1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/direct-io.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * O_DIRECT
8 *
9 * 04Jul2002 Andrew Morton
10 * Initial version
11 * 11Sep2002 janetinc@us.ibm.com
12 * added readv/writev support.
13 * 29Oct2002 Andrew Morton
14 * rewrote bio_add_page() support.
15 * 30Oct2002 pbadari@us.ibm.com
16 * added support for non-aligned IO.
17 * 06Nov2002 pbadari@us.ibm.com
18 * added asynchronous IO support.
19 * 21Jul2003 nathans@sgi.com
20 * added IO completion notifier.
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41
42 #include "internal.h"
43
44 /*
45 * How many user pages to map in one call to get_user_pages(). This determines
46 * the size of a structure in the slab cache
47 */
48 #define DIO_PAGES 64
49
50 /*
51 * Flags for dio_complete()
52 */
53 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
54 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
55
56 /*
57 * This code generally works in units of "dio_blocks". A dio_block is
58 * somewhere between the hard sector size and the filesystem block size. it
59 * is determined on a per-invocation basis. When talking to the filesystem
60 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
61 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
62 * to bio_block quantities by shifting left by blkfactor.
63 *
64 * If blkfactor is zero then the user's request was aligned to the filesystem's
65 * blocksize.
66 */
67
68 /* dio_state only used in the submission path */
69
70 struct dio_submit {
71 struct bio *bio; /* bio under assembly */
72 unsigned blkbits; /* doesn't change */
73 unsigned blkfactor; /* When we're using an alignment which
74 is finer than the filesystem's soft
75 blocksize, this specifies how much
76 finer. blkfactor=2 means 1/4-block
77 alignment. Does not change */
78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
79 been performed at the start of a
80 write */
81 int pages_in_io; /* approximate total IO pages */
82 sector_t block_in_file; /* Current offset into the underlying
83 file in dio_block units. */
84 unsigned blocks_available; /* At block_in_file. changes */
85 int reap_counter; /* rate limit reaping */
86 sector_t final_block_in_request;/* doesn't change */
87 int boundary; /* prev block is at a boundary */
88 get_block_t *get_block; /* block mapping function */
89 dio_submit_t *submit_io; /* IO submition function */
90
91 loff_t logical_offset_in_bio; /* current first logical block in bio */
92 sector_t final_block_in_bio; /* current final block in bio + 1 */
93 sector_t next_block_for_io; /* next block to be put under IO,
94 in dio_blocks units */
95
96 /*
97 * Deferred addition of a page to the dio. These variables are
98 * private to dio_send_cur_page(), submit_page_section() and
99 * dio_bio_add_page().
100 */
101 struct page *cur_page; /* The page */
102 unsigned cur_page_offset; /* Offset into it, in bytes */
103 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
104 sector_t cur_page_block; /* Where it starts */
105 loff_t cur_page_fs_offset; /* Offset in file */
106
107 struct iov_iter *iter;
108 /*
109 * Page queue. These variables belong to dio_refill_pages() and
110 * dio_get_page().
111 */
112 unsigned head; /* next page to process */
113 unsigned tail; /* last valid page + 1 */
114 size_t from, to;
115 };
116
117 /* dio_state communicated between submission path and end_io */
118 struct dio {
119 int flags; /* doesn't change */
120 int op;
121 int op_flags;
122 struct gendisk *bio_disk;
123 struct inode *inode;
124 loff_t i_size; /* i_size when submitted */
125 dio_iodone_t *end_io; /* IO completion function */
126
127 void *private; /* copy from map_bh.b_private */
128
129 /* BIO completion state */
130 spinlock_t bio_lock; /* protects BIO fields below */
131 int page_errors; /* errno from get_user_pages() */
132 int is_async; /* is IO async ? */
133 bool defer_completion; /* defer AIO completion to workqueue? */
134 bool should_dirty; /* if pages should be dirtied */
135 int io_error; /* IO error in completion path */
136 unsigned long refcount; /* direct_io_worker() and bios */
137 struct bio *bio_list; /* singly linked via bi_private */
138 struct task_struct *waiter; /* waiting task (NULL if none) */
139
140 /* AIO related stuff */
141 struct kiocb *iocb; /* kiocb */
142 ssize_t result; /* IO result */
143
144 /*
145 * pages[] (and any fields placed after it) are not zeroed out at
146 * allocation time. Don't add new fields after pages[] unless you
147 * wish that they not be zeroed.
148 */
149 union {
150 struct page *pages[DIO_PAGES]; /* page buffer */
151 struct work_struct complete_work;/* deferred AIO completion */
152 };
153 } ____cacheline_aligned_in_smp;
154
155 static struct kmem_cache *dio_cache __read_mostly;
156
157 /*
158 * How many pages are in the queue?
159 */
dio_pages_present(struct dio_submit * sdio)160 static inline unsigned dio_pages_present(struct dio_submit *sdio)
161 {
162 return sdio->tail - sdio->head;
163 }
164
165 /*
166 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
167 */
dio_refill_pages(struct dio * dio,struct dio_submit * sdio)168 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
169 {
170 ssize_t ret;
171
172 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
173 &sdio->from);
174
175 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
176 struct page *page = ZERO_PAGE(0);
177 /*
178 * A memory fault, but the filesystem has some outstanding
179 * mapped blocks. We need to use those blocks up to avoid
180 * leaking stale data in the file.
