1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/skmsg.h>
43 #include <linux/mutex.h>
44 #include <linux/netdevice.h>
45 #include <linux/rcupdate.h>
46
47 #include <net/net_namespace.h>
48 #include <net/tcp.h>
49 #include <net/strparser.h>
50 #include <crypto/aead.h>
51 #include <uapi/linux/tls.h>
52
53
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
56
57 #define TLS_HEADER_SIZE 5
58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
59
60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
61
62 #define TLS_RECORD_TYPE_DATA 0x17
63
64 #define TLS_AAD_SPACE_SIZE 13
65
66 #define MAX_IV_SIZE 16
67 #define TLS_MAX_REC_SEQ_SIZE 8
68
69 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
70 *
71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72 *
73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74 * Hence b0 contains (3 - 1) = 2.
75 */
76 #define TLS_AES_CCM_IV_B0_BYTE 2
77 #define TLS_SM4_CCM_IV_B0_BYTE 2
78
79 #define __TLS_INC_STATS(net, field) \
80 __SNMP_INC_STATS((net)->mib.tls_statistics, field)
81 #define TLS_INC_STATS(net, field) \
82 SNMP_INC_STATS((net)->mib.tls_statistics, field)
83 #define TLS_DEC_STATS(net, field) \
84 SNMP_DEC_STATS((net)->mib.tls_statistics, field)
85
86 enum {
87 TLS_BASE,
88 TLS_SW,
89 TLS_HW,
90 TLS_HW_RECORD,
91 TLS_NUM_CONFIG,
92 };
93
94 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
95 * allocated or mapped for each TLS record. After encryption, the records are
96 * stores in a linked list.
97 */
98 struct tls_rec {
99 struct list_head list;
100 int tx_ready;
101 int tx_flags;
102
103 struct sk_msg msg_plaintext;
104 struct sk_msg msg_encrypted;
105
106 /* AAD | msg_plaintext.sg.data | sg_tag */
107 struct scatterlist sg_aead_in[2];
108 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
109 struct scatterlist sg_aead_out[2];
110
111 char content_type;
112 struct scatterlist sg_content_type;
113
114 char aad_space[TLS_AAD_SPACE_SIZE];
115 u8 iv_data[MAX_IV_SIZE];
116 struct aead_request aead_req;
117 u8 aead_req_ctx[];
118 };
119
120 struct tls_msg {
121 struct strp_msg rxm;
122 u8 control;
123 };
124
125 struct tx_work {
126 struct delayed_work work;
127 struct sock *sk;
128 };
129
130 struct tls_sw_context_tx {
131 struct crypto_aead *aead_send;
132 struct crypto_wait async_wait;
133 struct tx_work tx_work;
134 struct tls_rec *open_rec;
135 struct list_head tx_list;
136 atomic_t encrypt_pending;
137 /* protect crypto_wait with encrypt_pending */
138 spinlock_t encrypt_compl_lock;
139 int async_notify;
140 u8 async_capable:1;
141
142 #define BIT_TX_SCHEDULED 0
143 #define BIT_TX_CLOSING 1
144 unsigned long tx_bitmask;
145 };
146
147 struct tls_sw_context_rx {
148 struct crypto_aead *aead_recv;
149 struct crypto_wait async_wait;
150 struct strparser strp;
151 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
152 void (*saved_data_ready)(struct sock *sk);
153
154 struct sk_buff *recv_pkt;
155 u8 control;
156 u8 async_capable:1;
157 u8 decrypted:1;
158 atomic_t decrypt_pending;
159 /* protect crypto_wait with decrypt_pending*/
160 spinlock_t decrypt_compl_lock;
161 bool async_notify;
162 };
163
164 struct tls_record_info {
165 struct list_head list;
166 u32 end_seq;
167 int len;
168 int num_frags;
169 skb_frag_t frags[MAX_SKB_FRAGS];
170 };
171
172 struct tls_offload_context_tx {
173 struct crypto_aead *aead_send;
174 spinlock_t lock; /* protects records list */
175 struct list_head records_list;
176 struct tls_record_info *open_record;
177 struct tls_record_info *retransmit_hint;
178 u64 hint_record_sn;
179 u64 unacked_record_sn;
180
181 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
182 void (*sk_destruct)(struct sock *sk);
183 u8 driver_state[] __aligned(8);
184 /* The TLS layer reserves room for driver specific state
185 * Currently the belief is that there is not enough
186 * driver specific state to justify another layer of indirection
187 */
188 #define TLS_DRIVER_STATE_SIZE_TX 16
189 };
190
191 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
192 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
193
194 enum tls_context_flags {
195 /* tls_device_down was called after the netdev went down, device state
196 * was released, and kTLS works in software, even though rx_conf is
197 * still TLS_HW (needed for transition).
