1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "misc.h"
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "print-tree.h"
18 #include "compression.h"
19
20 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
21 sizeof(struct btrfs_item) * 2) / \
22 size) - 1))
23
24 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
25 PAGE_SIZE))
26
27 /**
28 * Set inode's size according to filesystem options
29 *
30 * @inode: inode we want to update the disk_i_size for
31 * @new_i_size: i_size we want to set to, 0 if we use i_size
32 *
33 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
34 * returns as it is perfectly fine with a file that has holes without hole file
35 * extent items.
36 *
37 * However without NO_HOLES we need to only return the area that is contiguous
38 * from the 0 offset of the file. Otherwise we could end up adjust i_size up
39 * to an extent that has a gap in between.
40 *
41 * Finally new_i_size should only be set in the case of truncate where we're not
42 * ready to use i_size_read() as the limiter yet.
43 */
btrfs_inode_safe_disk_i_size_write(struct btrfs_inode * inode,u64 new_i_size)44 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
45 {
46 struct btrfs_fs_info *fs_info = inode->root->fs_info;
47 u64 start, end, i_size;
48 int ret;
49
50 i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
51 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
52 inode->disk_i_size = i_size;
53 return;
54 }
55
56 spin_lock(&inode->lock);
57 ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
58 &end, EXTENT_DIRTY);
59 if (!ret && start == 0)
60 i_size = min(i_size, end + 1);
61 else
62 i_size = 0;
63 inode->disk_i_size = i_size;
64 spin_unlock(&inode->lock);
65 }
66
67 /**
68 * Mark range within a file as having a new extent inserted
69 *
70 * @inode: inode being modified
71 * @start: start file offset of the file extent we've inserted
72 * @len: logical length of the file extent item
73 *
74 * Call when we are inserting a new file extent where there was none before.
75 * Does not need to call this in the case where we're replacing an existing file
76 * extent, however if not sure it's fine to call this multiple times.
77 *
78 * The start and len must match the file extent item, so thus must be sectorsize
79 * aligned.
80 */
btrfs_inode_set_file_extent_range(struct btrfs_inode * inode,u64 start,u64 len)81 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
82 u64 len)
83 {
84 if (len == 0)
85 return 0;
86
87 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
88
89 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
90 return 0;
91 return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
92 EXTENT_DIRTY);
93 }
94
95 /**
96 * Marks an inode range as not having a backing extent
97 *
98 * @inode: inode being modified
99 * @start: start file offset of the file extent we've inserted
100 * @len: logical length of the file extent item
101 *
102 * Called when we drop a file extent, for example when we truncate. Doesn't
103 * need to be called for cases where we're replacing a file extent, like when
104 * we've COWed a file extent.
105 *
106 * The start and len must match the file extent item, so thus must be sectorsize
107 * aligned.
108 */
btrfs_inode_clear_file_extent_range(struct btrfs_inode * inode,u64 start,u64 len)109 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
110 u64 len)
111 {
112 if (len == 0)
113 return 0;
114
115 ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
116 len == (u64)-1);
117
118 if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
119 return 0;
120 return clear_extent_bit(&inode->file_extent_tree, start,
121 start + len - 1, EXTENT_DIRTY, 0, 0, NULL);
122 }
123
max_ordered_sum_bytes(struct btrfs_fs_info * fs_info,u16 csum_size)124 static inline u32 max_ordered_sum_bytes(struct btrfs_fs_info *fs_info,
125 u16 csum_size)
126 {
127 u32 ncsums = (PAGE_SIZE - sizeof(struct btrfs_ordered_sum)) / csum_size;
128
129 return ncsums * fs_info->sectorsize;
130 }
131
btrfs_insert_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid,u64 pos,u64 disk_offset,u64 disk_num_bytes,u64 num_bytes,u64 offset,u64 ram_bytes,u8 compression,u8 encryption,u16 other_encoding)132 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
133 struct btrfs_root *root,
134 u64 objectid, u64 pos,
135 u64 disk_offset, u64 disk_num_bytes,
136 u64 num_bytes, u64 offset, u64 ram_bytes,
137 u8 compression, u8 encryption, u16 other_encoding)
138 {
139 int ret = 0;
140 struct btrfs_file_extent_item *item;
141 struct btrfs_key file_key;
142 struct btrfs_path *path;
143 struct extent_buffer *leaf;
144
145 path = btrfs_alloc_path();
146 if (!path)
147 return -ENOMEM;
148 file_key.objectid = objectid;
149 file_key.offset = pos;
150 file_key.type = BTRFS_EXTENT_DATA_KEY;
151
152 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
153 sizeof(*item));
154 if (ret < 0)
155 goto out;
156 BUG_ON(ret); /* Can't happen */
157 leaf = path->nodes[0];
158 item = btrfs_item_ptr(leaf, path->slots[0],
159 struct btrfs_file_extent_item);
160 btrfs_set_file_extent_disk_bytenr(leaf, item, disk_offset);
161 btrfs_set_file_extent_disk_num_bytes(leaf, item, disk_num_bytes);
162 btrfs_set_file_extent_offset(leaf, item, offset);
