1 // SPDX-License-Identifier: GPL-2.0-only
2 #include "cgroup-internal.h"
3
4 #include <linux/ctype.h>
5 #include <linux/kmod.h>
6 #include <linux/sort.h>
7 #include <linux/delay.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/sched/task.h>
11 #include <linux/magic.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/delayacct.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/cgroupstats.h>
17 #include <linux/fs_parser.h>
18
19 #include <trace/events/cgroup.h>
20
21 /*
22 * pidlists linger the following amount before being destroyed. The goal
23 * is avoiding frequent destruction in the middle of consecutive read calls
24 * Expiring in the middle is a performance problem not a correctness one.
25 * 1 sec should be enough.
26 */
27 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
28
29 /* Controllers blocked by the commandline in v1 */
30 static u16 cgroup_no_v1_mask;
31
32 /* disable named v1 mounts */
33 static bool cgroup_no_v1_named;
34
35 /*
36 * pidlist destructions need to be flushed on cgroup destruction. Use a
37 * separate workqueue as flush domain.
38 */
39 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
40
41 /* protects cgroup_subsys->release_agent_path */
42 static DEFINE_SPINLOCK(release_agent_path_lock);
43
cgroup1_ssid_disabled(int ssid)44 bool cgroup1_ssid_disabled(int ssid)
45 {
46 return cgroup_no_v1_mask & (1 << ssid);
47 }
48
49 /**
50 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
51 * @from: attach to all cgroups of a given task
52 * @tsk: the task to be attached
53 *
54 * Return: %0 on success or a negative errno code on failure
55 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)56 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
57 {
58 struct cgroup_root *root;
59 int retval = 0;
60
61 mutex_lock(&cgroup_mutex);
62 percpu_down_write(&cgroup_threadgroup_rwsem);
63 for_each_root(root) {
64 struct cgroup *from_cgrp;
65
66 spin_lock_irq(&css_set_lock);
67 from_cgrp = task_cgroup_from_root(from, root);
68 spin_unlock_irq(&css_set_lock);
69
70 retval = cgroup_attach_task(from_cgrp, tsk, false);
71 if (retval)
72 break;
73 }
74 percpu_up_write(&cgroup_threadgroup_rwsem);
75 mutex_unlock(&cgroup_mutex);
76
77 return retval;
78 }
79 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
80
81 /**
82 * cgroup_transfer_tasks - move tasks from one cgroup to another
83 * @to: cgroup to which the tasks will be moved
84 * @from: cgroup in which the tasks currently reside
85 *
86 * Locking rules between cgroup_post_fork() and the migration path
87 * guarantee that, if a task is forking while being migrated, the new child
88 * is guaranteed to be either visible in the source cgroup after the
89 * parent's migration is complete or put into the target cgroup. No task
90 * can slip out of migration through forking.
91 *
92 * Return: %0 on success or a negative errno code on failure
93 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)94 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
95 {
96 DEFINE_CGROUP_MGCTX(mgctx);
97 struct cgrp_cset_link *link;
98 struct css_task_iter it;
99 struct task_struct *task;
100 int ret;
101
102 if (cgroup_on_dfl(to))
103 return -EINVAL;
104
105 ret = cgroup_migrate_vet_dst(to);
106 if (ret)
107 return ret;
108
109 mutex_lock(&cgroup_mutex);
110
111 percpu_down_write(&cgroup_threadgroup_rwsem);
112
113 /* all tasks in @from are being moved, all csets are source */
114 spin_lock_irq(&css_set_lock);
115 list_for_each_entry(link, &from->cset_links, cset_link)
116 cgroup_migrate_add_src(link->cset, to, &mgctx);
117 spin_unlock_irq(&css_set_lock);
118
119 ret = cgroup_migrate_prepare_dst(&mgctx);
120 if (ret)
121 goto out_err;
122
123 /*
124 * Migrate tasks one-by-one until @from is empty. This fails iff
125 * ->can_attach() fails.
126 */
127 do {
128 css_task_iter_start(&from->self, 0, &it);
129
130 do {
131 task = css_task_iter_next(&it);
132 } while (task && (task->flags & PF_EXITING));
133
134 if (task)
135 get_task_struct(task);
136 css_task_iter_end(&it);
137
138 if (task) {
139 ret = cgroup_migrate(task, false, &mgctx);
140 if (!ret)
141 TRACE_CGROUP_PATH(transfer_tasks, to, task, false);
142 put_task_struct(task);
143 }
144 } while (task && !ret);
145 out_err:
146 cgroup_migrate_finish(&mgctx);
147 percpu_up_write(&cgroup_threadgroup_rwsem);
148 mutex_unlock(&cgroup_mutex);
149 return ret;
150 }
151
152 /*
153 * Stuff for reading the 'tasks'/'procs' files.
154 *
155 * Reading this file can return large amounts of data if a cgroup has
156 * *lots* of attached tasks. So it may need several calls to read(),
157 * but we cannot guarantee that the information we produce is correct
158 * unless we produce it entirely atomically.
159 *
160 */
161
162 /* which pidlist file are we talking about? */
163 enum cgroup_filetype {
164 CGROUP_FILE_PROCS,
165 CGROUP_FILE_TASKS,
166 };
167
168 /*
169 * A pidlist is a list of pids that virtually represents the contents of one
170 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
171 * a pair (one each for procs, tasks) for each pid namespace that's relevant
172 * to the cgroup.