198 */
199 TLS_RX_DEV_DEGRADED = 0,
200 /* Unlike RX where resync is driven entirely by the core in TX only
201 * the driver knows when things went out of sync, so we need the flag
202 * to be atomic.
203 */
204 TLS_TX_SYNC_SCHED = 1,
205 /* tls_dev_del was called for the RX side, device state was released,
206 * but tls_ctx->netdev might still be kept, because TX-side driver
207 * resources might not be released yet. Used to prevent the second
208 * tls_dev_del call in tls_device_down if it happens simultaneously.
209 */
210 TLS_RX_DEV_CLOSED = 2,
211 };
212
213 struct cipher_context {
214 char *iv;
215 char *rec_seq;
216 };
217
218 union tls_crypto_context {
219 struct tls_crypto_info info;
220 union {
221 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
222 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
223 struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
224 struct tls12_crypto_info_sm4_gcm sm4_gcm;
225 struct tls12_crypto_info_sm4_ccm sm4_ccm;
226 };
227 };
228
229 struct tls_prot_info {
230 u16 version;
231 u16 cipher_type;
232 u16 prepend_size;
233 u16 tag_size;
234 u16 overhead_size;
235 u16 iv_size;
236 u16 salt_size;
237 u16 rec_seq_size;
238 u16 aad_size;
239 u16 tail_size;
240 };
241
242 struct tls_context {
243 /* read-only cache line */
244 struct tls_prot_info prot_info;
245
246 u8 tx_conf:3;
247 u8 rx_conf:3;
248
249 int (*push_pending_record)(struct sock *sk, int flags);
250 void (*sk_write_space)(struct sock *sk);
251
252 void *priv_ctx_tx;
253 void *priv_ctx_rx;
254
255 struct net_device *netdev;
256
257 /* rw cache line */
258 struct cipher_context tx;
259 struct cipher_context rx;
260
261 struct scatterlist *partially_sent_record;
262 u16 partially_sent_offset;
263
264 bool in_tcp_sendpages;
265 bool pending_open_record_frags;
266
267 struct mutex tx_lock; /* protects partially_sent_* fields and
268 * per-type TX fields
269 */
270 unsigned long flags;
271
272 /* cache cold stuff */
273 struct proto *sk_proto;
274 struct sock *sk;
275
276 void (*sk_destruct)(struct sock *sk);
277
278 union tls_crypto_context crypto_send;
279 union tls_crypto_context crypto_recv;
280
281 struct list_head list;
282 refcount_t refcount;
283 struct rcu_head rcu;
284 };
285
286 enum tls_offload_ctx_dir {
287 TLS_OFFLOAD_CTX_DIR_RX,
288 TLS_OFFLOAD_CTX_DIR_TX,
289 };
290
291 struct tlsdev_ops {
292 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
293 enum tls_offload_ctx_dir direction,
294 struct tls_crypto_info *crypto_info,
295 u32 start_offload_tcp_sn);
296 void (*tls_dev_del)(struct net_device *netdev,
297 struct tls_context *ctx,
298 enum tls_offload_ctx_dir direction);
299 int (*tls_dev_resync)(struct net_device *netdev,
300 struct sock *sk, u32 seq, u8 *rcd_sn,
301 enum tls_offload_ctx_dir direction);
302 };
303
304 enum tls_offload_sync_type {
305 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
306 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
307 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
308 };
309
310 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2
311 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
312
313 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13
314 struct tls_offload_resync_async {
315 atomic64_t req;
316 u16 loglen;
317 u16 rcd_delta;
318 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
319 };
320
321 struct tls_offload_context_rx {
322 /* sw must be the first member of tls_offload_context_rx */
323 struct tls_sw_context_rx sw;
324 enum tls_offload_sync_type resync_type;
325 /* this member is set regardless of resync_type, to avoid branches */
326 u8 resync_nh_reset:1;
327 /* CORE_NEXT_HINT-only member, but use the hole here */
328 u8 resync_nh_do_now:1;
329 union {
330 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
331 struct {
332 atomic64_t resync_req;
333 };
334 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
335 struct {
336 u32 decrypted_failed;
337 u32 decrypted_tgt;
338 } resync_nh;
339 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
340 struct {
341 struct tls_offload_resync_async *resync_async;
342 };
343 };
344 u8 driver_state[] __aligned(8);
345 /* The TLS layer reserves room for driver specific state
346 * Currently the belief is that there is not enough
347 * driver specific state to justify another layer of indirection
348 */
349 #define TLS_DRIVER_STATE_SIZE_RX 8
350 };
351
352 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
353 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
354
355 struct tls_context *tls_ctx_create(struct sock *sk);
356 void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
357 void update_sk_prot(struct sock *sk, struct tls_context *ctx);
358
359 int wait_on_pending_writer(struct sock *sk, long *timeo);