163 btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
164 btrfs_set_file_extent_ram_bytes(leaf, item, ram_bytes);
165 btrfs_set_file_extent_generation(leaf, item, trans->transid);
166 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
167 btrfs_set_file_extent_compression(leaf, item, compression);
168 btrfs_set_file_extent_encryption(leaf, item, encryption);
169 btrfs_set_file_extent_other_encoding(leaf, item, other_encoding);
170
171 btrfs_mark_buffer_dirty(leaf);
172 out:
173 btrfs_free_path(path);
174 return ret;
175 }
176
177 static struct btrfs_csum_item *
btrfs_lookup_csum(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,int cow)178 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
179 struct btrfs_root *root,
180 struct btrfs_path *path,
181 u64 bytenr, int cow)
182 {
183 struct btrfs_fs_info *fs_info = root->fs_info;
184 int ret;
185 struct btrfs_key file_key;
186 struct btrfs_key found_key;
187 struct btrfs_csum_item *item;
188 struct extent_buffer *leaf;
189 u64 csum_offset = 0;
190 const u32 csum_size = fs_info->csum_size;
191 int csums_in_item;
192
193 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
194 file_key.offset = bytenr;
195 file_key.type = BTRFS_EXTENT_CSUM_KEY;
196 ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
197 if (ret < 0)
198 goto fail;
199 leaf = path->nodes[0];
200 if (ret > 0) {
201 ret = 1;
202 if (path->slots[0] == 0)
203 goto fail;
204 path->slots[0]--;
205 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
206 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
207 goto fail;
208
209 csum_offset = (bytenr - found_key.offset) >>
210 fs_info->sectorsize_bits;
211 csums_in_item = btrfs_item_size_nr(leaf, path->slots[0]);
212 csums_in_item /= csum_size;
213
214 if (csum_offset == csums_in_item) {
215 ret = -EFBIG;
216 goto fail;
217 } else if (csum_offset > csums_in_item) {
218 goto fail;
219 }
220 }
221 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
222 item = (struct btrfs_csum_item *)((unsigned char *)item +
223 csum_offset * csum_size);
224 return item;
225 fail:
226 if (ret > 0)
227 ret = -ENOENT;
228 return ERR_PTR(ret);
229 }
230
btrfs_lookup_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,int mod)231 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
232 struct btrfs_root *root,
233 struct btrfs_path *path, u64 objectid,
234 u64 offset, int mod)
235 {
236 struct btrfs_key file_key;
237 int ins_len = mod < 0 ? -1 : 0;
238 int cow = mod != 0;
239
240 file_key.objectid = objectid;
241 file_key.offset = offset;
242 file_key.type = BTRFS_EXTENT_DATA_KEY;
243
244 return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
245 }
246
247 /*
248 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
249 * estore the result to @dst.
250 *
251 * Return >0 for the number of sectors we found.
252 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
253 * for it. Caller may want to try next sector until one range is hit.
254 * Return <0 for fatal error.
255 */
search_csum_tree(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 disk_bytenr,u64 len,u8 * dst)256 static int search_csum_tree(struct btrfs_fs_info *fs_info,
257 struct btrfs_path *path, u64 disk_bytenr,
258 u64 len, u8 *dst)
259 {
260 struct btrfs_csum_item *item = NULL;
261 struct btrfs_key key;
262 const u32 sectorsize = fs_info->sectorsize;
263 const u32 csum_size = fs_info->csum_size;
264 u32 itemsize;
265 int ret;
266 u64 csum_start;
267 u64 csum_len;
268
269 ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
270 IS_ALIGNED(len, sectorsize));
271
272 /* Check if the current csum item covers disk_bytenr */
273 if (path->nodes[0]) {
274 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
275 struct btrfs_csum_item);
276 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
277 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
278
279 csum_start = key.offset;
280 csum_len = (itemsize / csum_size) * sectorsize;
281
282 if (in_range(disk_bytenr, csum_start, csum_len))
283 goto found;
284 }
285
286 /* Current item doesn't contain the desired range, search again */
287 btrfs_release_path(path);
288 item = btrfs_lookup_csum(NULL, fs_info->csum_root, path, disk_bytenr, 0);
289 if (IS_ERR(item)) {
290 ret = PTR_ERR(item);
291 goto out;
292 }
293 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
294 itemsize = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
295
296 csum_start = key.offset;
297 csum_len = (itemsize / csum_size) * sectorsize;
298 ASSERT(in_range(disk_bytenr, csum_start, csum_len));
299
300 found:
301 ret = (min(csum_start + csum_len, disk_bytenr + len) -
302 disk_bytenr) >> fs_info->sectorsize_bits;
303 read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
304 ret * csum_size);
305 out:
306 if (ret == -ENOENT)
307 ret = 0;
308 return ret;
309 }
310
311 /*
312 * Locate the file_offset of @cur_disk_bytenr of a @bio.
313 *
314 * Bio of btrfs represents read range of
315 * [bi_sector << 9, bi_sector << 9 + bi_size).
316 * Knowing this, we can iterate through each bvec to locate the page belong to
317 * @cur_disk_bytenr and get the file offset.
318 *
319 * @inode is used to determine if the bvec page really belongs to @inode.