181 */
182 if (dio->page_errors == 0)
183 dio->page_errors = ret;
184 get_page(page);
185 dio->pages[0] = page;
186 sdio->head = 0;
187 sdio->tail = 1;
188 sdio->from = 0;
189 sdio->to = PAGE_SIZE;
190 return 0;
191 }
192
193 if (ret >= 0) {
194 iov_iter_advance(sdio->iter, ret);
195 ret += sdio->from;
196 sdio->head = 0;
197 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
198 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
199 return 0;
200 }
201 return ret;
202 }
203
204 /*
205 * Get another userspace page. Returns an ERR_PTR on error. Pages are
206 * buffered inside the dio so that we can call get_user_pages() against a
207 * decent number of pages, less frequently. To provide nicer use of the
208 * L1 cache.
209 */
dio_get_page(struct dio * dio,struct dio_submit * sdio)210 static inline struct page *dio_get_page(struct dio *dio,
211 struct dio_submit *sdio)
212 {
213 if (dio_pages_present(sdio) == 0) {
214 int ret;
215
216 ret = dio_refill_pages(dio, sdio);
217 if (ret)
218 return ERR_PTR(ret);
219 BUG_ON(dio_pages_present(sdio) == 0);
220 }
221 return dio->pages[sdio->head];
222 }
223
224 /*
225 * dio_complete() - called when all DIO BIO I/O has been completed
226 *
227 * This drops i_dio_count, lets interested parties know that a DIO operation
228 * has completed, and calculates the resulting return code for the operation.
229 *
230 * It lets the filesystem know if it registered an interest earlier via
231 * get_block. Pass the private field of the map buffer_head so that
232 * filesystems can use it to hold additional state between get_block calls and
233 * dio_complete.
234 */
dio_complete(struct dio * dio,ssize_t ret,unsigned int flags)235 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
236 {
237 loff_t offset = dio->iocb->ki_pos;
238 ssize_t transferred = 0;
239 int err;
240
241 /*
242 * AIO submission can race with bio completion to get here while
243 * expecting to have the last io completed by bio completion.
244 * In that case -EIOCBQUEUED is in fact not an error we want
245 * to preserve through this call.
246 */
247 if (ret == -EIOCBQUEUED)
248 ret = 0;
249
250 if (dio->result) {
251 transferred = dio->result;
252
253 /* Check for short read case */
254 if ((dio->op == REQ_OP_READ) &&
255 ((offset + transferred) > dio->i_size))
256 transferred = dio->i_size - offset;
257 /* ignore EFAULT if some IO has been done */
258 if (unlikely(ret == -EFAULT) && transferred)
259 ret = 0;
260 }
261
262 if (ret == 0)
263 ret = dio->page_errors;
264 if (ret == 0)
265 ret = dio->io_error;
266 if (ret == 0)
267 ret = transferred;
268
269 if (dio->end_io) {
270 // XXX: ki_pos??
271 err = dio->end_io(dio->iocb, offset, ret, dio->private);
272 if (err)
273 ret = err;
274 }
275
276 /*
277 * Try again to invalidate clean pages which might have been cached by
278 * non-direct readahead, or faulted in by get_user_pages() if the source
279 * of the write was an mmap'ed region of the file we're writing. Either
280 * one is a pretty crazy thing to do, so we don't support it 100%. If
281 * this invalidation fails, tough, the write still worked...
282 *
283 * And this page cache invalidation has to be after dio->end_io(), as
284 * some filesystems convert unwritten extents to real allocations in
285 * end_io() when necessary, otherwise a racing buffer read would cache
286 * zeros from unwritten extents.
287 */
288 if (flags & DIO_COMPLETE_INVALIDATE &&
289 ret > 0 && dio->op == REQ_OP_WRITE &&
290 dio->inode->i_mapping->nrpages) {
291 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
292 offset >> PAGE_SHIFT,
293 (offset + ret - 1) >> PAGE_SHIFT);
294 if (err)
295 dio_warn_stale_pagecache(dio->iocb->ki_filp);
296 }
297
298 inode_dio_end(dio->inode);
299
300 if (flags & DIO_COMPLETE_ASYNC) {
301 /*
302 * generic_write_sync expects ki_pos to have been updated
303 * already, but the submission path only does this for
304 * synchronous I/O.
305 */
306 dio->iocb->ki_pos += transferred;
307
308 if (ret > 0 && dio->op == REQ_OP_WRITE)
309 ret = generic_write_sync(dio->iocb, ret);
310 dio->iocb->ki_complete(dio->iocb, ret);
311 }
312
313 kmem_cache_free(dio_cache, dio);
314 return ret;
315 }
316
dio_aio_complete_work(struct work_struct * work)317 static void dio_aio_complete_work(struct work_struct *work)
318 {
319 struct dio *dio = container_of(work, struct dio, complete_work);
320
321 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
322 }
323
324 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
325
326 /*
327 * Asynchronous IO callback.
328 */
dio_bio_end_aio(struct bio * bio)329 static void dio_bio_end_aio(struct bio *bio)
330 {
331 struct dio *dio = bio->bi_private;
332 unsigned long remaining;
333 unsigned long flags;
334 bool defer_completion = false;
335
336 /* cleanup the bio */
337 dio_bio_complete(dio, bio);
338
339 spin_lock_irqsave(&dio->bio_lock, flags);
340 remaining = --dio->refcount;
341 if (remaining == 1 && dio->waiter)
342 wake_up_process(dio->waiter);
343 spin_unlock_irqrestore(&dio->bio_lock, flags);
344
345 if (remaining == 0) {
346 /*
347 * Defer completion when defer_completion is set or
348 * when the inode has pages mapped and this is AIO write.
349 * We need to invalidate those pages because there is a
350 * chance they contain stale data in the case buffered IO
351 * went in between AIO submission and completion into the
352 * same region.