360 int tls_sk_query(struct sock *sk, int optname, char __user *optval,
361 int __user *optlen);
362 int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
363 unsigned int optlen);
364 void tls_err_abort(struct sock *sk, int err);
365
366 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
367 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
368 void tls_sw_strparser_done(struct tls_context *tls_ctx);
369 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
370 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
371 int offset, size_t size, int flags);
372 int tls_sw_sendpage(struct sock *sk, struct page *page,
373 int offset, size_t size, int flags);
374 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
375 void tls_sw_release_resources_tx(struct sock *sk);
376 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
377 void tls_sw_free_resources_rx(struct sock *sk);
378 void tls_sw_release_resources_rx(struct sock *sk);
379 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
380 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
381 int nonblock, int flags, int *addr_len);
382 bool tls_sw_sock_is_readable(struct sock *sk);
383 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
384 struct pipe_inode_info *pipe,
385 size_t len, unsigned int flags);
386
387 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
388 int tls_device_sendpage(struct sock *sk, struct page *page,
389 int offset, size_t size, int flags);
390 int tls_tx_records(struct sock *sk, int flags);
391
392 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
393 u32 seq, u64 *p_record_sn);
394
tls_record_is_start_marker(struct tls_record_info * rec)395 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
396 {
397 return rec->len == 0;
398 }
399
tls_record_start_seq(struct tls_record_info * rec)400 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
401 {
402 return rec->end_seq - rec->len;
403 }
404
405 int tls_push_sg(struct sock *sk, struct tls_context *ctx,
406 struct scatterlist *sg, u16 first_offset,
407 int flags);
408 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
409 int flags);
410 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
411
tls_msg(struct sk_buff * skb)412 static inline struct tls_msg *tls_msg(struct sk_buff *skb)
413 {
414 return (struct tls_msg *)strp_msg(skb);
415 }
416
tls_is_partially_sent_record(struct tls_context * ctx)417 static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
418 {
419 return !!ctx->partially_sent_record;
420 }
421
tls_is_pending_open_record(struct tls_context * tls_ctx)422 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
423 {
424 return tls_ctx->pending_open_record_frags;
425 }
426
is_tx_ready(struct tls_sw_context_tx * ctx)427 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
428 {
429 struct tls_rec *rec;
430
431 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
432 if (!rec)
433 return false;
434
435 return READ_ONCE(rec->tx_ready);
436 }
437
tls_user_config(struct tls_context * ctx,bool tx)438 static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
439 {
440 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
441
442 switch (config) {
443 case TLS_BASE:
444 return TLS_CONF_BASE;
445 case TLS_SW:
446 return TLS_CONF_SW;
447 case TLS_HW:
448 return TLS_CONF_HW;
449 case TLS_HW_RECORD:
450 return TLS_CONF_HW_RECORD;
451 }
452 return 0;
453 }
454
455 struct sk_buff *
456 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
457 struct sk_buff *skb);
458 struct sk_buff *
459 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
460 struct sk_buff *skb);
461
tls_is_sk_tx_device_offloaded(struct sock * sk)462 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
463 {
464 #ifdef CONFIG_SOCK_VALIDATE_XMIT
465 return sk_fullsock(sk) &&
466 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
467 &tls_validate_xmit_skb);
468 #else
469 return false;
470 #endif
471 }
472
tls_bigint_increment(unsigned char * seq,int len)473 static inline bool tls_bigint_increment(unsigned char *seq, int len)
474 {
475 int i;
476
477 for (i = len - 1; i >= 0; i--) {
478 ++seq[i];
479 if (seq[i] != 0)
480 break;
481 }
482
483 return (i == -1);
484 }
485
tls_bigint_subtract(unsigned char * seq,int n)486 static inline void tls_bigint_subtract(unsigned char *seq, int n)
487 {
488 u64 rcd_sn;
489 __be64 *p;
490
491 BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
492
493 p = (__be64 *)seq;
494 rcd_sn = be64_to_cpu(*p);
495 *p = cpu_to_be64(rcd_sn - n);
496 }
497
tls_get_ctx(const struct sock * sk)498 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
499 {
500 struct inet_connection_sock *icsk = inet_csk(sk);
501
502 /* Use RCU on icsk_ulp_data only for sock diag code,
503 * TLS data path doesn't need rcu_dereference().