320 *
321 * Return 0 if we can't find the file offset
322 * Return >0 if we find the file offset and restore it to @file_offset_ret
323 */
search_file_offset_in_bio(struct bio * bio,struct inode * inode,u64 disk_bytenr,u64 * file_offset_ret)324 static int search_file_offset_in_bio(struct bio *bio, struct inode *inode,
325 u64 disk_bytenr, u64 *file_offset_ret)
326 {
327 struct bvec_iter iter;
328 struct bio_vec bvec;
329 u64 cur = bio->bi_iter.bi_sector << SECTOR_SHIFT;
330 int ret = 0;
331
332 bio_for_each_segment(bvec, bio, iter) {
333 struct page *page = bvec.bv_page;
334
335 if (cur > disk_bytenr)
336 break;
337 if (cur + bvec.bv_len <= disk_bytenr) {
338 cur += bvec.bv_len;
339 continue;
340 }
341 ASSERT(in_range(disk_bytenr, cur, bvec.bv_len));
342 if (page->mapping && page->mapping->host &&
343 page->mapping->host == inode) {
344 ret = 1;
345 *file_offset_ret = page_offset(page) + bvec.bv_offset +
346 disk_bytenr - cur;
347 break;
348 }
349 }
350 return ret;
351 }
352
353 /**
354 * Lookup the checksum for the read bio in csum tree.
355 *
356 * @inode: inode that the bio is for.
357 * @bio: bio to look up.
358 * @dst: Buffer of size nblocks * btrfs_super_csum_size() used to return
359 * checksum (nblocks = bio->bi_iter.bi_size / fs_info->sectorsize). If
360 * NULL, the checksum buffer is allocated and returned in
361 * btrfs_bio(bio)->csum instead.
362 *
363 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
364 */
btrfs_lookup_bio_sums(struct inode * inode,struct bio * bio,u8 * dst)365 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst)
366 {
367 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
368 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
369 struct btrfs_path *path;
370 const u32 sectorsize = fs_info->sectorsize;
371 const u32 csum_size = fs_info->csum_size;
372 u32 orig_len = bio->bi_iter.bi_size;
373 u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
374 u64 cur_disk_bytenr;
375 u8 *csum;
376 const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
377 int count = 0;
378
379 if (!fs_info->csum_root || (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
380 return BLK_STS_OK;
381
382 /*
383 * This function is only called for read bio.
384 *
385 * This means two things:
386 * - All our csums should only be in csum tree
387 * No ordered extents csums, as ordered extents are only for write
388 * path.
389 * - No need to bother any other info from bvec
390 * Since we're looking up csums, the only important info is the
391 * disk_bytenr and the length, which can be extracted from bi_iter
392 * directly.
393 */
394 ASSERT(bio_op(bio) == REQ_OP_READ);
395 path = btrfs_alloc_path();
396 if (!path)
397 return BLK_STS_RESOURCE;
398
399 if (!dst) {
400 struct btrfs_bio *bbio = btrfs_bio(bio);
401
402 if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
403 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
404 if (!bbio->csum) {
405 btrfs_free_path(path);
406 return BLK_STS_RESOURCE;
407 }
408 } else {
409 bbio->csum = bbio->csum_inline;
410 }
411 csum = bbio->csum;
412 } else {
413 csum = dst;
414 }
415
416 /*
417 * If requested number of sectors is larger than one leaf can contain,
418 * kick the readahead for csum tree.
419 */
420 if (nblocks > fs_info->csums_per_leaf)
421 path->reada = READA_FORWARD;
422
423 /*
424 * the free space stuff is only read when it hasn't been
425 * updated in the current transaction. So, we can safely
426 * read from the commit root and sidestep a nasty deadlock
427 * between reading the free space cache and updating the csum tree.
428 */
429 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
430 path->search_commit_root = 1;
431 path->skip_locking = 1;
432 }
433
434 for (cur_disk_bytenr = orig_disk_bytenr;
435 cur_disk_bytenr < orig_disk_bytenr + orig_len;
436 cur_disk_bytenr += (count * sectorsize)) {
437 u64 search_len = orig_disk_bytenr + orig_len - cur_disk_bytenr;
438 unsigned int sector_offset;
439 u8 *csum_dst;
440
441 /*
442 * Although both cur_disk_bytenr and orig_disk_bytenr is u64,
443 * we're calculating the offset to the bio start.
444 *
445 * Bio size is limited to UINT_MAX, thus unsigned int is large
446 * enough to contain the raw result, not to mention the right
447 * shifted result.
448 */
449 ASSERT(cur_disk_bytenr - orig_disk_bytenr < UINT_MAX);
450 sector_offset = (cur_disk_bytenr - orig_disk_bytenr) >>
451 fs_info->sectorsize_bits;
452 csum_dst = csum + sector_offset * csum_size;
453
454 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
455 search_len, csum_dst);
456 if (count <= 0) {
457 /*
458 * Either we hit a critical error or we didn't find
459 * the csum.
460 * Either way, we put zero into the csums dst, and skip
461 * to the next sector.
462 */
463 memset(csum_dst, 0, csum_size);
464 count = 1;
465
466 /*
467 * For data reloc inode, we need to mark the range
468 * NODATASUM so that balance won't report false csum
469 * error.