353 */
354 if (dio->result)
355 defer_completion = dio->defer_completion ||
356 (dio->op == REQ_OP_WRITE &&
357 dio->inode->i_mapping->nrpages);
358 if (defer_completion) {
359 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
360 queue_work(dio->inode->i_sb->s_dio_done_wq,
361 &dio->complete_work);
362 } else {
363 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
364 }
365 }
366 }
367
368 /*
369 * The BIO completion handler simply queues the BIO up for the process-context
370 * handler.
371 *
372 * During I/O bi_private points at the dio. After I/O, bi_private is used to
373 * implement a singly-linked list of completed BIOs, at dio->bio_list.
374 */
dio_bio_end_io(struct bio * bio)375 static void dio_bio_end_io(struct bio *bio)
376 {
377 struct dio *dio = bio->bi_private;
378 unsigned long flags;
379
380 spin_lock_irqsave(&dio->bio_lock, flags);
381 bio->bi_private = dio->bio_list;
382 dio->bio_list = bio;
383 if (--dio->refcount == 1 && dio->waiter)
384 wake_up_process(dio->waiter);
385 spin_unlock_irqrestore(&dio->bio_lock, flags);
386 }
387
388 static inline void
dio_bio_alloc(struct dio * dio,struct dio_submit * sdio,struct block_device * bdev,sector_t first_sector,int nr_vecs)389 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
390 struct block_device *bdev,
391 sector_t first_sector, int nr_vecs)
392 {
393 struct bio *bio;
394
395 /*
396 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
397 * we request a valid number of vectors.
398 */
399 bio = bio_alloc(GFP_KERNEL, nr_vecs);
400
401 bio_set_dev(bio, bdev);
402 bio->bi_iter.bi_sector = first_sector;
403 bio_set_op_attrs(bio, dio->op, dio->op_flags);
404 if (dio->is_async)
405 bio->bi_end_io = dio_bio_end_aio;
406 else
407 bio->bi_end_io = dio_bio_end_io;
408
409 bio->bi_write_hint = dio->iocb->ki_hint;
410
411 sdio->bio = bio;
412 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
413 }
414
415 /*
416 * In the AIO read case we speculatively dirty the pages before starting IO.
417 * During IO completion, any of these pages which happen to have been written
418 * back will be redirtied by bio_check_pages_dirty().
419 *
420 * bios hold a dio reference between submit_bio and ->end_io.
421 */
dio_bio_submit(struct dio * dio,struct dio_submit * sdio)422 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
423 {
424 struct bio *bio = sdio->bio;
425 unsigned long flags;
426
427 bio->bi_private = dio;
428 /* don't account direct I/O as memory stall */
429 bio_clear_flag(bio, BIO_WORKINGSET);
430
431 spin_lock_irqsave(&dio->bio_lock, flags);
432 dio->refcount++;
433 spin_unlock_irqrestore(&dio->bio_lock, flags);
434
435 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
436 bio_set_pages_dirty(bio);
437
438 dio->bio_disk = bio->bi_bdev->bd_disk;
439
440 if (sdio->submit_io)
441 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
442 else
443 submit_bio(bio);
444
445 sdio->bio = NULL;
446 sdio->boundary = 0;
447 sdio->logical_offset_in_bio = 0;
448 }
449
450 /*
451 * Release any resources in case of a failure
452 */
dio_cleanup(struct dio * dio,struct dio_submit * sdio)453 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
454 {
455 while (sdio->head < sdio->tail)
456 put_page(dio->pages[sdio->head++]);
457 }
458
459 /*
460 * Wait for the next BIO to complete. Remove it and return it. NULL is
461 * returned once all BIOs have been completed. This must only be called once
462 * all bios have been issued so that dio->refcount can only decrease. This
463 * requires that the caller hold a reference on the dio.
464 */
dio_await_one(struct dio * dio)465 static struct bio *dio_await_one(struct dio *dio)
466 {
467 unsigned long flags;
468 struct bio *bio = NULL;
469
470 spin_lock_irqsave(&dio->bio_lock, flags);
471
472 /*
473 * Wait as long as the list is empty and there are bios in flight. bio
474 * completion drops the count, maybe adds to the list, and wakes while
475 * holding the bio_lock so we don't need set_current_state()'s barrier
476 * and can call it after testing our condition.
477 */
478 while (dio->refcount > 1 && dio->bio_list == NULL) {
479 __set_current_state(TASK_UNINTERRUPTIBLE);
480 dio->waiter = current;
481 spin_unlock_irqrestore(&dio->bio_lock, flags);
482 blk_io_schedule();
483 /* wake up sets us TASK_RUNNING */
484 spin_lock_irqsave(&dio->bio_lock, flags);
485 dio->waiter = NULL;
486 }
487 if (dio->bio_list) {
488 bio = dio->bio_list;
489 dio->bio_list = bio->bi_private;
490 }
491 spin_unlock_irqrestore(&dio->bio_lock, flags);
492 return bio;
493 }
494
495 /*
496 * Process one completed BIO. No locks are held.
497 */
dio_bio_complete(struct dio * dio,struct bio * bio)498 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
499 {
500 blk_status_t err = bio->bi_status;
501 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
502
503 if (err) {
504 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
505 dio->io_error = -EAGAIN;
506 else
507 dio->io_error = -EIO;
508 }
509
510 if (dio->is_async && should_dirty) {
511 bio_check_pages_dirty(bio); /* transfers ownership */
512 } else {
513 bio_release_pages(bio, should_dirty);
514 bio_put(bio);
515 }
516 return err;
517 }
518
519 /*
520 * Wait on and process all in-flight BIOs. This must only be called once
521 * all bios have been issued so that the refcount can only decrease.
522 * This just waits for all bios to make it through dio_bio_complete. IO
523 * errors are propagated through dio->io_error and should be propagated via
524 * dio_complete().
