1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Copyright (C) 2018 Macronix International Co., Ltd.
4 //
5 // Authors:
6 // Mason Yang <masonccyang@mxic.com.tw>
7 // zhengxunli <zhengxunli@mxic.com.tw>
8 // Boris Brezillon <boris.brezillon@bootlin.com>
9 //
10
11 #include <linux/clk.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/spi-mem.h>
19
20 #define HC_CFG 0x0
21 #define HC_CFG_IF_CFG(x) ((x) << 27)
22 #define HC_CFG_DUAL_SLAVE BIT(31)
23 #define HC_CFG_INDIVIDUAL BIT(30)
24 #define HC_CFG_NIO(x) (((x) / 4) << 27)
25 #define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
26 #define HC_CFG_TYPE_SPI_NOR 0
27 #define HC_CFG_TYPE_SPI_NAND 1
28 #define HC_CFG_TYPE_SPI_RAM 2
29 #define HC_CFG_TYPE_RAW_NAND 3
30 #define HC_CFG_SLV_ACT(x) ((x) << 21)
31 #define HC_CFG_CLK_PH_EN BIT(20)
32 #define HC_CFG_CLK_POL_INV BIT(19)
33 #define HC_CFG_BIG_ENDIAN BIT(18)
34 #define HC_CFG_DATA_PASS BIT(17)
35 #define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
36 #define HC_CFG_MAN_START_EN BIT(3)
37 #define HC_CFG_MAN_START BIT(2)
38 #define HC_CFG_MAN_CS_EN BIT(1)
39 #define HC_CFG_MAN_CS_ASSERT BIT(0)
40
41 #define INT_STS 0x4
42 #define INT_STS_EN 0x8
43 #define INT_SIG_EN 0xc
44 #define INT_STS_ALL GENMASK(31, 0)
45 #define INT_RDY_PIN BIT(26)
46 #define INT_RDY_SR BIT(25)
47 #define INT_LNR_SUSP BIT(24)
48 #define INT_ECC_ERR BIT(17)
49 #define INT_CRC_ERR BIT(16)
50 #define INT_LWR_DIS BIT(12)
51 #define INT_LRD_DIS BIT(11)
52 #define INT_SDMA_INT BIT(10)
53 #define INT_DMA_FINISH BIT(9)
54 #define INT_RX_NOT_FULL BIT(3)
55 #define INT_RX_NOT_EMPTY BIT(2)
56 #define INT_TX_NOT_FULL BIT(1)
57 #define INT_TX_EMPTY BIT(0)
58
59 #define HC_EN 0x10
60 #define HC_EN_BIT BIT(0)
61
62 #define TXD(x) (0x14 + ((x) * 4))
63 #define RXD 0x24
64
65 #define SS_CTRL(s) (0x30 + ((s) * 4))
66 #define LRD_CFG 0x44
67 #define LWR_CFG 0x80
68 #define RWW_CFG 0x70
69 #define OP_READ BIT(23)
70 #define OP_DUMMY_CYC(x) ((x) << 17)
71 #define OP_ADDR_BYTES(x) ((x) << 14)
72 #define OP_CMD_BYTES(x) (((x) - 1) << 13)
73 #define OP_OCTA_CRC_EN BIT(12)
74 #define OP_DQS_EN BIT(11)
75 #define OP_ENHC_EN BIT(10)
76 #define OP_PREAMBLE_EN BIT(9)
77 #define OP_DATA_DDR BIT(8)
78 #define OP_DATA_BUSW(x) ((x) << 6)
79 #define OP_ADDR_DDR BIT(5)
80 #define OP_ADDR_BUSW(x) ((x) << 3)
81 #define OP_CMD_DDR BIT(2)
82 #define OP_CMD_BUSW(x) (x)
83 #define OP_BUSW_1 0
84 #define OP_BUSW_2 1
85 #define OP_BUSW_4 2
86 #define OP_BUSW_8 3
87
88 #define OCTA_CRC 0x38
89 #define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
90 #define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
91 #define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
92
93 #define ONFI_DIN_CNT(s) (0x3c + (s))
94
95 #define LRD_CTRL 0x48
96 #define RWW_CTRL 0x74
97 #define LWR_CTRL 0x84
98 #define LMODE_EN BIT(31)
99 #define LMODE_SLV_ACT(x) ((x) << 21)
100 #define LMODE_CMD1(x) ((x) << 8)
101 #define LMODE_CMD0(x) (x)
102
103 #define LRD_ADDR 0x4c
104 #define LWR_ADDR 0x88
105 #define LRD_RANGE 0x50