470 */
471 if (BTRFS_I(inode)->root->root_key.objectid ==
472 BTRFS_DATA_RELOC_TREE_OBJECTID) {
473 u64 file_offset;
474 int ret;
475
476 ret = search_file_offset_in_bio(bio, inode,
477 cur_disk_bytenr, &file_offset);
478 if (ret)
479 set_extent_bits(io_tree, file_offset,
480 file_offset + sectorsize - 1,
481 EXTENT_NODATASUM);
482 } else {
483 btrfs_warn_rl(fs_info,
484 "csum hole found for disk bytenr range [%llu, %llu)",
485 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
486 }
487 }
488 }
489
490 btrfs_free_path(path);
491 return BLK_STS_OK;
492 }
493
btrfs_lookup_csums_range(struct btrfs_root * root,u64 start,u64 end,struct list_head * list,int search_commit)494 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
495 struct list_head *list, int search_commit)
496 {
497 struct btrfs_fs_info *fs_info = root->fs_info;
498 struct btrfs_key key;
499 struct btrfs_path *path;
500 struct extent_buffer *leaf;
501 struct btrfs_ordered_sum *sums;
502 struct btrfs_csum_item *item;
503 LIST_HEAD(tmplist);
504 unsigned long offset;
505 int ret;
506 size_t size;
507 u64 csum_end;
508 const u32 csum_size = fs_info->csum_size;
509
510 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
511 IS_ALIGNED(end + 1, fs_info->sectorsize));
512
513 path = btrfs_alloc_path();
514 if (!path)
515 return -ENOMEM;
516
517 if (search_commit) {
518 path->skip_locking = 1;
519 path->reada = READA_FORWARD;
520 path->search_commit_root = 1;
521 }
522
523 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
524 key.offset = start;
525 key.type = BTRFS_EXTENT_CSUM_KEY;
526
527 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
528 if (ret < 0)
529 goto fail;
530 if (ret > 0 && path->slots[0] > 0) {
531 leaf = path->nodes[0];
532 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
533 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
534 key.type == BTRFS_EXTENT_CSUM_KEY) {
535 offset = (start - key.offset) >> fs_info->sectorsize_bits;
536 if (offset * csum_size <
537 btrfs_item_size_nr(leaf, path->slots[0] - 1))
538 path->slots[0]--;
539 }
540 }
541
542 while (start <= end) {
543 leaf = path->nodes[0];
544 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
545 ret = btrfs_next_leaf(root, path);
546 if (ret < 0)
547 goto fail;
548 if (ret > 0)
549 break;
550 leaf = path->nodes[0];
551 }
552
553 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
554 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
555 key.type != BTRFS_EXTENT_CSUM_KEY ||
556 key.offset > end)
557 break;
558
559 if (key.offset > start)
560 start = key.offset;
561
562 size = btrfs_item_size_nr(leaf, path->slots[0]);
563 csum_end = key.offset + (size / csum_size) * fs_info->sectorsize;
564 if (csum_end <= start) {
565 path->slots[0]++;
566 continue;
567 }
568
569 csum_end = min(csum_end, end + 1);
570 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
571 struct btrfs_csum_item);
572 while (start < csum_end) {
573 size = min_t(size_t, csum_end - start,
574 max_ordered_sum_bytes(fs_info, csum_size));
575 sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
576 GFP_NOFS);
577 if (!sums) {
578 ret = -ENOMEM;
579 goto fail;
580 }
581
582 sums->bytenr = start;
583 sums->len = (int)size;
584
585 offset = (start - key.offset) >> fs_info->sectorsize_bits;
586 offset *= csum_size;
587 size >>= fs_info->sectorsize_bits;
588
589 read_extent_buffer(path->nodes[0],
590 sums->sums,
591 ((unsigned long)item) + offset,
592 csum_size * size);
593
594 start += fs_info->sectorsize * size;
595 list_add_tail(&sums->list, &tmplist);
596 }
597 path->slots[0]++;
598 }
599 ret = 0;
600 fail:
601 while (ret < 0 && !list_empty(&tmplist)) {
602 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
603 list_del(&sums->list);
604 kfree(sums);
605 }
606 list_splice_tail(&tmplist, list);
607
608 btrfs_free_path(path);
609 return ret;
610 }
611
612 /*
613 * btrfs_csum_one_bio - Calculates checksums of the data contained inside a bio
614 * @inode: Owner of the data inside the bio
615 * @bio: Contains the data to be checksummed
616 * @file_start: offset in file this bio begins to describe
617 * @contig: Boolean. If true/1 means all bio vecs in this bio are
618 * contiguous and they begin at @file_start in the file. False/0
619 * means this bio can contain potentially discontiguous bio vecs
620 * so the logical offset of each should be calculated separately.
621 */
btrfs_csum_one_bio(struct btrfs_inode * inode,struct bio * bio,u64 file_start,int contig)622 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
623 u64 file_start, int contig)
624 {
625 struct btrfs_fs_info *fs_info = inode->root->fs_info;
626 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
627 struct btrfs_ordered_sum *sums;
628 struct btrfs_ordered_extent *ordered = NULL;
629 char *data;
630 struct bvec_iter iter;
631 struct bio_vec bvec;
632 int index;
633 int nr_sectors;
634 unsigned long total_bytes = 0;
635 unsigned long this_sum_bytes = 0;
636 int i;
637 u64 offset;
638 unsigned nofs_flag;
639
640 nofs_flag = memalloc_nofs_save();
641 sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
642 GFP_KERNEL);
643 memalloc_nofs_restore(nofs_flag);
644
645 if (!sums)
646 return BLK_STS_RESOURCE;
647
648 sums->len = bio->bi_iter.bi_size;
649 INIT_LIST_HEAD(&sums->list);
650
651 if (contig)
652 offset = file_start;
653 else
654 offset = 0; /* shut up gcc */
655
656 sums->bytenr = bio->bi_iter.bi_sector << 9;
657 index = 0;
658
659 shash->tfm = fs_info->csum_shash;
660
661 bio_for_each_segment(bvec, bio, iter) {
662 if (!contig)
663 offset = page_offset(bvec.bv_page) + bvec.bv_offset;
664
665 if (!ordered) {
666 ordered = btrfs_lookup_ordered_extent(inode, offset);
667 /*
668 * The bio range is not covered by any ordered extent,
669 * must be a code logic error.