173 */
174 struct cgroup_pidlist {
175 /*
176 * used to find which pidlist is wanted. doesn't change as long as
177 * this particular list stays in the list.
178 */
179 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
180 /* array of xids */
181 pid_t *list;
182 /* how many elements the above list has */
183 int length;
184 /* each of these stored in a list by its cgroup */
185 struct list_head links;
186 /* pointer to the cgroup we belong to, for list removal purposes */
187 struct cgroup *owner;
188 /* for delayed destruction */
189 struct delayed_work destroy_dwork;
190 };
191
192 /*
193 * Used to destroy all pidlists lingering waiting for destroy timer. None
194 * should be left afterwards.
195 */
cgroup1_pidlist_destroy_all(struct cgroup * cgrp)196 void cgroup1_pidlist_destroy_all(struct cgroup *cgrp)
197 {
198 struct cgroup_pidlist *l, *tmp_l;
199
200 mutex_lock(&cgrp->pidlist_mutex);
201 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
202 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
203 mutex_unlock(&cgrp->pidlist_mutex);
204
205 flush_workqueue(cgroup_pidlist_destroy_wq);
206 BUG_ON(!list_empty(&cgrp->pidlists));
207 }
208
cgroup_pidlist_destroy_work_fn(struct work_struct * work)209 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
210 {
211 struct delayed_work *dwork = to_delayed_work(work);
212 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
213 destroy_dwork);
214 struct cgroup_pidlist *tofree = NULL;
215
216 mutex_lock(&l->owner->pidlist_mutex);
217
218 /*
219 * Destroy iff we didn't get queued again. The state won't change
220 * as destroy_dwork can only be queued while locked.
221 */
222 if (!delayed_work_pending(dwork)) {
223 list_del(&l->links);
224 kvfree(l->list);
225 put_pid_ns(l->key.ns);
226 tofree = l;
227 }
228
229 mutex_unlock(&l->owner->pidlist_mutex);
230 kfree(tofree);
231 }
232
233 /*
234 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
235 * Returns the number of unique elements.
236 */
pidlist_uniq(pid_t * list,int length)237 static int pidlist_uniq(pid_t *list, int length)
238 {
239 int src, dest = 1;
240
241 /*
242 * we presume the 0th element is unique, so i starts at 1. trivial
243 * edge cases first; no work needs to be done for either
244 */
245 if (length == 0 || length == 1)
246 return length;
247 /* src and dest walk down the list; dest counts unique elements */
248 for (src = 1; src < length; src++) {
249 /* find next unique element */
250 while (list[src] == list[src-1]) {
251 src++;
252 if (src == length)
253 goto after;
254 }
255 /* dest always points to where the next unique element goes */
256 list[dest] = list[src];
257 dest++;
258 }
259 after:
260 return dest;
261 }
262
263 /*
264 * The two pid files - task and cgroup.procs - guaranteed that the result
265 * is sorted, which forced this whole pidlist fiasco. As pid order is
266 * different per namespace, each namespace needs differently sorted list,
267 * making it impossible to use, for example, single rbtree of member tasks
268 * sorted by task pointer. As pidlists can be fairly large, allocating one
269 * per open file is dangerous, so cgroup had to implement shared pool of
270 * pidlists keyed by cgroup and namespace.
271 */
cmppid(const void * a,const void * b)272 static int cmppid(const void *a, const void *b)
273 {
274 return *(pid_t *)a - *(pid_t *)b;
275 }
276
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)277 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
278 enum cgroup_filetype type)
279 {
280 struct cgroup_pidlist *l;
281 /* don't need task_nsproxy() if we're looking at ourself */
282 struct pid_namespace *ns = task_active_pid_ns(current);
283
284 lockdep_assert_held(&cgrp->pidlist_mutex);
285
286 list_for_each_entry(l, &cgrp->pidlists, links)
287 if (l->key.type == type && l->key.ns == ns)
288 return l;
289 return NULL;
290 }
291
292 /*
293 * find the appropriate pidlist for our purpose (given procs vs tasks)
294 * returns with the lock on that pidlist already held, and takes care
295 * of the use count, or returns NULL with no locks held if we're out of
296 * memory.
297 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)298 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
299 enum cgroup_filetype type)
300 {
301 struct cgroup_pidlist *l;
302
303 lockdep_assert_held(&cgrp->pidlist_mutex);
304
305 l = cgroup_pidlist_find(cgrp, type);
306 if (l)
307 return l;
308
309 /* entry not found; create a new one */
310 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
311 if (!l)
312 return l;
313
314 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
315 l->key.type = type;
316 /* don't need task_nsproxy() if we're looking at ourself */
317 l->key.ns = get_pid_ns(task_active_pid_ns(current));
318 l->owner = cgrp;
319 list_add(&l->links, &cgrp->pidlists);
320 return l;
321 }
322
323 /*
324 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
325 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)326 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
327 struct cgroup_pidlist **lp)
328 {
329 pid_t *array;
330 int length;
331 int pid, n = 0; /* used for populating the array */
332 struct css_task_iter it;
333 struct task_struct *tsk;
334 struct cgroup_pidlist *l;
335
336 lockdep_assert_held(&cgrp->pidlist_mutex);
337
338 /*
339 * If cgroup gets more users after we read count, we won't have
340 * enough space - tough. This race is indistinguishable to the
341 * caller from the case that the additional cgroup users didn't
342 * show up until sometime later on.