106 #define LWR_RANGE 0x8c
107
108 #define AXI_SLV_ADDR 0x54
109
110 #define DMAC_RD_CFG 0x58
111 #define DMAC_WR_CFG 0x94
112 #define DMAC_CFG_PERIPH_EN BIT(31)
113 #define DMAC_CFG_ALLFLUSH_EN BIT(30)
114 #define DMAC_CFG_LASTFLUSH_EN BIT(29)
115 #define DMAC_CFG_QE(x) (((x) + 1) << 16)
116 #define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
117 #define DMAC_CFG_BURST_SZ(x) ((x) << 8)
118 #define DMAC_CFG_DIR_READ BIT(1)
119 #define DMAC_CFG_START BIT(0)
120
121 #define DMAC_RD_CNT 0x5c
122 #define DMAC_WR_CNT 0x98
123
124 #define SDMA_ADDR 0x60
125
126 #define DMAM_CFG 0x64
127 #define DMAM_CFG_START BIT(31)
128 #define DMAM_CFG_CONT BIT(30)
129 #define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
130 #define DMAM_CFG_DIR_READ BIT(1)
131 #define DMAM_CFG_EN BIT(0)
132
133 #define DMAM_CNT 0x68
134
135 #define LNR_TIMER_TH 0x6c
136
137 #define RDM_CFG0 0x78
138 #define RDM_CFG0_POLY(x) (x)
139
140 #define RDM_CFG1 0x7c
141 #define RDM_CFG1_RDM_EN BIT(31)
142 #define RDM_CFG1_SEED(x) (x)
143
144 #define LWR_SUSP_CTRL 0x90
145 #define LWR_SUSP_CTRL_EN BIT(31)
146
147 #define DMAS_CTRL 0x9c
148 #define DMAS_CTRL_EN BIT(31)
149 #define DMAS_CTRL_DIR_READ BIT(30)
150
151 #define DATA_STROB 0xa0
152 #define DATA_STROB_EDO_EN BIT(2)
153 #define DATA_STROB_INV_POL BIT(1)
154 #define DATA_STROB_DELAY_2CYC BIT(0)
155
156 #define IDLY_CODE(x) (0xa4 + ((x) * 4))
157 #define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
158
159 #define GPIO 0xc4
160 #define GPIO_PT(x) BIT(3 + ((x) * 16))
161 #define GPIO_RESET(x) BIT(2 + ((x) * 16))
162 #define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
163 #define GPIO_WPB(x) BIT((x) * 16)
164
165 #define HC_VER 0xd0
166
167 #define HW_TEST(x) (0xe0 + ((x) * 4))
168
169 struct mxic_spi {
170 struct clk *ps_clk;
171 struct clk *send_clk;
172 struct clk *send_dly_clk;
173 void __iomem *regs;
174 u32 cur_speed_hz;
175 };
176
mxic_spi_clk_enable(struct mxic_spi * mxic)177 static int mxic_spi_clk_enable(struct mxic_spi *mxic)
178 {
179 int ret;
180
181 ret = clk_prepare_enable(mxic->send_clk);
182 if (ret)
183 return ret;
184
185 ret = clk_prepare_enable(mxic->send_dly_clk);
186 if (ret)
187 goto err_send_dly_clk;
188
189 return ret;
190
191 err_send_dly_clk:
192 clk_disable_unprepare(mxic->send_clk);
193
194 return ret;
195 }
196
mxic_spi_clk_disable(struct mxic_spi * mxic)197 static void mxic_spi_clk_disable(struct mxic_spi *mxic)
198 {
199 clk_disable_unprepare(mxic->send_clk);
200 clk_disable_unprepare(mxic->send_dly_clk);
201 }
202
mxic_spi_set_input_delay_dqs(struct mxic_spi * mxic,u8 idly_code)203 static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code)
204 {
205 writel(IDLY_CODE_VAL(0, idly_code) |
206 IDLY_CODE_VAL(1, idly_code) |
207 IDLY_CODE_VAL(2, idly_code) |
208 IDLY_CODE_VAL(3, idly_code),
209 mxic->regs + IDLY_CODE(0));
210 writel(IDLY_CODE_VAL(4, idly_code) |
211 IDLY_CODE_VAL(5, idly_code) |
212 IDLY_CODE_VAL(6, idly_code) |
213 IDLY_CODE_VAL(7, idly_code),
214 mxic->regs + IDLY_CODE(1));