670 */
671 if (unlikely(!ordered)) {
672 WARN(1, KERN_WARNING
673 "no ordered extent for root %llu ino %llu offset %llu\n",
674 inode->root->root_key.objectid,
675 btrfs_ino(inode), offset);
676 kvfree(sums);
677 return BLK_STS_IOERR;
678 }
679 }
680
681 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info,
682 bvec.bv_len + fs_info->sectorsize
683 - 1);
684
685 for (i = 0; i < nr_sectors; i++) {
686 if (offset >= ordered->file_offset + ordered->num_bytes ||
687 offset < ordered->file_offset) {
688 unsigned long bytes_left;
689
690 sums->len = this_sum_bytes;
691 this_sum_bytes = 0;
692 btrfs_add_ordered_sum(ordered, sums);
693 btrfs_put_ordered_extent(ordered);
694
695 bytes_left = bio->bi_iter.bi_size - total_bytes;
696
697 nofs_flag = memalloc_nofs_save();
698 sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
699 bytes_left), GFP_KERNEL);
700 memalloc_nofs_restore(nofs_flag);
701 BUG_ON(!sums); /* -ENOMEM */
702 sums->len = bytes_left;
703 ordered = btrfs_lookup_ordered_extent(inode,
704 offset);
705 ASSERT(ordered); /* Logic error */
706 sums->bytenr = (bio->bi_iter.bi_sector << 9)
707 + total_bytes;
708 index = 0;
709 }
710
711 data = bvec_kmap_local(&bvec);
712 crypto_shash_digest(shash,
713 data + (i * fs_info->sectorsize),
714 fs_info->sectorsize,
715 sums->sums + index);
716 kunmap_local(data);
717 index += fs_info->csum_size;
718 offset += fs_info->sectorsize;
719 this_sum_bytes += fs_info->sectorsize;
720 total_bytes += fs_info->sectorsize;
721 }
722
723 }
724 this_sum_bytes = 0;
725 btrfs_add_ordered_sum(ordered, sums);
726 btrfs_put_ordered_extent(ordered);
727 return 0;
728 }
729
730 /*
731 * helper function for csum removal, this expects the
732 * key to describe the csum pointed to by the path, and it expects
733 * the csum to overlap the range [bytenr, len]
734 *
735 * The csum should not be entirely contained in the range and the
736 * range should not be entirely contained in the csum.
737 *
738 * This calls btrfs_truncate_item with the correct args based on the
739 * overlap, and fixes up the key as required.
740 */
truncate_one_csum(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key,u64 bytenr,u64 len)741 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
742 struct btrfs_path *path,
743 struct btrfs_key *key,
744 u64 bytenr, u64 len)
745 {
746 struct extent_buffer *leaf;
747 const u32 csum_size = fs_info->csum_size;
748 u64 csum_end;
749 u64 end_byte = bytenr + len;
750 u32 blocksize_bits = fs_info->sectorsize_bits;
751
752 leaf = path->nodes[0];
753 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
754 csum_end <<= blocksize_bits;
755 csum_end += key->offset;
756
757 if (key->offset < bytenr && csum_end <= end_byte) {
758 /*
759 * [ bytenr - len ]
760 * [ ]
761 * [csum ]
762 * A simple truncate off the end of the item
763 */
764 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
765 new_size *= csum_size;
766 btrfs_truncate_item(path, new_size, 1);
767 } else if (key->offset >= bytenr && csum_end > end_byte &&
768 end_byte > key->offset) {
769 /*
770 * [ bytenr - len ]
771 * [ ]
772 * [csum ]
773 * we need to truncate from the beginning of the csum
774 */
775 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
776 new_size *= csum_size;
777
778 btrfs_truncate_item(path, new_size, 0);
779
780 key->offset = end_byte;
781 btrfs_set_item_key_safe(fs_info, path, key);
782 } else {
783 BUG();
784 }
785 }
786
787 /*
788 * deletes the csum items from the csum tree for a given
789 * range of bytes.