343 */
344 length = cgroup_task_count(cgrp);
345 array = kvmalloc_array(length, sizeof(pid_t), GFP_KERNEL);
346 if (!array)
347 return -ENOMEM;
348 /* now, populate the array */
349 css_task_iter_start(&cgrp->self, 0, &it);
350 while ((tsk = css_task_iter_next(&it))) {
351 if (unlikely(n == length))
352 break;
353 /* get tgid or pid for procs or tasks file respectively */
354 if (type == CGROUP_FILE_PROCS)
355 pid = task_tgid_vnr(tsk);
356 else
357 pid = task_pid_vnr(tsk);
358 if (pid > 0) /* make sure to only use valid results */
359 array[n++] = pid;
360 }
361 css_task_iter_end(&it);
362 length = n;
363 /* now sort & (if procs) strip out duplicates */
364 sort(array, length, sizeof(pid_t), cmppid, NULL);
365 if (type == CGROUP_FILE_PROCS)
366 length = pidlist_uniq(array, length);
367
368 l = cgroup_pidlist_find_create(cgrp, type);
369 if (!l) {
370 kvfree(array);
371 return -ENOMEM;
372 }
373
374 /* store array, freeing old if necessary */
375 kvfree(l->list);
376 l->list = array;
377 l->length = length;
378 *lp = l;
379 return 0;
380 }
381
382 /*
383 * seq_file methods for the tasks/procs files. The seq_file position is the
384 * next pid to display; the seq_file iterator is a pointer to the pid
385 * in the cgroup->l->list array.
386 */
387
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)388 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
389 {
390 /*
391 * Initially we receive a position value that corresponds to
392 * one more than the last pid shown (or 0 on the first call or
393 * after a seek to the start). Use a binary-search to find the
394 * next pid to display, if any
395 */
396 struct kernfs_open_file *of = s->private;
397 struct cgroup_file_ctx *ctx = of->priv;
398 struct cgroup *cgrp = seq_css(s)->cgroup;
399 struct cgroup_pidlist *l;
400 enum cgroup_filetype type = seq_cft(s)->private;
401 int index = 0, pid = *pos;
402 int *iter, ret;
403
404 mutex_lock(&cgrp->pidlist_mutex);
405
406 /*
407 * !NULL @ctx->procs1.pidlist indicates that this isn't the first
408 * start() after open. If the matching pidlist is around, we can use
409 * that. Look for it. Note that @ctx->procs1.pidlist can't be used
410 * directly. It could already have been destroyed.
411 */
412 if (ctx->procs1.pidlist)
413 ctx->procs1.pidlist = cgroup_pidlist_find(cgrp, type);
414
415 /*
416 * Either this is the first start() after open or the matching
417 * pidlist has been destroyed inbetween. Create a new one.
418 */
419 if (!ctx->procs1.pidlist) {
420 ret = pidlist_array_load(cgrp, type, &ctx->procs1.pidlist);
421 if (ret)
422 return ERR_PTR(ret);
423 }
424 l = ctx->procs1.pidlist;
425
426 if (pid) {
427 int end = l->length;
428
429 while (index < end) {
430 int mid = (index + end) / 2;
431 if (l->list[mid] == pid) {
432 index = mid;
433 break;
434 } else if (l->list[mid] <= pid)
435 index = mid + 1;
436 else
437 end = mid;
438 }
439 }
440 /* If we're off the end of the array, we're done */
441 if (index >= l->length)
442 return NULL;
443 /* Update the abstract position to be the actual pid that we found */
444 iter = l->list + index;
445 *pos = *iter;
446 return iter;
447 }
448
cgroup_pidlist_stop(struct seq_file * s,void * v)449 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
450 {
451 struct kernfs_open_file *of = s->private;
452 struct cgroup_file_ctx *ctx = of->priv;
453 struct cgroup_pidlist *l = ctx->procs1.pidlist;
454
455 if (l)
456 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
457 CGROUP_PIDLIST_DESTROY_DELAY);
458 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
459 }
460
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)461 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
462 {
463 struct kernfs_open_file *of = s->private;
464 struct cgroup_file_ctx *ctx = of->priv;
465 struct cgroup_pidlist *l = ctx->procs1.pidlist;
466 pid_t *p = v;
467 pid_t *end = l->list + l->length;
468 /*
469 * Advance to the next pid in the array. If this goes off the
470 * end, we're done
471 */
472 p++;
473 if (p >= end) {
474 (*pos)++;
475 return NULL;
476 } else {
477 *pos = *p;
478 return p;
479 }
480 }
481
cgroup_pidlist_show(struct seq_file * s,void * v)482 static int cgroup_pidlist_show(struct seq_file *s, void *v)
483 {
484 seq_printf(s, "%d\n", *(int *)v);
485
486 return 0;
487 }
488
__cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)489 static ssize_t __cgroup1_procs_write(struct kernfs_open_file *of,
490 char *buf, size_t nbytes, loff_t off,
491 bool threadgroup)
492 {
493 struct cgroup *cgrp;
494 struct task_struct *task;
495 const struct cred *cred, *tcred;
496 ssize_t ret;
497 bool locked;
498
499 cgrp = cgroup_kn_lock_live(of->kn, false);
500 if (!cgrp)
501 return -ENODEV;
502
503 task = cgroup_procs_write_start(buf, threadgroup, &locked);
504 ret = PTR_ERR_OR_ZERO(task);
505 if (ret)
506 goto out_unlock;
507
508 /*
509 * Even if we're attaching all tasks in the thread group, we only need
510 * to check permissions on one of them. Check permissions using the
511 * credentials from file open to protect against inherited fd attacks.
