1876 */
ap_module_init(void)1877 static int __init ap_module_init(void)
1878 {
1879 int rc;
1880
1881 rc = ap_debug_init();
1882 if (rc)
1883 return rc;
1884
1885 if (!ap_instructions_available()) {
1886 pr_warn("The hardware system does not support AP instructions\n");
1887 return -ENODEV;
1888 }
1889
1890 /* init ap_queue hashtable */
1891 hash_init(ap_queues);
1892
1893 /* set up the AP permissions (ioctls, ap and aq masks) */
1894 ap_perms_init();
1895
1896 /* Get AP configuration data if available */
1897 ap_init_qci_info();
1898
1899 /* check default domain setting */
1900 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
1901 (ap_domain_index >= 0 &&
1902 !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
1903 pr_warn("%d is not a valid cryptographic domain\n",
1904 ap_domain_index);
1905 ap_domain_index = -1;
1906 }
1907
1908 /* enable interrupts if available */
1909 if (ap_interrupts_available() && ap_useirq) {
1910 rc = register_adapter_interrupt(&ap_airq);
1911 ap_irq_flag = (rc == 0);
1912 }
1913
1914 /* Create /sys/bus/ap. */
1915 rc = bus_register(&ap_bus_type);
1916 if (rc)
1917 goto out;
1918
1919 /* Create /sys/devices/ap. */
1920 ap_root_device = root_device_register("ap");
1921 rc = PTR_ERR_OR_ZERO(ap_root_device);
1922 if (rc)
1923 goto out_bus;
1924 ap_root_device->bus = &ap_bus_type;
1925
1926 /* Setup the AP bus rescan timer. */
1927 timer_setup(&ap_config_timer, ap_config_timeout, 0);
1928
1929 /*
1930 * Setup the high resultion poll timer.
1931 * If we are running under z/VM adjust polling to z/VM polling rate.
1932 */
1933 if (MACHINE_IS_VM)
1934 poll_timeout = 1500000;
1935 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1936 ap_poll_timer.function = ap_poll_timeout;
1937
1938 /* Start the low priority AP bus poll thread. */
1939 if (ap_thread_flag) {
1940 rc = ap_poll_thread_start();
1941 if (rc)
1942 goto out_work;
1943 }
1944
1945 queue_work(system_long_wq, &ap_scan_work);
1946
1947 return 0;
1948
1949 out_work:
1950 hrtimer_cancel(&ap_poll_timer);
1951 root_device_unregister(ap_root_device);
1952 out_bus:
1953 bus_unregister(&ap_bus_type);
1954 out:
1955 if (ap_irq_flag)
1956 unregister_adapter_interrupt(&ap_airq);
1957 kfree(ap_qci_info);
1958 return rc;
1959 }
1960 device_initcall(ap_module_init);
1961