525 */
dio_await_completion(struct dio * dio)526 static void dio_await_completion(struct dio *dio)
527 {
528 struct bio *bio;
529 do {
530 bio = dio_await_one(dio);
531 if (bio)
532 dio_bio_complete(dio, bio);
533 } while (bio);
534 }
535
536 /*
537 * A really large O_DIRECT read or write can generate a lot of BIOs. So
538 * to keep the memory consumption sane we periodically reap any completed BIOs
539 * during the BIO generation phase.
540 *
541 * This also helps to limit the peak amount of pinned userspace memory.
542 */
dio_bio_reap(struct dio * dio,struct dio_submit * sdio)543 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
544 {
545 int ret = 0;
546
547 if (sdio->reap_counter++ >= 64) {
548 while (dio->bio_list) {
549 unsigned long flags;
550 struct bio *bio;
551 int ret2;
552
553 spin_lock_irqsave(&dio->bio_lock, flags);
554 bio = dio->bio_list;
555 dio->bio_list = bio->bi_private;
556 spin_unlock_irqrestore(&dio->bio_lock, flags);
557 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
558 if (ret == 0)
559 ret = ret2;
560 }
561 sdio->reap_counter = 0;
562 }
563 return ret;
564 }
565
566 /*
567 * Create workqueue for deferred direct IO completions. We allocate the
568 * workqueue when it's first needed. This avoids creating workqueue for
569 * filesystems that don't need it and also allows us to create the workqueue
570 * late enough so the we can include s_id in the name of the workqueue.
571 */
sb_init_dio_done_wq(struct super_block * sb)572 int sb_init_dio_done_wq(struct super_block *sb)
573 {
574 struct workqueue_struct *old;
575 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
576 WQ_MEM_RECLAIM, 0,
577 sb->s_id);
578 if (!wq)
579 return -ENOMEM;
580 /*
581 * This has to be atomic as more DIOs can race to create the workqueue
582 */
583 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
584 /* Someone created workqueue before us? Free ours... */
585 if (old)
586 destroy_workqueue(wq);
587 return 0;
588 }
589
dio_set_defer_completion(struct dio * dio)590 static int dio_set_defer_completion(struct dio *dio)
591 {
592 struct super_block *sb = dio->inode->i_sb;
593
594 if (dio->defer_completion)
595 return 0;
596 dio->defer_completion = true;
597 if (!sb->s_dio_done_wq)
598 return sb_init_dio_done_wq(sb);
599 return 0;
600 }
601
602 /*
603 * Call into the fs to map some more disk blocks. We record the current number
604 * of available blocks at sdio->blocks_available. These are in units of the
605 * fs blocksize, i_blocksize(inode).
606 *
607 * The fs is allowed to map lots of blocks at once. If it wants to do that,
608 * it uses the passed inode-relative block number as the file offset, as usual.
609 *
610 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
611 * has remaining to do. The fs should not map more than this number of blocks.
612 *
613 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
614 * indicate how much contiguous disk space has been made available at
615 * bh->b_blocknr.
616 *
617 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
618 * This isn't very efficient...
619 *
620 * In the case of filesystem holes: the fs may return an arbitrarily-large
621 * hole by returning an appropriate value in b_size and by clearing
622 * buffer_mapped(). However the direct-io code will only process holes one
623 * block at a time - it will repeatedly call get_block() as it walks the hole.
624 */
get_more_blocks(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)625 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
626 struct buffer_head *map_bh)
627 {
628 int ret;
629 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
630 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
631 unsigned long fs_count; /* Number of filesystem-sized blocks */
632 int create;
633 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
634 loff_t i_size;
635
636 /*
637 * If there was a memory error and we've overwritten all the
638 * mapped blocks then we can now return that memory error
639 */
640 ret = dio->page_errors;
641 if (ret == 0) {
642 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
643 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
644 fs_endblk = (sdio->final_block_in_request - 1) >>
645 sdio->blkfactor;
646 fs_count = fs_endblk - fs_startblk + 1;
647
648 map_bh->b_state = 0;
649 map_bh->b_size = fs_count << i_blkbits;
650
651 /*
652 * For writes that could fill holes inside i_size on a
653 * DIO_SKIP_HOLES filesystem we forbid block creations: only
654 * overwrites are permitted. We will return early to the caller
655 * once we see an unmapped buffer head returned, and the caller
656 * will fall back to buffered I/O.
657 *
658 * Otherwise the decision is left to the get_blocks method,
659 * which may decide to handle it or also return an unmapped
660 * buffer head.
661 */
662 create = dio->op == REQ_OP_WRITE;
663 if (dio->flags & DIO_SKIP_HOLES) {
664 i_size = i_size_read(dio->inode);
665 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
666 create = 0;
667 }
668
669 ret = (*sdio->get_block)(dio->inode, fs_startblk,
670 map_bh, create);
671
672 /* Store for completion */
673 dio->private = map_bh->b_private;
674
675 if (ret == 0 && buffer_defer_completion(map_bh))
676 ret = dio_set_defer_completion(dio);
677 }
678 return ret;
679 }
680
681 /*
682 * There is no bio. Make one now.
683 */
dio_new_bio(struct dio * dio,struct dio_submit * sdio,sector_t start_sector,struct buffer_head * map_bh)684 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
685 sector_t start_sector, struct buffer_head *map_bh)
686 {
687 sector_t sector;
688 int ret, nr_pages;
689
690 ret = dio_bio_reap(dio, sdio);
691 if (ret)
692 goto out;
693 sector = start_sector << (sdio->blkbits - 9);
694 nr_pages = bio_max_segs(sdio->pages_in_io);
695 BUG_ON(nr_pages <= 0);
696 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
697 sdio->boundary = 0;
698 out:
699 return ret;
700 }
701
702 /*
703 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
704 * that was successful then update final_block_in_bio and take a ref against
705 * the just-added page.