512 */
513 cred = of->file->f_cred;
514 tcred = get_task_cred(task);
515 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
516 !uid_eq(cred->euid, tcred->uid) &&
517 !uid_eq(cred->euid, tcred->suid))
518 ret = -EACCES;
519 put_cred(tcred);
520 if (ret)
521 goto out_finish;
522
523 ret = cgroup_attach_task(cgrp, task, threadgroup);
524
525 out_finish:
526 cgroup_procs_write_finish(task, locked);
527 out_unlock:
528 cgroup_kn_unlock(of->kn);
529
530 return ret ?: nbytes;
531 }
532
cgroup1_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)533 static ssize_t cgroup1_procs_write(struct kernfs_open_file *of,
534 char *buf, size_t nbytes, loff_t off)
535 {
536 return __cgroup1_procs_write(of, buf, nbytes, off, true);
537 }
538
cgroup1_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)539 static ssize_t cgroup1_tasks_write(struct kernfs_open_file *of,
540 char *buf, size_t nbytes, loff_t off)
541 {
542 return __cgroup1_procs_write(of, buf, nbytes, off, false);
543 }
544
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)545 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
546 char *buf, size_t nbytes, loff_t off)
547 {
548 struct cgroup *cgrp;
549
550 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
551
552 cgrp = cgroup_kn_lock_live(of->kn, false);
553 if (!cgrp)
554 return -ENODEV;
555 spin_lock(&release_agent_path_lock);
556 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
557 sizeof(cgrp->root->release_agent_path));
558 spin_unlock(&release_agent_path_lock);
559 cgroup_kn_unlock(of->kn);
560 return nbytes;
561 }
562
cgroup_release_agent_show(struct seq_file * seq,void * v)563 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
564 {
565 struct cgroup *cgrp = seq_css(seq)->cgroup;
566
567 spin_lock(&release_agent_path_lock);
568 seq_puts(seq, cgrp->root->release_agent_path);
569 spin_unlock(&release_agent_path_lock);
570 seq_putc(seq, '\n');
571 return 0;
572 }
573
cgroup_sane_behavior_show(struct seq_file * seq,void * v)574 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
575 {
576 seq_puts(seq, "0\n");
577 return 0;
578 }
579
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)580 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
581 struct cftype *cft)
582 {
583 return notify_on_release(css->cgroup);
584 }
585
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)586 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
587 struct cftype *cft, u64 val)
588 {
589 if (val)
590 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
591 else
592 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
593 return 0;
594 }
595
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)596 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
597 struct cftype *cft)
598 {
599 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
600 }
601
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)602 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
603 struct cftype *cft, u64 val)
604 {
605 if (val)
606 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
607 else
608 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
609 return 0;
610 }
611
612 /* cgroup core interface files for the legacy hierarchies */
613 struct cftype cgroup1_base_files[] = {
614 {
615 .name = "cgroup.procs",
616 .seq_start = cgroup_pidlist_start,
617 .seq_next = cgroup_pidlist_next,
618 .seq_stop = cgroup_pidlist_stop,
619 .seq_show = cgroup_pidlist_show,
620 .private = CGROUP_FILE_PROCS,
621 .write = cgroup1_procs_write,
622 },
623 {
624 .name = "cgroup.clone_children",
625 .read_u64 = cgroup_clone_children_read,
626 .write_u64 = cgroup_clone_children_write,
627 },
628 {
629 .name = "cgroup.sane_behavior",
630 .flags = CFTYPE_ONLY_ON_ROOT,
631 .seq_show = cgroup_sane_behavior_show,
632 },
633 {
634 .name = "tasks",
635 .seq_start = cgroup_pidlist_start,
636 .seq_next = cgroup_pidlist_next,
637 .seq_stop = cgroup_pidlist_stop,
638 .seq_show = cgroup_pidlist_show,
639 .private = CGROUP_FILE_TASKS,
640 .write = cgroup1_tasks_write,
641 },
642 {
643 .name = "notify_on_release",
644 .read_u64 = cgroup_read_notify_on_release,
645 .write_u64 = cgroup_write_notify_on_release,
646 },
647 {
648 .name = "release_agent",
649 .flags = CFTYPE_ONLY_ON_ROOT,
650 .seq_show = cgroup_release_agent_show,
651 .write = cgroup_release_agent_write,
652 .max_write_len = PATH_MAX - 1,
653 },
654 { } /* terminate */
655 };
656
657 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)658 int proc_cgroupstats_show(struct seq_file *m, void *v)
659 {
660 struct cgroup_subsys *ss;
661 int i;
662
663 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
664 /*
665 * Grab the subsystems state racily. No need to add avenue to
666 * cgroup_mutex contention.