790 */
btrfs_del_csums(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 len)791 int btrfs_del_csums(struct btrfs_trans_handle *trans,
792 struct btrfs_root *root, u64 bytenr, u64 len)
793 {
794 struct btrfs_fs_info *fs_info = trans->fs_info;
795 struct btrfs_path *path;
796 struct btrfs_key key;
797 u64 end_byte = bytenr + len;
798 u64 csum_end;
799 struct extent_buffer *leaf;
800 int ret = 0;
801 const u32 csum_size = fs_info->csum_size;
802 u32 blocksize_bits = fs_info->sectorsize_bits;
803
804 ASSERT(root == fs_info->csum_root ||
805 root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
806
807 path = btrfs_alloc_path();
808 if (!path)
809 return -ENOMEM;
810
811 while (1) {
812 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
813 key.offset = end_byte - 1;
814 key.type = BTRFS_EXTENT_CSUM_KEY;
815
816 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
817 if (ret > 0) {
818 ret = 0;
819 if (path->slots[0] == 0)
820 break;
821 path->slots[0]--;
822 } else if (ret < 0) {
823 break;
824 }
825
826 leaf = path->nodes[0];
827 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
828
829 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
830 key.type != BTRFS_EXTENT_CSUM_KEY) {
831 break;
832 }
833
834 if (key.offset >= end_byte)
835 break;
836
837 csum_end = btrfs_item_size_nr(leaf, path->slots[0]) / csum_size;
838 csum_end <<= blocksize_bits;
839 csum_end += key.offset;
840
841 /* this csum ends before we start, we're done */
842 if (csum_end <= bytenr)
843 break;
844
845 /* delete the entire item, it is inside our range */
846 if (key.offset >= bytenr && csum_end <= end_byte) {
847 int del_nr = 1;
848
849 /*
850 * Check how many csum items preceding this one in this
851 * leaf correspond to our range and then delete them all
852 * at once.
853 */
854 if (key.offset > bytenr && path->slots[0] > 0) {
855 int slot = path->slots[0] - 1;
856
857 while (slot >= 0) {
858 struct btrfs_key pk;
859
860 btrfs_item_key_to_cpu(leaf, &pk, slot);
861 if (pk.offset < bytenr ||
862 pk.type != BTRFS_EXTENT_CSUM_KEY ||
863 pk.objectid !=
864 BTRFS_EXTENT_CSUM_OBJECTID)
865 break;
866 path->slots[0] = slot;
867 del_nr++;
868 key.offset = pk.offset;
869 slot--;
870 }
871 }
872 ret = btrfs_del_items(trans, root, path,
873 path->slots[0], del_nr);
874 if (ret)
875 break;
876 if (key.offset == bytenr)
877 break;
878 } else if (key.offset < bytenr && csum_end > end_byte) {
879 unsigned long offset;
880 unsigned long shift_len;
881 unsigned long item_offset;
882 /*
883 * [ bytenr - len ]
884 * [csum ]
885 *
886 * Our bytes are in the middle of the csum,
887 * we need to split this item and insert a new one.
888 *
889 * But we can't drop the path because the
890 * csum could change, get removed, extended etc.
891 *
892 * The trick here is the max size of a csum item leaves
893 * enough room in the tree block for a single
894 * item header. So, we split the item in place,
895 * adding a new header pointing to the existing
896 * bytes. Then we loop around again and we have
897 * a nicely formed csum item that we can neatly
898 * truncate.
899 */
900 offset = (bytenr - key.offset) >> blocksize_bits;
901 offset *= csum_size;
902
903 shift_len = (len >> blocksize_bits) * csum_size;
904
905 item_offset = btrfs_item_ptr_offset(leaf,
906 path->slots[0]);
907
908 memzero_extent_buffer(leaf, item_offset + offset,
909 shift_len);
910 key.offset = bytenr;
911
912 /*
913 * btrfs_split_item returns -EAGAIN when the
914 * item changed size or key
915 */
916 ret = btrfs_split_item(trans, root, path, &key, offset);
917 if (ret && ret != -EAGAIN) {
918 btrfs_abort_transaction(trans, ret);
919 break;
920 }
921 ret = 0;
922
923 key.offset = end_byte - 1;
924 } else {
925 truncate_one_csum(fs_info, path, &key, bytenr, len);
926 if (key.offset < bytenr)
927 break;
928 }
929 btrfs_release_path(path);
930 }
931 btrfs_free_path(path);
932 return ret;
933 }
934
find_next_csum_offset(struct btrfs_root * root,struct btrfs_path * path,u64 * next_offset)935 static int find_next_csum_offset(struct btrfs_root *root,
936 struct btrfs_path *path,
937 u64 *next_offset)
938 {
939 const u32 nritems = btrfs_header_nritems(path->nodes[0]);
940 struct btrfs_key found_key;
941 int slot = path->slots[0] + 1;
942 int ret;
943
944 if (nritems == 0 || slot >= nritems) {
945 ret = btrfs_next_leaf(root, path);
946 if (ret < 0) {
947 return ret;
948 } else if (ret > 0) {
949 *next_offset = (u64)-1;
950 return 0;
951 }
952 slot = path->slots[0];
953 }
954
955 btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
956
957 if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
958 found_key.type != BTRFS_EXTENT_CSUM_KEY)
959 *next_offset = (u64)-1;
960 else
961 *next_offset = found_key.offset;
962
963 return 0;
964 }
965