504 */
505 return (__force void *)icsk->icsk_ulp_data;
506 }
507
tls_advance_record_sn(struct sock * sk,struct tls_prot_info * prot,struct cipher_context * ctx)508 static inline void tls_advance_record_sn(struct sock *sk,
509 struct tls_prot_info *prot,
510 struct cipher_context *ctx)
511 {
512 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
513 tls_err_abort(sk, -EBADMSG);
514
515 if (prot->version != TLS_1_3_VERSION &&
516 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
517 tls_bigint_increment(ctx->iv + prot->salt_size,
518 prot->iv_size);
519 }
520
tls_fill_prepend(struct tls_context * ctx,char * buf,size_t plaintext_len,unsigned char record_type)521 static inline void tls_fill_prepend(struct tls_context *ctx,
522 char *buf,
523 size_t plaintext_len,
524 unsigned char record_type)
525 {
526 struct tls_prot_info *prot = &ctx->prot_info;
527 size_t pkt_len, iv_size = prot->iv_size;
528
529 pkt_len = plaintext_len + prot->tag_size;
530 if (prot->version != TLS_1_3_VERSION &&
531 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305) {
532 pkt_len += iv_size;
533
534 memcpy(buf + TLS_NONCE_OFFSET,
535 ctx->tx.iv + prot->salt_size, iv_size);
536 }
537
538 /* we cover nonce explicit here as well, so buf should be of
539 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
540 */
541 buf[0] = prot->version == TLS_1_3_VERSION ?
542 TLS_RECORD_TYPE_DATA : record_type;
543 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
544 buf[1] = TLS_1_2_VERSION_MINOR;
545 buf[2] = TLS_1_2_VERSION_MAJOR;
546 /* we can use IV for nonce explicit according to spec */
547 buf[3] = pkt_len >> 8;
548 buf[4] = pkt_len & 0xFF;
549 }
550
tls_make_aad(char * buf,size_t size,char * record_sequence,unsigned char record_type,struct tls_prot_info * prot)551 static inline void tls_make_aad(char *buf,
552 size_t size,
553 char *record_sequence,
554 unsigned char record_type,
555 struct tls_prot_info *prot)
556 {
557 if (prot->version != TLS_1_3_VERSION) {
558 memcpy(buf, record_sequence, prot->rec_seq_size);
559 buf += 8;
560 } else {
561 size += prot->tag_size;
562 }
563
564 buf[0] = prot->version == TLS_1_3_VERSION ?
565 TLS_RECORD_TYPE_DATA : record_type;
566 buf[1] = TLS_1_2_VERSION_MAJOR;
567 buf[2] = TLS_1_2_VERSION_MINOR;
568 buf[3] = size >> 8;
569 buf[4] = size & 0xFF;
570 }
571
xor_iv_with_seq(struct tls_prot_info * prot,char * iv,char * seq)572 static inline void xor_iv_with_seq(struct tls_prot_info *prot, char *iv, char *seq)
573 {
574 int i;
575
576 if (prot->version == TLS_1_3_VERSION ||
577 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
578 for (i = 0; i < 8; i++)
579 iv[i + 4] ^= seq[i];
580 }
581 }
582
583
tls_sw_ctx_rx(const struct tls_context * tls_ctx)584 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
585 const struct tls_context *tls_ctx)
586 {
587 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
588 }
589
tls_sw_ctx_tx(const struct tls_context * tls_ctx)590 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
591 const struct tls_context *tls_ctx)
592 {
593 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
594 }
595
596 static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context * tls_ctx)597 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
598 {
599 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
600 }
601
tls_sw_has_ctx_tx(const struct sock * sk)602 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
603 {
604 struct tls_context *ctx = tls_get_ctx(sk);
605
606 if (!ctx)
607 return false;
608 return !!tls_sw_ctx_tx(ctx);
609 }
610
tls_sw_has_ctx_rx(const struct sock * sk)611 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
612 {
613 struct tls_context *ctx = tls_get_ctx(sk);
614
615 if (!ctx)
616 return false;
617 return !!tls_sw_ctx_rx(ctx);
618 }
619
620 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
621 void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
622
623 static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context * tls_ctx)624 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
625 {
626 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
627 }
628
629 #if IS_ENABLED(CONFIG_TLS_DEVICE)
__tls_driver_ctx(struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)630 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
631 enum tls_offload_ctx_dir direction)
632 {
633 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
634 return tls_offload_ctx_tx(tls_ctx)->driver_state;
635 else
636 return tls_offload_ctx_rx(tls_ctx)->driver_state;
637 }
638
639 static inline void *
tls_driver_ctx(const struct sock * sk,enum tls_offload_ctx_dir direction)640 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