215 }
216
mxic_spi_clk_setup(struct mxic_spi * mxic,unsigned long freq)217 static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq)
218 {
219 int ret;
220
221 ret = clk_set_rate(mxic->send_clk, freq);
222 if (ret)
223 return ret;
224
225 ret = clk_set_rate(mxic->send_dly_clk, freq);
226 if (ret)
227 return ret;
228
229 /*
230 * A constant delay range from 0x0 ~ 0x1F for input delay,
231 * the unit is 78 ps, the max input delay is 2.418 ns.
232 */
233 mxic_spi_set_input_delay_dqs(mxic, 0xf);
234
235 /*
236 * Phase degree = 360 * freq * output-delay
237 * where output-delay is a constant value 1 ns in FPGA.
238 *
239 * Get Phase degree = 360 * freq * 1 ns
240 * = 360 * freq * 1 sec / 1000000000
241 * = 9 * freq / 25000000
242 */
243 ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000);
244 if (ret)
245 return ret;
246
247 return 0;
248 }
249
mxic_spi_set_freq(struct mxic_spi * mxic,unsigned long freq)250 static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq)
251 {
252 int ret;
253
254 if (mxic->cur_speed_hz == freq)
255 return 0;
256
257 mxic_spi_clk_disable(mxic);
258 ret = mxic_spi_clk_setup(mxic, freq);
259 if (ret)
260 return ret;
261
262 ret = mxic_spi_clk_enable(mxic);
263 if (ret)
264 return ret;
265
266 mxic->cur_speed_hz = freq;
267
268 return 0;
269 }
270
mxic_spi_hw_init(struct mxic_spi * mxic)271 static void mxic_spi_hw_init(struct mxic_spi *mxic)
272 {
273 writel(0, mxic->regs + DATA_STROB);
274 writel(INT_STS_ALL, mxic->regs + INT_STS_EN);
275 writel(0, mxic->regs + HC_EN);
276 writel(0, mxic->regs + LRD_CFG);
277 writel(0, mxic->regs + LRD_CTRL);
278 writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) |
279 HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1),
280 mxic->regs + HC_CFG);
281 }
282
mxic_spi_data_xfer(struct mxic_spi * mxic,const void * txbuf,void * rxbuf,unsigned int len)283 static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf,
284 void *rxbuf, unsigned int len)
285 {
286 unsigned int pos = 0;
287
288 while (pos < len) {
289 unsigned int nbytes = len - pos;
290 u32 data = 0xffffffff;
291 u32 sts;
292 int ret;
293
294 if (nbytes > 4)
295 nbytes = 4;
296
297 if (txbuf)
298 memcpy(&data, txbuf + pos, nbytes);
299
300 ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
301 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
302 if (ret)
303 return ret;
304
305 writel(data, mxic->regs + TXD(nbytes % 4));
306
307 if (rxbuf) {
308 ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
309 sts & INT_TX_EMPTY, 0,
310 USEC_PER_SEC);
311 if (ret)
312 return ret;
313
314 ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
315 sts & INT_RX_NOT_EMPTY, 0,
316 USEC_PER_SEC);
317 if (ret)
318 return ret;
319
320 data = readl(mxic->regs + RXD);
321 data >>= (8 * (4 - nbytes));
322 memcpy(rxbuf + pos, &data, nbytes);
323 WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
324 } else {
325 readl(mxic->regs + RXD);
326 }
327 WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
328
329 pos += nbytes;