706 *
707 * Return zero on success. Non-zero means the caller needs to start a new BIO.
708 */
dio_bio_add_page(struct dio_submit * sdio)709 static inline int dio_bio_add_page(struct dio_submit *sdio)
710 {
711 int ret;
712
713 ret = bio_add_page(sdio->bio, sdio->cur_page,
714 sdio->cur_page_len, sdio->cur_page_offset);
715 if (ret == sdio->cur_page_len) {
716 /*
717 * Decrement count only, if we are done with this page
718 */
719 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
720 sdio->pages_in_io--;
721 get_page(sdio->cur_page);
722 sdio->final_block_in_bio = sdio->cur_page_block +
723 (sdio->cur_page_len >> sdio->blkbits);
724 ret = 0;
725 } else {
726 ret = 1;
727 }
728 return ret;
729 }
730
731 /*
732 * Put cur_page under IO. The section of cur_page which is described by
733 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
734 * starts on-disk at cur_page_block.
735 *
736 * We take a ref against the page here (on behalf of its presence in the bio).
737 *
738 * The caller of this function is responsible for removing cur_page from the
739 * dio, and for dropping the refcount which came from that presence.
740 */
dio_send_cur_page(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)741 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
742 struct buffer_head *map_bh)
743 {
744 int ret = 0;
745
746 if (sdio->bio) {
747 loff_t cur_offset = sdio->cur_page_fs_offset;
748 loff_t bio_next_offset = sdio->logical_offset_in_bio +
749 sdio->bio->bi_iter.bi_size;
750
751 /*
752 * See whether this new request is contiguous with the old.
753 *
754 * Btrfs cannot handle having logically non-contiguous requests
755 * submitted. For example if you have
756 *
757 * Logical: [0-4095][HOLE][8192-12287]
758 * Physical: [0-4095] [4096-8191]
759 *
760 * We cannot submit those pages together as one BIO. So if our
761 * current logical offset in the file does not equal what would
762 * be the next logical offset in the bio, submit the bio we
763 * have.
764 */
765 if (sdio->final_block_in_bio != sdio->cur_page_block ||
766 cur_offset != bio_next_offset)
767 dio_bio_submit(dio, sdio);
768 }
769
770 if (sdio->bio == NULL) {
771 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
772 if (ret)
773 goto out;
774 }
775
776 if (dio_bio_add_page(sdio) != 0) {
777 dio_bio_submit(dio, sdio);
778 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
779 if (ret == 0) {
780 ret = dio_bio_add_page(sdio);
781 BUG_ON(ret != 0);
782 }
783 }
784 out:
785 return ret;
786 }
787
788 /*
789 * An autonomous function to put a chunk of a page under deferred IO.
790 *
791 * The caller doesn't actually know (or care) whether this piece of page is in
792 * a BIO, or is under IO or whatever. We just take care of all possible
793 * situations here. The separation between the logic of do_direct_IO() and
794 * that of submit_page_section() is important for clarity. Please don't break.
795 *
796 * The chunk of page starts on-disk at blocknr.
797 *
798 * We perform deferred IO, by recording the last-submitted page inside our
799 * private part of the dio structure. If possible, we just expand the IO
800 * across that page here.
801 *
802 * If that doesn't work out then we put the old page into the bio and add this
803 * page to the dio instead.
804 */
805 static inline int
submit_page_section(struct dio * dio,struct dio_submit * sdio,struct page * page,unsigned offset,unsigned len,sector_t blocknr,struct buffer_head * map_bh)806 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
807 unsigned offset, unsigned len, sector_t blocknr,
808 struct buffer_head *map_bh)
809 {
810 int ret = 0;
811 int boundary = sdio->boundary; /* dio_send_cur_page may clear it */
812
813 if (dio->op == REQ_OP_WRITE) {
814 /*
815 * Read accounting is performed in submit_bio()
816 */
817 task_io_account_write(len);
818 }
819
820 /*
821 * Can we just grow the current page's presence in the dio?
822 */
823 if (sdio->cur_page == page &&
824 sdio->cur_page_offset + sdio->cur_page_len == offset &&
825 sdio->cur_page_block +
826 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
827 sdio->cur_page_len += len;
828 goto out;
829 }
830
831 /*
832 * If there's a deferred page already there then send it.
833 */
834 if (sdio->cur_page) {
835 ret = dio_send_cur_page(dio, sdio, map_bh);
836 put_page(sdio->cur_page);
837 sdio->cur_page = NULL;
838 if (ret)
839 return ret;
840 }
841
842 get_page(page); /* It is in dio */
843 sdio->cur_page = page;
844 sdio->cur_page_offset = offset;
845 sdio->cur_page_len = len;
846 sdio->cur_page_block = blocknr;
847 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
848 out:
849 /*
850 * If boundary then we want to schedule the IO now to
851 * avoid metadata seeks.
852 */
853 if (boundary) {
854 ret = dio_send_cur_page(dio, sdio, map_bh);
855 if (sdio->bio)
856 dio_bio_submit(dio, sdio);
857 put_page(sdio->cur_page);
858 sdio->cur_page = NULL;
859 }
860 return ret;
861 }
862
863 /*
864 * If we are not writing the entire block and get_block() allocated
865 * the block for us, we need to fill-in the unused portion of the
866 * block with zeros. This happens only if user-buffer, fileoffset or
867 * io length is not filesystem block-size multiple.
868 *
869 * `end' is zero if we're doing the start of the IO, 1 at the end of the
870 * IO.