667 */
668
669 for_each_subsys(ss, i)
670 seq_printf(m, "%s\t%d\t%d\t%d\n",
671 ss->legacy_name, ss->root->hierarchy_id,
672 atomic_read(&ss->root->nr_cgrps),
673 cgroup_ssid_enabled(i));
674
675 return 0;
676 }
677
678 /**
679 * cgroupstats_build - build and fill cgroupstats
680 * @stats: cgroupstats to fill information into
681 * @dentry: A dentry entry belonging to the cgroup for which stats have
682 * been requested.
683 *
684 * Build and fill cgroupstats so that taskstats can export it to user
685 * space.
686 *
687 * Return: %0 on success or a negative errno code on failure
688 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)689 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
690 {
691 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
692 struct cgroup *cgrp;
693 struct css_task_iter it;
694 struct task_struct *tsk;
695
696 /* it should be kernfs_node belonging to cgroupfs and is a directory */
697 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
698 kernfs_type(kn) != KERNFS_DIR)
699 return -EINVAL;
700
701 /*
702 * We aren't being called from kernfs and there's no guarantee on
703 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
704 * @kn->priv is RCU safe. Let's do the RCU dancing.
705 */
706 rcu_read_lock();
707 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
708 if (!cgrp || !cgroup_tryget(cgrp)) {
709 rcu_read_unlock();
710 return -ENOENT;
711 }
712 rcu_read_unlock();
713
714 css_task_iter_start(&cgrp->self, 0, &it);
715 while ((tsk = css_task_iter_next(&it))) {
716 switch (READ_ONCE(tsk->__state)) {
717 case TASK_RUNNING:
718 stats->nr_running++;
719 break;
720 case TASK_INTERRUPTIBLE:
721 stats->nr_sleeping++;
722 break;
723 case TASK_UNINTERRUPTIBLE:
724 stats->nr_uninterruptible++;
725 break;
726 case TASK_STOPPED:
727 stats->nr_stopped++;
728 break;
729 default:
730 if (tsk->in_iowait)
731 stats->nr_io_wait++;
732 break;
733 }
734 }
735 css_task_iter_end(&it);
736
737 cgroup_put(cgrp);
738 return 0;
739 }
740
cgroup1_check_for_release(struct cgroup * cgrp)741 void cgroup1_check_for_release(struct cgroup *cgrp)
742 {
743 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
744 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
745 schedule_work(&cgrp->release_agent_work);
746 }
747
748 /*
749 * Notify userspace when a cgroup is released, by running the
750 * configured release agent with the name of the cgroup (path
751 * relative to the root of cgroup file system) as the argument.
752 *
753 * Most likely, this user command will try to rmdir this cgroup.
754 *
755 * This races with the possibility that some other task will be
756 * attached to this cgroup before it is removed, or that some other
757 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
758 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
759 * unused, and this cgroup will be reprieved from its death sentence,
760 * to continue to serve a useful existence. Next time it's released,
761 * we will get notified again, if it still has 'notify_on_release' set.
762 *
763 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
764 * means only wait until the task is successfully execve()'d. The
765 * separate release agent task is forked by call_usermodehelper(),
766 * then control in this thread returns here, without waiting for the
767 * release agent task. We don't bother to wait because the caller of
768 * this routine has no use for the exit status of the release agent
769 * task, so no sense holding our caller up for that.
770 */
cgroup1_release_agent(struct work_struct * work)771 void cgroup1_release_agent(struct work_struct *work)
772 {
773 struct cgroup *cgrp =
774 container_of(work, struct cgroup, release_agent_work);
775 char *pathbuf, *agentbuf;
776 char *argv[3], *envp[3];
777 int ret;
778
779 /* snoop agent path and exit early if empty */
780 if (!cgrp->root->release_agent_path[0])
781 return;
782
783 /* prepare argument buffers */
784 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
785 agentbuf = kmalloc(PATH_MAX, GFP_KERNEL);
786 if (!pathbuf || !agentbuf)
787 goto out_free;
788
789 spin_lock(&release_agent_path_lock);
790 strlcpy(agentbuf, cgrp->root->release_agent_path, PATH_MAX);
791 spin_unlock(&release_agent_path_lock);
792 if (!agentbuf[0])
793 goto out_free;
794
795 ret = cgroup_path_ns(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
796 if (ret < 0 || ret >= PATH_MAX)
797 goto out_free;
798
799 argv[0] = agentbuf;
800 argv[1] = pathbuf;
801 argv[2] = NULL;
802
803 /* minimal command environment */
804 envp[0] = "HOME=/";
805 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
806 envp[2] = NULL;
807
808 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
809 out_free:
810 kfree(agentbuf);
811 kfree(pathbuf);
812 }
813
814 /*
815 * cgroup_rename - Only allow simple rename of directories in place.