330 }
331
332 return 0;
333 }
334
mxic_spi_mem_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)335 static bool mxic_spi_mem_supports_op(struct spi_mem *mem,
336 const struct spi_mem_op *op)
337 {
338 bool all_false;
339
340 if (op->data.buswidth > 8 || op->addr.buswidth > 8 ||
341 op->dummy.buswidth > 8 || op->cmd.buswidth > 8)
342 return false;
343
344 if (op->data.nbytes && op->dummy.nbytes &&
345 op->data.buswidth != op->dummy.buswidth)
346 return false;
347
348 if (op->addr.nbytes > 7)
349 return false;
350
351 all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
352 !op->data.dtr;
353
354 if (all_false)
355 return spi_mem_default_supports_op(mem, op);
356 else
357 return spi_mem_dtr_supports_op(mem, op);
358 }
359
mxic_spi_mem_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)360 static int mxic_spi_mem_exec_op(struct spi_mem *mem,
361 const struct spi_mem_op *op)
362 {
363 struct mxic_spi *mxic = spi_master_get_devdata(mem->spi->master);
364 int nio = 1, i, ret;
365 u32 ss_ctrl;
366 u8 addr[8], cmd[2];
367
368 ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz);
369 if (ret)
370 return ret;
371
372 if (mem->spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL))
373 nio = 8;
374 else if (mem->spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
375 nio = 4;
376 else if (mem->spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL))
377 nio = 2;
378
379 writel(HC_CFG_NIO(nio) |
380 HC_CFG_TYPE(mem->spi->chip_select, HC_CFG_TYPE_SPI_NOR) |
381 HC_CFG_SLV_ACT(mem->spi->chip_select) | HC_CFG_IDLE_SIO_LVL(1) |
382 HC_CFG_MAN_CS_EN,
383 mxic->regs + HC_CFG);
384 writel(HC_EN_BIT, mxic->regs + HC_EN);
385
386 ss_ctrl = OP_CMD_BYTES(op->cmd.nbytes) |
387 OP_CMD_BUSW(fls(op->cmd.buswidth) - 1) |
388 (op->cmd.dtr ? OP_CMD_DDR : 0);
389
390 if (op->addr.nbytes)
391 ss_ctrl |= OP_ADDR_BYTES(op->addr.nbytes) |
392 OP_ADDR_BUSW(fls(op->addr.buswidth) - 1) |
393 (op->addr.dtr ? OP_ADDR_DDR : 0);
394
395 if (op->dummy.nbytes)
396 ss_ctrl |= OP_DUMMY_CYC(op->dummy.nbytes);
397
398 if (op->data.nbytes) {
399 ss_ctrl |= OP_DATA_BUSW(fls(op->data.buswidth) - 1) |
400 (op->data.dtr ? OP_DATA_DDR : 0);
401 if (op->data.dir == SPI_MEM_DATA_IN) {
402 ss_ctrl |= OP_READ;
403 if (op->data.dtr)
404 ss_ctrl |= OP_DQS_EN;
405 }
406 }
407
408 writel(ss_ctrl, mxic->regs + SS_CTRL(mem->spi->chip_select));
409
410 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
411 mxic->regs + HC_CFG);
412
413 for (i = 0; i < op->cmd.nbytes; i++)
414 cmd[i] = op->cmd.opcode >> (8 * (op->cmd.nbytes - i - 1));
415
416 ret = mxic_spi_data_xfer(mxic, cmd, NULL, op->cmd.nbytes);
417 if (ret)
418 goto out;
419
420 for (i = 0; i < op->addr.nbytes; i++)
421 addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
422
423 ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes);
424 if (ret)
425 goto out;
426
427 ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes);
428 if (ret)
429 goto out;
430
431 ret = mxic_spi_data_xfer(mxic,
432 op->data.dir == SPI_MEM_DATA_OUT ?