641 {
642 return __tls_driver_ctx(tls_get_ctx(sk), direction);
643 }
644 #endif
645
646 #define RESYNC_REQ BIT(0)
647 #define RESYNC_REQ_ASYNC BIT(1)
648 /* The TLS context is valid until sk_destruct is called */
tls_offload_rx_resync_request(struct sock * sk,__be32 seq)649 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
650 {
651 struct tls_context *tls_ctx = tls_get_ctx(sk);
652 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
653
654 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
655 }
656
657 /* Log all TLS record header TCP sequences in [seq, seq+len] */
658 static inline void
tls_offload_rx_resync_async_request_start(struct sock * sk,__be32 seq,u16 len)659 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
660 {
661 struct tls_context *tls_ctx = tls_get_ctx(sk);
662 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
663
664 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
665 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
666 rx_ctx->resync_async->loglen = 0;
667 rx_ctx->resync_async->rcd_delta = 0;
668 }
669
670 static inline void
tls_offload_rx_resync_async_request_end(struct sock * sk,__be32 seq)671 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
672 {
673 struct tls_context *tls_ctx = tls_get_ctx(sk);
674 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
675
676 atomic64_set(&rx_ctx->resync_async->req,
677 ((u64)ntohl(seq) << 32) | RESYNC_REQ);
678 }
679
680 static inline void
tls_offload_rx_resync_set_type(struct sock * sk,enum tls_offload_sync_type type)681 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
682 {
683 struct tls_context *tls_ctx = tls_get_ctx(sk);
684
685 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
686 }
687
688 /* Driver's seq tracking has to be disabled until resync succeeded */
tls_offload_tx_resync_pending(struct sock * sk)689 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
690 {
691 struct tls_context *tls_ctx = tls_get_ctx(sk);
692 bool ret;
693
694 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
695 smp_mb__after_atomic();
696 return ret;
697 }
698
699 int __net_init tls_proc_init(struct net *net);
700 void __net_exit tls_proc_fini(struct net *net);
701
702 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
703 unsigned char *record_type);
704 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
705 struct scatterlist *sgout);
706 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
707
708 int tls_sw_fallback_init(struct sock *sk,
709 struct tls_offload_context_tx *offload_ctx,
710 struct tls_crypto_info *crypto_info);
711
712 #ifdef CONFIG_TLS_DEVICE
713 void tls_device_init(void);
714 void tls_device_cleanup(void);
715 void tls_device_sk_destruct(struct sock *sk);
716 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
717 void tls_device_free_resources_tx(struct sock *sk);
718 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
719 void tls_device_offload_cleanup_rx(struct sock *sk);
720 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
721 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
722 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
723 struct sk_buff *skb, struct strp_msg *rxm);
724
tls_is_sk_rx_device_offloaded(struct sock * sk)725 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
726 {
727 if (!sk_fullsock(sk) ||
728 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
729 return false;
730 return tls_get_ctx(sk)->rx_conf == TLS_HW;
731 }
732 #else
tls_device_init(void)733 static inline void tls_device_init(void) {}
tls_device_cleanup(void)734 static inline void tls_device_cleanup(void) {}
735
736 static inline int
tls_set_device_offload(struct sock * sk,struct tls_context * ctx)737 tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
738 {
739 return -EOPNOTSUPP;
740 }
741
tls_device_free_resources_tx(struct sock * sk)742 static inline void tls_device_free_resources_tx(struct sock *sk) {}
743
744 static inline int
tls_set_device_offload_rx(struct sock * sk,struct tls_context * ctx)745 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
746 {
747 return -EOPNOTSUPP;
748 }
749
tls_device_offload_cleanup_rx(struct sock * sk)750 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
751 static inline void
tls_device_rx_resync_new_rec(struct sock * sk,u32 rcd_len,u32 seq)752 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
753
754 static inline int
tls_device_decrypted(struct sock * sk,struct tls_context * tls_ctx,struct sk_buff * skb,struct strp_msg * rxm)755 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
756 struct sk_buff *skb, struct strp_msg *rxm)
757 {
758 return 0;
759 }
760 #endif
761 #endif /* _TLS_OFFLOAD_H */
762