816 */
cgroup1_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)817 static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
818 const char *new_name_str)
819 {
820 struct cgroup *cgrp = kn->priv;
821 int ret;
822
823 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
824 if (strchr(new_name_str, '\n'))
825 return -EINVAL;
826
827 if (kernfs_type(kn) != KERNFS_DIR)
828 return -ENOTDIR;
829 if (kn->parent != new_parent)
830 return -EIO;
831
832 /*
833 * We're gonna grab cgroup_mutex which nests outside kernfs
834 * active_ref. kernfs_rename() doesn't require active_ref
835 * protection. Break them before grabbing cgroup_mutex.
836 */
837 kernfs_break_active_protection(new_parent);
838 kernfs_break_active_protection(kn);
839
840 mutex_lock(&cgroup_mutex);
841
842 ret = kernfs_rename(kn, new_parent, new_name_str);
843 if (!ret)
844 TRACE_CGROUP_PATH(rename, cgrp);
845
846 mutex_unlock(&cgroup_mutex);
847
848 kernfs_unbreak_active_protection(kn);
849 kernfs_unbreak_active_protection(new_parent);
850 return ret;
851 }
852
cgroup1_show_options(struct seq_file * seq,struct kernfs_root * kf_root)853 static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
854 {
855 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
856 struct cgroup_subsys *ss;
857 int ssid;
858
859 for_each_subsys(ss, ssid)
860 if (root->subsys_mask & (1 << ssid))
861 seq_show_option(seq, ss->legacy_name, NULL);
862 if (root->flags & CGRP_ROOT_NOPREFIX)
863 seq_puts(seq, ",noprefix");
864 if (root->flags & CGRP_ROOT_XATTR)
865 seq_puts(seq, ",xattr");
866 if (root->flags & CGRP_ROOT_CPUSET_V2_MODE)
867 seq_puts(seq, ",cpuset_v2_mode");
868
869 spin_lock(&release_agent_path_lock);
870 if (strlen(root->release_agent_path))
871 seq_show_option(seq, "release_agent",
872 root->release_agent_path);
873 spin_unlock(&release_agent_path_lock);
874
875 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
876 seq_puts(seq, ",clone_children");
877 if (strlen(root->name))
878 seq_show_option(seq, "name", root->name);
879 return 0;
880 }
881
882 enum cgroup1_param {
883 Opt_all,
884 Opt_clone_children,
885 Opt_cpuset_v2_mode,
886 Opt_name,
887 Opt_none,
888 Opt_noprefix,
889 Opt_release_agent,
890 Opt_xattr,
891 };
892
893 const struct fs_parameter_spec cgroup1_fs_parameters[] = {
894 fsparam_flag ("all", Opt_all),
895 fsparam_flag ("clone_children", Opt_clone_children),
896 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
897 fsparam_string("name", Opt_name),
898 fsparam_flag ("none", Opt_none),
899 fsparam_flag ("noprefix", Opt_noprefix),
900 fsparam_string("release_agent", Opt_release_agent),
901 fsparam_flag ("xattr", Opt_xattr),
902 {}
903 };
904
cgroup1_parse_param(struct fs_context * fc,struct fs_parameter * param)905 int cgroup1_parse_param(struct fs_context *fc, struct fs_parameter *param)
906 {
907 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
908 struct cgroup_subsys *ss;
909 struct fs_parse_result result;
910 int opt, i;
911
912 opt = fs_parse(fc, cgroup1_fs_parameters, param, &result);
913 if (opt == -ENOPARAM) {
914 int ret;
915
916 ret = vfs_parse_fs_param_source(fc, param);
917 if (ret != -ENOPARAM)
918 return ret;
919 for_each_subsys(ss, i) {
920 if (strcmp(param->key, ss->legacy_name))
921 continue;
922 if (!cgroup_ssid_enabled(i) || cgroup1_ssid_disabled(i))
923 return invalfc(fc, "Disabled controller '%s'",
924 param->key);
925 ctx->subsys_mask |= (1 << i);
926 return 0;
927 }
928 return invalfc(fc, "Unknown subsys name '%s'", param->key);
929 }
930 if (opt < 0)
931 return opt;
932
933 switch (opt) {
934 case Opt_none:
935 /* Explicitly have no subsystems */
936 ctx->none = true;
937 break;
938 case Opt_all:
939 ctx->all_ss = true;
940 break;
941 case Opt_noprefix:
942 ctx->flags |= CGRP_ROOT_NOPREFIX;
943 break;
944 case Opt_clone_children:
945 ctx->cpuset_clone_children = true;
946 break;
947 case Opt_cpuset_v2_mode:
948 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
949 break;
950 case Opt_xattr:
951 ctx->flags |= CGRP_ROOT_XATTR;
952 break;
953 case Opt_release_agent:
954 /* Specifying two release agents is forbidden */
955 if (ctx->release_agent)
956 return invalfc(fc, "release_agent respecified");
957 ctx->release_agent = param->string;
958 param->string = NULL;
959 break;
960 case Opt_name:
961 /* blocked by boot param? */
962 if (cgroup_no_v1_named)
963 return -ENOENT;
964 /* Can't specify an empty name */
965 if (!param->size)
966 return invalfc(fc, "Empty name");
967 if (param->size > MAX_CGROUP_ROOT_NAMELEN - 1)
968 return invalfc(fc, "Name too long");
969 /* Must match [\w.-]+ */
970 for (i = 0; i < param->size; i++) {
971 char c = param->string[i];
972 if (isalnum(c))
973 continue;
974 if ((c == '.') || (c == '-') || (c == '_'))
975 continue;
976 return invalfc(fc, "Invalid name");
977 }
978 /* Specifying two names is forbidden */
979 if (ctx->name)
980 return invalfc(fc, "name respecified");
981 ctx->name = param->string;
982 param->string = NULL;
983 break;
984 }
985 return 0;
986 }
987
check_cgroupfs_options(struct fs_context * fc)988 static int check_cgroupfs_options(struct fs_context *fc)
989 {
990 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
991 u16 mask = U16_MAX;
992 u16 enabled = 0;
993 struct cgroup_subsys *ss;
994 int i;
995
996 #ifdef CONFIG_CPUSETS
997 mask = ~((u16)1 << cpuset_cgrp_id);
998 #endif
999 for_each_subsys(ss, i)
1000 if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i))
1001 enabled |= 1 << i;
1002
1003 ctx->subsys_mask &= enabled;
1004
1005 /*
1006 * In absence of 'none', 'name=' and subsystem name options,
1007 * let's default to 'all'.