433 op->data.buf.out : NULL,
434 op->data.dir == SPI_MEM_DATA_IN ?
435 op->data.buf.in : NULL,
436 op->data.nbytes);
437
438 out:
439 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
440 mxic->regs + HC_CFG);
441 writel(0, mxic->regs + HC_EN);
442
443 return ret;
444 }
445
446 static const struct spi_controller_mem_ops mxic_spi_mem_ops = {
447 .supports_op = mxic_spi_mem_supports_op,
448 .exec_op = mxic_spi_mem_exec_op,
449 };
450
mxic_spi_set_cs(struct spi_device * spi,bool lvl)451 static void mxic_spi_set_cs(struct spi_device *spi, bool lvl)
452 {
453 struct mxic_spi *mxic = spi_master_get_devdata(spi->master);
454
455 if (!lvl) {
456 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
457 mxic->regs + HC_CFG);
458 writel(HC_EN_BIT, mxic->regs + HC_EN);
459 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
460 mxic->regs + HC_CFG);
461 } else {
462 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
463 mxic->regs + HC_CFG);
464 writel(0, mxic->regs + HC_EN);
465 }
466 }
467
mxic_spi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * t)468 static int mxic_spi_transfer_one(struct spi_master *master,
469 struct spi_device *spi,
470 struct spi_transfer *t)
471 {
472 struct mxic_spi *mxic = spi_master_get_devdata(master);
473 unsigned int busw = OP_BUSW_1;
474 int ret;
475
476 if (t->rx_buf && t->tx_buf) {
477 if (((spi->mode & SPI_TX_QUAD) &&
478 !(spi->mode & SPI_RX_QUAD)) ||
479 ((spi->mode & SPI_TX_DUAL) &&
480 !(spi->mode & SPI_RX_DUAL)))
481 return -ENOTSUPP;
482 }
483
484 ret = mxic_spi_set_freq(mxic, t->speed_hz);
485 if (ret)
486 return ret;
487
488 if (t->tx_buf) {
489 if (spi->mode & SPI_TX_QUAD)
490 busw = OP_BUSW_4;
491 else if (spi->mode & SPI_TX_DUAL)
492 busw = OP_BUSW_2;
493 } else if (t->rx_buf) {
494 if (spi->mode & SPI_RX_QUAD)
495 busw = OP_BUSW_4;
496 else if (spi->mode & SPI_RX_DUAL)
497 busw = OP_BUSW_2;
498 }
499
500 writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) |
501 OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0),
502 mxic->regs + SS_CTRL(0));
503
504 ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len);
505 if (ret)
506 return ret;
507
508 spi_finalize_current_transfer(master);
509
510 return 0;
511 }
512
mxic_spi_runtime_suspend(struct device * dev)513 static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev)
514 {
515 struct spi_master *master = dev_get_drvdata(dev);
516 struct mxic_spi *mxic = spi_master_get_devdata(master);
517
518 mxic_spi_clk_disable(mxic);
519 clk_disable_unprepare(mxic->ps_clk);
520
521 return 0;
522 }
523
mxic_spi_runtime_resume(struct device * dev)524 static int __maybe_unused mxic_spi_runtime_resume(struct device *dev)
525 {
526 struct spi_master *master = dev_get_drvdata(dev);
527 struct mxic_spi *mxic = spi_master_get_devdata(master);
528 int ret;
529
530 ret = clk_prepare_enable(mxic->ps_clk);
531 if (ret) {