btrfs_csum_file_blocks(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_ordered_sum * sums)966 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
967 struct btrfs_root *root,
968 struct btrfs_ordered_sum *sums)
969 {
970 struct btrfs_fs_info *fs_info = root->fs_info;
971 struct btrfs_key file_key;
972 struct btrfs_key found_key;
973 struct btrfs_path *path;
974 struct btrfs_csum_item *item;
975 struct btrfs_csum_item *item_end;
976 struct extent_buffer *leaf = NULL;
977 u64 next_offset;
978 u64 total_bytes = 0;
979 u64 csum_offset;
980 u64 bytenr;
981 u32 ins_size;
982 int index = 0;
983 int found_next;
984 int ret;
985 const u32 csum_size = fs_info->csum_size;
986
987 path = btrfs_alloc_path();
988 if (!path)
989 return -ENOMEM;
990 again:
991 next_offset = (u64)-1;
992 found_next = 0;
993 bytenr = sums->bytenr + total_bytes;
994 file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
995 file_key.offset = bytenr;
996 file_key.type = BTRFS_EXTENT_CSUM_KEY;
997
998 item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
999 if (!IS_ERR(item)) {
1000 ret = 0;
1001 leaf = path->nodes[0];
1002 item_end = btrfs_item_ptr(leaf, path->slots[0],
1003 struct btrfs_csum_item);
1004 item_end = (struct btrfs_csum_item *)((char *)item_end +
1005 btrfs_item_size_nr(leaf, path->slots[0]));
1006 goto found;
1007 }
1008 ret = PTR_ERR(item);
1009 if (ret != -EFBIG && ret != -ENOENT)
1010 goto out;
1011
1012 if (ret == -EFBIG) {
1013 u32 item_size;
1014 /* we found one, but it isn't big enough yet */
1015 leaf = path->nodes[0];
1016 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1017 if ((item_size / csum_size) >=
1018 MAX_CSUM_ITEMS(fs_info, csum_size)) {
1019 /* already at max size, make a new one */
1020 goto insert;
1021 }
1022 } else {
1023 /* We didn't find a csum item, insert one. */
1024 ret = find_next_csum_offset(root, path, &next_offset);
1025 if (ret < 0)
1026 goto out;
1027 found_next = 1;
1028 goto insert;
1029 }
1030
1031 /*
1032 * At this point, we know the tree has a checksum item that ends at an
1033 * offset matching the start of the checksum range we want to insert.
1034 * We try to extend that item as much as possible and then add as many
1035 * checksums to it as they fit.
1036 *
1037 * First check if the leaf has enough free space for at least one
1038 * checksum. If it has go directly to the item extension code, otherwise
1039 * release the path and do a search for insertion before the extension.
1040 */
1041 if (btrfs_leaf_free_space(leaf) >= csum_size) {
1042 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1043 csum_offset = (bytenr - found_key.offset) >>
1044 fs_info->sectorsize_bits;
1045 goto extend_csum;
1046 }
1047
1048 btrfs_release_path(path);
1049 path->search_for_extension = 1;
1050 ret = btrfs_search_slot(trans, root, &file_key, path,
1051 csum_size, 1);
1052 path->search_for_extension = 0;
1053 if (ret < 0)
1054 goto out;
1055
1056 if (ret > 0) {
1057 if (path->slots[0] == 0)
1058 goto insert;
1059 path->slots[0]--;
1060 }
1061
1062 leaf = path->nodes[0];
1063 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1064 csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1065
1066 if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1067 found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1068 csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1069 goto insert;
1070 }
1071
1072 extend_csum:
1073 if (csum_offset == btrfs_item_size_nr(leaf, path->slots[0]) /
1074 csum_size) {
1075 int extend_nr;
1076 u64 tmp;
1077 u32 diff;
1078
1079 tmp = sums->len - total_bytes;
1080 tmp >>= fs_info->sectorsize_bits;
1081 WARN_ON(tmp < 1);
1082 extend_nr = max_t(int, 1, tmp);
1083
1084 /*
1085 * A log tree can already have checksum items with a subset of
1086 * the checksums we are trying to log. This can happen after
1087 * doing a sequence of partial writes into prealloc extents and
1088 * fsyncs in between, with a full fsync logging a larger subrange
1089 * of an extent for which a previous fast fsync logged a smaller
1090 * subrange. And this happens in particular due to merging file
1091 * extent items when we complete an ordered extent for a range
1092 * covered by a prealloc extent - this is done at
1093 * btrfs_mark_extent_written().
1094 *
1095 * So if we try to extend the previous checksum item, which has
1096 * a range that ends at the start of the range we want to insert,
1097 * make sure we don't extend beyond the start offset of the next
1098 * checksum item. If we are at the last item in the leaf, then
1099 * forget the optimization of extending and add a new checksum
1100 * item - it is not worth the complexity of releasing the path,
1101 * getting the first key for the next leaf, repeat the btree
1102 * search, etc, because log trees are temporary anyway and it
1103 * would only save a few bytes of leaf space.