1008 */
1009 if (!ctx->subsys_mask && !ctx->none && !ctx->name)
1010 ctx->all_ss = true;
1011
1012 if (ctx->all_ss) {
1013 /* Mutually exclusive option 'all' + subsystem name */
1014 if (ctx->subsys_mask)
1015 return invalfc(fc, "subsys name conflicts with all");
1016 /* 'all' => select all the subsystems */
1017 ctx->subsys_mask = enabled;
1018 }
1019
1020 /*
1021 * We either have to specify by name or by subsystems. (So all
1022 * empty hierarchies must have a name).
1023 */
1024 if (!ctx->subsys_mask && !ctx->name)
1025 return invalfc(fc, "Need name or subsystem set");
1026
1027 /*
1028 * Option noprefix was introduced just for backward compatibility
1029 * with the old cpuset, so we allow noprefix only if mounting just
1030 * the cpuset subsystem.
1031 */
1032 if ((ctx->flags & CGRP_ROOT_NOPREFIX) && (ctx->subsys_mask & mask))
1033 return invalfc(fc, "noprefix used incorrectly");
1034
1035 /* Can't specify "none" and some subsystems */
1036 if (ctx->subsys_mask && ctx->none)
1037 return invalfc(fc, "none used incorrectly");
1038
1039 return 0;
1040 }
1041
cgroup1_reconfigure(struct fs_context * fc)1042 int cgroup1_reconfigure(struct fs_context *fc)
1043 {
1044 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1045 struct kernfs_root *kf_root = kernfs_root_from_sb(fc->root->d_sb);
1046 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1047 int ret = 0;
1048 u16 added_mask, removed_mask;
1049
1050 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1051
1052 /* See what subsystems are wanted */
1053 ret = check_cgroupfs_options(fc);
1054 if (ret)
1055 goto out_unlock;
1056
1057 if (ctx->subsys_mask != root->subsys_mask || ctx->release_agent)
1058 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1059 task_tgid_nr(current), current->comm);
1060
1061 added_mask = ctx->subsys_mask & ~root->subsys_mask;
1062 removed_mask = root->subsys_mask & ~ctx->subsys_mask;
1063
1064 /* Don't allow flags or name to change at remount */
1065 if ((ctx->flags ^ root->flags) ||
1066 (ctx->name && strcmp(ctx->name, root->name))) {
1067 errorfc(fc, "option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"",
1068 ctx->flags, ctx->name ?: "", root->flags, root->name);
1069 ret = -EINVAL;
1070 goto out_unlock;
1071 }
1072
1073 /* remounting is not allowed for populated hierarchies */
1074 if (!list_empty(&root->cgrp.self.children)) {
1075 ret = -EBUSY;
1076 goto out_unlock;
1077 }
1078
1079 ret = rebind_subsystems(root, added_mask);
1080 if (ret)
1081 goto out_unlock;
1082
1083 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1084
1085 if (ctx->release_agent) {
1086 spin_lock(&release_agent_path_lock);
1087 strcpy(root->release_agent_path, ctx->release_agent);
1088 spin_unlock(&release_agent_path_lock);
1089 }
1090
1091 trace_cgroup_remount(root);
1092
1093 out_unlock:
1094 mutex_unlock(&cgroup_mutex);
1095 return ret;
1096 }
1097
1098 struct kernfs_syscall_ops cgroup1_kf_syscall_ops = {
1099 .rename = cgroup1_rename,
1100 .show_options = cgroup1_show_options,
1101 .mkdir = cgroup_mkdir,
1102 .rmdir = cgroup_rmdir,
1103 .show_path = cgroup_show_path,
1104 };
1105
1106 /*
1107 * The guts of cgroup1 mount - find or create cgroup_root to use.
1108 * Called with cgroup_mutex held; returns 0 on success, -E... on
1109 * error and positive - in case when the candidate is busy dying.
1110 * On success it stashes a reference to cgroup_root into given
1111 * cgroup_fs_context; that reference is *NOT* counting towards the
1112 * cgroup_root refcount.