871 */
dio_zero_block(struct dio * dio,struct dio_submit * sdio,int end,struct buffer_head * map_bh)872 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
873 int end, struct buffer_head *map_bh)
874 {
875 unsigned dio_blocks_per_fs_block;
876 unsigned this_chunk_blocks; /* In dio_blocks */
877 unsigned this_chunk_bytes;
878 struct page *page;
879
880 sdio->start_zero_done = 1;
881 if (!sdio->blkfactor || !buffer_new(map_bh))
882 return;
883
884 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
885 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
886
887 if (!this_chunk_blocks)
888 return;
889
890 /*
891 * We need to zero out part of an fs block. It is either at the
892 * beginning or the end of the fs block.
893 */
894 if (end)
895 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
896
897 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
898
899 page = ZERO_PAGE(0);
900 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
901 sdio->next_block_for_io, map_bh))
902 return;
903
904 sdio->next_block_for_io += this_chunk_blocks;
905 }
906
907 /*
908 * Walk the user pages, and the file, mapping blocks to disk and generating
909 * a sequence of (page,offset,len,block) mappings. These mappings are injected
910 * into submit_page_section(), which takes care of the next stage of submission
911 *
912 * Direct IO against a blockdev is different from a file. Because we can
913 * happily perform page-sized but 512-byte aligned IOs. It is important that
914 * blockdev IO be able to have fine alignment and large sizes.
915 *
916 * So what we do is to permit the ->get_block function to populate bh.b_size
917 * with the size of IO which is permitted at this offset and this i_blkbits.
918 *
919 * For best results, the blockdev should be set up with 512-byte i_blkbits and
920 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
921 * fine alignment but still allows this function to work in PAGE_SIZE units.
922 */
do_direct_IO(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)923 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
924 struct buffer_head *map_bh)
925 {
926 const unsigned blkbits = sdio->blkbits;
927 const unsigned i_blkbits = blkbits + sdio->blkfactor;
928 int ret = 0;
929
930 while (sdio->block_in_file < sdio->final_block_in_request) {
931 struct page *page;
932 size_t from, to;
933
934 page = dio_get_page(dio, sdio);
935 if (IS_ERR(page)) {
936 ret = PTR_ERR(page);
937 goto out;
938 }
939 from = sdio->head ? 0 : sdio->from;
940 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
941 sdio->head++;
942
943 while (from < to) {
944 unsigned this_chunk_bytes; /* # of bytes mapped */
945 unsigned this_chunk_blocks; /* # of blocks */
946 unsigned u;
947
948 if (sdio->blocks_available == 0) {
949 /*
950 * Need to go and map some more disk
951 */
952 unsigned long blkmask;
953 unsigned long dio_remainder;
954
955 ret = get_more_blocks(dio, sdio, map_bh);
956 if (ret) {
957 put_page(page);
958 goto out;
959 }
960 if (!buffer_mapped(map_bh))
961 goto do_holes;
962
963 sdio->blocks_available =
964 map_bh->b_size >> blkbits;
965 sdio->next_block_for_io =
966 map_bh->b_blocknr << sdio->blkfactor;
967 if (buffer_new(map_bh)) {
968 clean_bdev_aliases(
969 map_bh->b_bdev,
970 map_bh->b_blocknr,
971 map_bh->b_size >> i_blkbits);
972 }
973
974 if (!sdio->blkfactor)
975 goto do_holes;
976
977 blkmask = (1 << sdio->blkfactor) - 1;
978 dio_remainder = (sdio->block_in_file & blkmask);
979
980 /*
981 * If we are at the start of IO and that IO
982 * starts partway into a fs-block,
983 * dio_remainder will be non-zero. If the IO
984 * is a read then we can simply advance the IO
985 * cursor to the first block which is to be
986 * read. But if the IO is a write and the
987 * block was newly allocated we cannot do that;
988 * the start of the fs block must be zeroed out
989 * on-disk
990 */
991 if (!buffer_new(map_bh))
992 sdio->next_block_for_io += dio_remainder;
993 sdio->blocks_available -= dio_remainder;
994 }
995 do_holes:
996 /* Handle holes */
997 if (!buffer_mapped(map_bh)) {
998 loff_t i_size_aligned;
999
1000 /* AKPM: eargh, -ENOTBLK is a hack */
1001 if (dio->op == REQ_OP_WRITE) {
1002 put_page(page);
1003 return -ENOTBLK;
1004 }
1005
1006 /*
1007 * Be sure to account for a partial block as the
1008 * last block in the file
1009 */
1010 i_size_aligned = ALIGN(i_size_read(dio->inode),
1011 1 << blkbits);
1012 if (sdio->block_in_file >=
1013 i_size_aligned >> blkbits) {
1014 /* We hit eof */
1015 put_page(page);
1016 goto out;
1017 }
1018 zero_user(page, from, 1 << blkbits);
1019 sdio->block_in_file++;
1020 from += 1 << blkbits;
1021 dio->result += 1 << blkbits;
1022 goto next_block;
1023 }
1024
1025 /*
1026 * If we're performing IO which has an alignment which
1027 * is finer than the underlying fs, go check to see if
1028 * we must zero out the start of this block.