532 dev_err(dev, "Cannot enable ps_clock.\n");
533 return ret;
534 }
535
536 return mxic_spi_clk_enable(mxic);
537 }
538
539 static const struct dev_pm_ops mxic_spi_dev_pm_ops = {
540 SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend,
541 mxic_spi_runtime_resume, NULL)
542 };
543
mxic_spi_probe(struct platform_device * pdev)544 static int mxic_spi_probe(struct platform_device *pdev)
545 {
546 struct spi_master *master;
547 struct resource *res;
548 struct mxic_spi *mxic;
549 int ret;
550
551 master = devm_spi_alloc_master(&pdev->dev, sizeof(struct mxic_spi));
552 if (!master)
553 return -ENOMEM;
554
555 platform_set_drvdata(pdev, master);
556
557 mxic = spi_master_get_devdata(master);
558
559 master->dev.of_node = pdev->dev.of_node;
560
561 mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk");
562 if (IS_ERR(mxic->ps_clk))
563 return PTR_ERR(mxic->ps_clk);
564
565 mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk");
566 if (IS_ERR(mxic->send_clk))
567 return PTR_ERR(mxic->send_clk);
568
569 mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk");
570 if (IS_ERR(mxic->send_dly_clk))
571 return PTR_ERR(mxic->send_dly_clk);
572
573 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
574 mxic->regs = devm_ioremap_resource(&pdev->dev, res);
575 if (IS_ERR(mxic->regs))
576 return PTR_ERR(mxic->regs);
577
578 pm_runtime_enable(&pdev->dev);
579 master->auto_runtime_pm = true;
580
581 master->num_chipselect = 1;
582 master->mem_ops = &mxic_spi_mem_ops;
583
584 master->set_cs = mxic_spi_set_cs;
585 master->transfer_one = mxic_spi_transfer_one;
586 master->bits_per_word_mask = SPI_BPW_MASK(8);
587 master->mode_bits = SPI_CPOL | SPI_CPHA |
588 SPI_RX_DUAL | SPI_TX_DUAL |
589 SPI_RX_QUAD | SPI_TX_QUAD |
590 SPI_RX_OCTAL | SPI_TX_OCTAL;
591
592 mxic_spi_hw_init(mxic);
593
594 ret = spi_register_master(master);
595 if (ret) {
596 dev_err(&pdev->dev, "spi_register_master failed\n");
597 pm_runtime_disable(&pdev->dev);
598 }
599
600 return ret;
601 }
602
mxic_spi_remove(struct platform_device * pdev)603 static int mxic_spi_remove(struct platform_device *pdev)
604 {
605 struct spi_master *master = platform_get_drvdata(pdev);
606
607 pm_runtime_disable(&pdev->dev);
608 spi_unregister_master(master);
609
610 return 0;
611 }
612
613 static const struct of_device_id mxic_spi_of_ids[] = {
614 { .compatible = "mxicy,mx25f0a-spi", },
615 { /* sentinel */ }
616 };
617 MODULE_DEVICE_TABLE(of, mxic_spi_of_ids);
618
619 static struct platform_driver mxic_spi_driver = {
620 .probe = mxic_spi_probe,
621 .remove = mxic_spi_remove,
622 .driver = {
623 .name = "mxic-spi",
624 .of_match_table = mxic_spi_of_ids,
625 .pm = &mxic_spi_dev_pm_ops,
626 },
627 };
628 module_platform_driver(mxic_spi_driver);
629
630 MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
631 MODULE_DESCRIPTION("MX25F0A SPI controller driver");
632 MODULE_LICENSE("GPL v2");
633