1104 */
1105 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1106 if (path->slots[0] + 1 >=
1107 btrfs_header_nritems(path->nodes[0])) {
1108 ret = find_next_csum_offset(root, path, &next_offset);
1109 if (ret < 0)
1110 goto out;
1111 found_next = 1;
1112 goto insert;
1113 }
1114
1115 ret = find_next_csum_offset(root, path, &next_offset);
1116 if (ret < 0)
1117 goto out;
1118
1119 tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1120 if (tmp <= INT_MAX)
1121 extend_nr = min_t(int, extend_nr, tmp);
1122 }
1123
1124 diff = (csum_offset + extend_nr) * csum_size;
1125 diff = min(diff,
1126 MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1127
1128 diff = diff - btrfs_item_size_nr(leaf, path->slots[0]);
1129 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1130 diff /= csum_size;
1131 diff *= csum_size;
1132
1133 btrfs_extend_item(path, diff);
1134 ret = 0;
1135 goto csum;
1136 }
1137
1138 insert:
1139 btrfs_release_path(path);
1140 csum_offset = 0;
1141 if (found_next) {
1142 u64 tmp;
1143
1144 tmp = sums->len - total_bytes;
1145 tmp >>= fs_info->sectorsize_bits;
1146 tmp = min(tmp, (next_offset - file_key.offset) >>
1147 fs_info->sectorsize_bits);
1148
1149 tmp = max_t(u64, 1, tmp);
1150 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1151 ins_size = csum_size * tmp;
1152 } else {
1153 ins_size = csum_size;
1154 }
1155 ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1156 ins_size);
1157 if (ret < 0)
1158 goto out;
1159 if (WARN_ON(ret != 0))
1160 goto out;
1161 leaf = path->nodes[0];
1162 csum:
1163 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1164 item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1165 btrfs_item_size_nr(leaf, path->slots[0]));
1166 item = (struct btrfs_csum_item *)((unsigned char *)item +
1167 csum_offset * csum_size);
1168 found:
1169 ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1170 ins_size *= csum_size;
1171 ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1172 ins_size);
1173 write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1174 ins_size);
1175
1176 index += ins_size;
1177 ins_size /= csum_size;
1178 total_bytes += ins_size * fs_info->sectorsize;
1179
1180 btrfs_mark_buffer_dirty(path->nodes[0]);
1181 if (total_bytes < sums->len) {
1182 btrfs_release_path(path);
1183 cond_resched();
1184 goto again;
1185 }
1186 out:
1187 btrfs_free_path(path);
1188 return ret;
1189 }
1190
btrfs_extent_item_to_extent_map(struct btrfs_inode * inode,const struct btrfs_path * path,struct btrfs_file_extent_item * fi,const bool new_inline,struct extent_map * em)1191 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1192 const struct btrfs_path *path,
1193 struct btrfs_file_extent_item *fi,
1194 const bool new_inline,
1195 struct extent_map *em)
1196 {
1197 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1198 struct btrfs_root *root = inode->root;
1199 struct extent_buffer *leaf = path->nodes[0];
1200 const int slot = path->slots[0];
1201 struct btrfs_key key;
1202 u64 extent_start, extent_end;
1203 u64 bytenr;
1204 u8 type = btrfs_file_extent_type(leaf, fi);
1205 int compress_type = btrfs_file_extent_compression(leaf, fi);
1206
1207 btrfs_item_key_to_cpu(leaf, &key, slot);
1208 extent_start = key.offset;
1209 extent_end = btrfs_file_extent_end(path);
1210 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1211 if (type == BTRFS_FILE_EXTENT_REG ||
1212 type == BTRFS_FILE_EXTENT_PREALLOC) {
1213 em->start = extent_start;
1214 em->len = extent_end - extent_start;
1215 em->orig_start = extent_start -
1216 btrfs_file_extent_offset(leaf, fi);
1217 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1218 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1219 if (bytenr == 0) {
1220 em->block_start = EXTENT_MAP_HOLE;
1221 return;
1222 }
1223 if (compress_type != BTRFS_COMPRESS_NONE) {
1224 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1225 em->compress_type = compress_type;
1226 em->block_start = bytenr;
1227 em->block_len = em->orig_block_len;
1228 } else {
1229 bytenr += btrfs_file_extent_offset(leaf, fi);
1230 em->block_start = bytenr;
1231 em->block_len = em->len;
1232 if (type == BTRFS_FILE_EXTENT_PREALLOC)
1233 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1234 }
1235 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1236 em->block_start = EXTENT_MAP_INLINE;
1237 em->start = extent_start;
1238 em->len = extent_end - extent_start;
1239 /*
1240 * Initialize orig_start and block_len with the same values
1241 * as in inode.c:btrfs_get_extent().
1242 */
1243 em->orig_start = EXTENT_MAP_HOLE;
1244 em->block_len = (u64)-1;
1245 if (!new_inline && compress_type != BTRFS_COMPRESS_NONE) {
1246 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1247 em->compress_type = compress_type;
1248 }
1249 } else {
1250 btrfs_err(fs_info,
1251 "unknown file extent item type %d, inode %llu, offset %llu, "
1252 "root %llu", type, btrfs_ino(inode), extent_start,
1253 root->root_key.objectid);
1254 }
1255 }
1256
1257 /*
1258 * Returns the end offset (non inclusive) of the file extent item the given path
1259 * points to. If it points to an inline extent, the returned offset is rounded
1260 * up to the sector size.
1261 */
btrfs_file_extent_end(const struct btrfs_path * path)1262 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1263 {
1264 const struct extent_buffer *leaf = path->nodes[0];
1265 const int slot = path->slots[0];
1266 struct btrfs_file_extent_item *fi;
1267 struct btrfs_key key;
1268 u64 end;
1269
1270 btrfs_item_key_to_cpu(leaf, &key, slot);
1271 ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1272 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1273
1274 if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1275 end = btrfs_file_extent_ram_bytes(leaf, fi);
1276 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1277 } else {
1278 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1279 }
1280
1281 return end;
1282 }
1283