1029 */
1030 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1031 dio_zero_block(dio, sdio, 0, map_bh);
1032
1033 /*
1034 * Work out, in this_chunk_blocks, how much disk we
1035 * can add to this page
1036 */
1037 this_chunk_blocks = sdio->blocks_available;
1038 u = (to - from) >> blkbits;
1039 if (this_chunk_blocks > u)
1040 this_chunk_blocks = u;
1041 u = sdio->final_block_in_request - sdio->block_in_file;
1042 if (this_chunk_blocks > u)
1043 this_chunk_blocks = u;
1044 this_chunk_bytes = this_chunk_blocks << blkbits;
1045 BUG_ON(this_chunk_bytes == 0);
1046
1047 if (this_chunk_blocks == sdio->blocks_available)
1048 sdio->boundary = buffer_boundary(map_bh);
1049 ret = submit_page_section(dio, sdio, page,
1050 from,
1051 this_chunk_bytes,
1052 sdio->next_block_for_io,
1053 map_bh);
1054 if (ret) {
1055 put_page(page);
1056 goto out;
1057 }
1058 sdio->next_block_for_io += this_chunk_blocks;
1059
1060 sdio->block_in_file += this_chunk_blocks;
1061 from += this_chunk_bytes;
1062 dio->result += this_chunk_bytes;
1063 sdio->blocks_available -= this_chunk_blocks;
1064 next_block:
1065 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1066 if (sdio->block_in_file == sdio->final_block_in_request)
1067 break;
1068 }
1069
1070 /* Drop the ref which was taken in get_user_pages() */
1071 put_page(page);
1072 }
1073 out:
1074 return ret;
1075 }
1076
drop_refcount(struct dio * dio)1077 static inline int drop_refcount(struct dio *dio)
1078 {
1079 int ret2;
1080 unsigned long flags;
1081
1082 /*
1083 * Sync will always be dropping the final ref and completing the
1084 * operation. AIO can if it was a broken operation described above or
1085 * in fact if all the bios race to complete before we get here. In
1086 * that case dio_complete() translates the EIOCBQUEUED into the proper
1087 * return code that the caller will hand to ->complete().
1088 *
1089 * This is managed by the bio_lock instead of being an atomic_t so that
1090 * completion paths can drop their ref and use the remaining count to
1091 * decide to wake the submission path atomically.
1092 */
1093 spin_lock_irqsave(&dio->bio_lock, flags);
1094 ret2 = --dio->refcount;
1095 spin_unlock_irqrestore(&dio->bio_lock, flags);
1096 return ret2;
1097 }
1098
1099 /*
1100 * This is a library function for use by filesystem drivers.
1101 *
1102 * The locking rules are governed by the flags parameter:
1103 * - if the flags value contains DIO_LOCKING we use a fancy locking
1104 * scheme for dumb filesystems.
1105 * For writes this function is called under i_mutex and returns with
1106 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1107 * taken and dropped again before returning.
1108 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1109 * internal locking but rather rely on the filesystem to synchronize
1110 * direct I/O reads/writes versus each other and truncate.
1111 *
1112 * To help with locking against truncate we incremented the i_dio_count
1113 * counter before starting direct I/O, and decrement it once we are done.
1114 * Truncate can wait for it to reach zero to provide exclusion. It is
1115 * expected that filesystem provide exclusion between new direct I/O
1116 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1117 * but other filesystems need to take care of this on their own.
1118 *
1119 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1120 * is always inlined. Otherwise gcc is unable to split the structure into
1121 * individual fields and will generate much worse code. This is important
1122 * for the whole file.
1123 */
1124 static inline ssize_t
do_blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1125 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1126 struct block_device *bdev, struct iov_iter *iter,
1127 get_block_t get_block, dio_iodone_t end_io,
1128 dio_submit_t submit_io, int flags)
1129 {
1130 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1131 unsigned blkbits = i_blkbits;
1132 unsigned blocksize_mask = (1 << blkbits) - 1;
1133 ssize_t retval = -EINVAL;
1134 const size_t count = iov_iter_count(iter);
1135 loff_t offset = iocb->ki_pos;
1136 const loff_t end = offset + count;
1137 struct dio *dio;
1138 struct dio_submit sdio = { 0, };
1139 struct buffer_head map_bh = { 0, };
1140 struct blk_plug plug;
1141 unsigned long align = offset | iov_iter_alignment(iter);
1142
1143 /*
1144 * Avoid references to bdev if not absolutely needed to give
1145 * the early prefetch in the caller enough time.
1146 */
1147
1148 /* watch out for a 0 len io from a tricksy fs */
1149 if (iov_iter_rw(iter) == READ && !count)
1150 return 0;
1151
1152 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1153 if (!dio)
1154 return -ENOMEM;
1155 /*
1156 * Believe it or not, zeroing out the page array caused a .5%
1157 * performance regression in a database benchmark. So, we take
1158 * care to only zero out what's needed.
1159 */
1160 memset(dio, 0, offsetof(struct dio, pages));
1161
1162 dio->flags = flags;
1163 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1164 /* will be released by direct_io_worker */
1165 inode_lock(inode);
1166 }
1167
1168 /* Once we sampled i_size check for reads beyond EOF */
1169 dio->i_size = i_size_read(inode);
1170 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1171 retval = 0;
1172 goto fail_dio;
1173 }
1174
1175 if (align & blocksize_mask) {
1176 if (bdev)
1177 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1178 blocksize_mask = (1 << blkbits) - 1;
1179 if (align & blocksize_mask)
1180 goto fail_dio;
1181 }
1182
1183 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ) {
1184 struct address_space *mapping = iocb->ki_filp->f_mapping;
1185
1186 retval = filemap_write_and_wait_range(mapping, offset, end - 1);
1187 if (retval)
1188 goto fail_dio;
1189 }
1190
1191 /*
1192 * For file extending writes updating i_size before data writeouts
1193 * complete can expose uninitialized blocks in dumb filesystems.
1194 * In that case we need to wait for I/O completion even if asked
1195 * for an asynchronous write.