1113 */
cgroup1_root_to_use(struct fs_context * fc)1114 static int cgroup1_root_to_use(struct fs_context *fc)
1115 {
1116 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1117 struct cgroup_root *root;
1118 struct cgroup_subsys *ss;
1119 int i, ret;
1120
1121 /* First find the desired set of subsystems */
1122 ret = check_cgroupfs_options(fc);
1123 if (ret)
1124 return ret;
1125
1126 /*
1127 * Destruction of cgroup root is asynchronous, so subsystems may
1128 * still be dying after the previous unmount. Let's drain the
1129 * dying subsystems. We just need to ensure that the ones
1130 * unmounted previously finish dying and don't care about new ones
1131 * starting. Testing ref liveliness is good enough.
1132 */
1133 for_each_subsys(ss, i) {
1134 if (!(ctx->subsys_mask & (1 << i)) ||
1135 ss->root == &cgrp_dfl_root)
1136 continue;
1137
1138 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt))
1139 return 1; /* restart */
1140 cgroup_put(&ss->root->cgrp);
1141 }
1142
1143 for_each_root(root) {
1144 bool name_match = false;
1145
1146 if (root == &cgrp_dfl_root)
1147 continue;
1148
1149 /*
1150 * If we asked for a name then it must match. Also, if
1151 * name matches but sybsys_mask doesn't, we should fail.
1152 * Remember whether name matched.
1153 */
1154 if (ctx->name) {
1155 if (strcmp(ctx->name, root->name))
1156 continue;
1157 name_match = true;
1158 }
1159
1160 /*
1161 * If we asked for subsystems (or explicitly for no
1162 * subsystems) then they must match.
1163 */
1164 if ((ctx->subsys_mask || ctx->none) &&
1165 (ctx->subsys_mask != root->subsys_mask)) {
1166 if (!name_match)
1167 continue;
1168 return -EBUSY;
1169 }
1170
1171 if (root->flags ^ ctx->flags)
1172 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1173
1174 ctx->root = root;
1175 return 0;
1176 }
1177
1178 /*
1179 * No such thing, create a new one. name= matching without subsys
1180 * specification is allowed for already existing hierarchies but we
1181 * can't create new one without subsys specification.
1182 */
1183 if (!ctx->subsys_mask && !ctx->none)
1184 return invalfc(fc, "No subsys list or none specified");
1185
1186 /* Hierarchies may only be created in the initial cgroup namespace. */
1187 if (ctx->ns != &init_cgroup_ns)
1188 return -EPERM;
1189
1190 root = kzalloc(sizeof(*root), GFP_KERNEL);
1191 if (!root)
1192 return -ENOMEM;
1193
1194 ctx->root = root;
1195 init_cgroup_root(ctx);
1196
1197 ret = cgroup_setup_root(root, ctx->subsys_mask);
1198 if (ret)
1199 cgroup_free_root(root);
1200 return ret;
1201 }
1202
cgroup1_get_tree(struct fs_context * fc)1203 int cgroup1_get_tree(struct fs_context *fc)
1204 {
1205 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1206 int ret;
1207
1208 /* Check if the caller has permission to mount. */
1209 if (!ns_capable(ctx->ns->user_ns, CAP_SYS_ADMIN))
1210 return -EPERM;
1211
1212 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1213
1214 ret = cgroup1_root_to_use(fc);
1215 if (!ret && !percpu_ref_tryget_live(&ctx->root->cgrp.self.refcnt))
1216 ret = 1; /* restart */
1217
1218 mutex_unlock(&cgroup_mutex);
1219
1220 if (!ret)
1221 ret = cgroup_do_get_tree(fc);
1222
1223 if (!ret && percpu_ref_is_dying(&ctx->root->cgrp.self.refcnt)) {
1224 fc_drop_locked(fc);
1225 ret = 1;
1226 }
1227
1228 if (unlikely(ret > 0)) {
1229 msleep(10);
1230 return restart_syscall();
1231 }
1232 return ret;
1233 }
1234
cgroup1_wq_init(void)1235 static int __init cgroup1_wq_init(void)
1236 {
1237 /*
1238 * Used to destroy pidlists and separate to serve as flush domain.
1239 * Cap @max_active to 1 too.
1240 */
1241 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
1242 0, 1);
1243 BUG_ON(!cgroup_pidlist_destroy_wq);
1244 return 0;
1245 }
1246 core_initcall(cgroup1_wq_init);
1247
cgroup_no_v1(char * str)1248 static int __init cgroup_no_v1(char *str)
1249 {
1250 struct cgroup_subsys *ss;
1251 char *token;
1252 int i;
1253
1254 while ((token = strsep(&str, ",")) != NULL) {
1255 if (!*token)
1256 continue;
1257
1258 if (!strcmp(token, "all")) {
1259 cgroup_no_v1_mask = U16_MAX;
1260 continue;
1261 }
1262
1263 if (!strcmp(token, "named")) {
1264 cgroup_no_v1_named = true;
1265 continue;
1266 }
1267
1268 for_each_subsys(ss, i) {
1269 if (strcmp(token, ss->name) &&
1270 strcmp(token, ss->legacy_name))
1271 continue;
1272
1273 cgroup_no_v1_mask |= 1 << i;
1274 }
1275 }
1276 return 1;
1277 }
1278 __setup("cgroup_no_v1=", cgroup_no_v1);
1279