1196 */
1197 if (is_sync_kiocb(iocb))
1198 dio->is_async = false;
1199 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1200 dio->is_async = false;
1201 else
1202 dio->is_async = true;
1203
1204 dio->inode = inode;
1205 if (iov_iter_rw(iter) == WRITE) {
1206 dio->op = REQ_OP_WRITE;
1207 dio->op_flags = REQ_SYNC | REQ_IDLE;
1208 if (iocb->ki_flags & IOCB_NOWAIT)
1209 dio->op_flags |= REQ_NOWAIT;
1210 } else {
1211 dio->op = REQ_OP_READ;
1212 }
1213
1214 /*
1215 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1216 * so that we can call ->fsync.
1217 */
1218 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1219 retval = 0;
1220 if (iocb->ki_flags & IOCB_DSYNC)
1221 retval = dio_set_defer_completion(dio);
1222 else if (!dio->inode->i_sb->s_dio_done_wq) {
1223 /*
1224 * In case of AIO write racing with buffered read we
1225 * need to defer completion. We can't decide this now,
1226 * however the workqueue needs to be initialized here.
1227 */
1228 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1229 }
1230 if (retval)
1231 goto fail_dio;
1232 }
1233
1234 /*
1235 * Will be decremented at I/O completion time.
1236 */
1237 inode_dio_begin(inode);
1238
1239 retval = 0;
1240 sdio.blkbits = blkbits;
1241 sdio.blkfactor = i_blkbits - blkbits;
1242 sdio.block_in_file = offset >> blkbits;
1243
1244 sdio.get_block = get_block;
1245 dio->end_io = end_io;
1246 sdio.submit_io = submit_io;
1247 sdio.final_block_in_bio = -1;
1248 sdio.next_block_for_io = -1;
1249
1250 dio->iocb = iocb;
1251
1252 spin_lock_init(&dio->bio_lock);
1253 dio->refcount = 1;
1254
1255 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1256 sdio.iter = iter;
1257 sdio.final_block_in_request = end >> blkbits;
1258
1259 /*
1260 * In case of non-aligned buffers, we may need 2 more
1261 * pages since we need to zero out first and last block.
1262 */
1263 if (unlikely(sdio.blkfactor))
1264 sdio.pages_in_io = 2;
1265
1266 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1267
1268 blk_start_plug(&plug);
1269
1270 retval = do_direct_IO(dio, &sdio, &map_bh);
1271 if (retval)
1272 dio_cleanup(dio, &sdio);
1273
1274 if (retval == -ENOTBLK) {
1275 /*
1276 * The remaining part of the request will be
1277 * handled by buffered I/O when we return
1278 */
1279 retval = 0;
1280 }
1281 /*
1282 * There may be some unwritten disk at the end of a part-written
1283 * fs-block-sized block. Go zero that now.
1284 */
1285 dio_zero_block(dio, &sdio, 1, &map_bh);
1286
1287 if (sdio.cur_page) {
1288 ssize_t ret2;
1289
1290 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1291 if (retval == 0)
1292 retval = ret2;
1293 put_page(sdio.cur_page);
1294 sdio.cur_page = NULL;
1295 }
1296 if (sdio.bio)
1297 dio_bio_submit(dio, &sdio);
1298
1299 blk_finish_plug(&plug);
1300
1301 /*
1302 * It is possible that, we return short IO due to end of file.
1303 * In that case, we need to release all the pages we got hold on.
1304 */
1305 dio_cleanup(dio, &sdio);
1306
1307 /*
1308 * All block lookups have been performed. For READ requests
1309 * we can let i_mutex go now that its achieved its purpose
1310 * of protecting us from looking up uninitialized blocks.
1311 */
1312 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1313 inode_unlock(dio->inode);
1314
1315 /*
1316 * The only time we want to leave bios in flight is when a successful
1317 * partial aio read or full aio write have been setup. In that case
1318 * bio completion will call aio_complete. The only time it's safe to
1319 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1320 * This had *better* be the only place that raises -EIOCBQUEUED.
1321 */
1322 BUG_ON(retval == -EIOCBQUEUED);
1323 if (dio->is_async && retval == 0 && dio->result &&
1324 (iov_iter_rw(iter) == READ || dio->result == count))
1325 retval = -EIOCBQUEUED;
1326 else
1327 dio_await_completion(dio);
1328
1329 if (drop_refcount(dio) == 0) {
1330 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1331 } else
1332 BUG_ON(retval != -EIOCBQUEUED);
1333
1334 return retval;
1335
1336 fail_dio:
1337 if (dio->flags & DIO_LOCKING && iov_iter_rw(iter) == READ)
1338 inode_unlock(inode);
1339
1340 kmem_cache_free(dio_cache, dio);
1341 return retval;
1342 }
1343
__blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1344 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1345 struct block_device *bdev, struct iov_iter *iter,
1346 get_block_t get_block,
1347 dio_iodone_t end_io, dio_submit_t submit_io,
1348 int flags)
1349 {
1350 /*
1351 * The block device state is needed in the end to finally
1352 * submit everything. Since it's likely to be cache cold
1353 * prefetch it here as first thing to hide some of the
1354 * latency.
1355 *
1356 * Attempt to prefetch the pieces we likely need later.
1357 */
1358 prefetch(&bdev->bd_disk->part_tbl);
1359 prefetch(bdev->bd_disk->queue);
1360 prefetch((char *)bdev->bd_disk->queue + SMP_CACHE_BYTES);
1361
1362 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1363 end_io, submit_io, flags);
1364 }
1365
1366 EXPORT_SYMBOL(__blockdev_direct_IO);
1367
dio_init(void)1368 static __init int dio_init(void)
1369 {
1370 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1371 return 0;
1372 }
1373 module_init(dio_init)
1374