1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
69
70 /*
71 * To avoid confusing the compiler (and generating warnings) with code
72 * that attempts to access what would be a 0-element array (i.e. sized
73 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
74 * constant expression can be added.
75 */
76 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0)
77
78 /*
79 * cgroup_mutex is the master lock. Any modification to cgroup or its
80 * hierarchy must be performed while holding it.
81 *
82 * css_set_lock protects task->cgroups pointer, the list of css_set
83 * objects, and the chain of tasks off each css_set.
84 *
85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
86 * cgroup.h can use them for lockdep annotations.
87 */
88 DEFINE_MUTEX(cgroup_mutex);
89 DEFINE_SPINLOCK(css_set_lock);
90
91 #ifdef CONFIG_PROVE_RCU
92 EXPORT_SYMBOL_GPL(cgroup_mutex);
93 EXPORT_SYMBOL_GPL(css_set_lock);
94 #endif
95
96 DEFINE_SPINLOCK(trace_cgroup_path_lock);
97 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
98 bool cgroup_debug __read_mostly;
99
100 /*
101 * Protects cgroup_idr and css_idr so that IDs can be released without
102 * grabbing cgroup_mutex.
103 */
104 static DEFINE_SPINLOCK(cgroup_idr_lock);
105
106 /*
107 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
108 * against file removal/re-creation across css hiding.
109 */
110 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
111
112 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
113
114 #define cgroup_assert_mutex_or_rcu_locked() \
115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
116 !lockdep_is_held(&cgroup_mutex), \
117 "cgroup_mutex or RCU read lock required");
118
119 /*
120 * cgroup destruction makes heavy use of work items and there can be a lot
121 * of concurrent destructions. Use a separate workqueue so that cgroup
122 * destruction work items don't end up filling up max_active of system_wq
123 * which may lead to deadlock.
124 */
125 static struct workqueue_struct *cgroup_destroy_wq;
126
127 /* generate an array of cgroup subsystem pointers */
128 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
129 struct cgroup_subsys *cgroup_subsys[] = {
130 #include <linux/cgroup_subsys.h>
131 };
132 #undef SUBSYS
133
134 /* array of cgroup subsystem names */
135 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
136 static const char *cgroup_subsys_name[] = {
137 #include <linux/cgroup_subsys.h>
138 };
139 #undef SUBSYS
140
141 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
142 #define SUBSYS(_x) \
143 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
145 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
147 #include <linux/cgroup_subsys.h>
148 #undef SUBSYS
149
150 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
151 static struct static_key_true *cgroup_subsys_enabled_key[] = {
152 #include <linux/cgroup_subsys.h>
153 };
154 #undef SUBSYS
155
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
157 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
158 #include <linux/cgroup_subsys.h>
159 };
160 #undef SUBSYS
161
162 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
163
164 /* the default hierarchy */
165 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
166 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
167
168 /*
169 * The default hierarchy always exists but is hidden until mounted for the
170 * first time. This is for backward compatibility.
171 */
172 static bool cgrp_dfl_visible;
173
174 /* some controllers are not supported in the default hierarchy */
175 static u16 cgrp_dfl_inhibit_ss_mask;
176
177 /* some controllers are implicitly enabled on the default hierarchy */
178 static u16 cgrp_dfl_implicit_ss_mask;
179
180 /* some controllers can be threaded on the default hierarchy */
181 static u16 cgrp_dfl_threaded_ss_mask;
182
183 /* The list of hierarchy roots */
184 LIST_HEAD(cgroup_roots);
185 static int cgroup_root_count;
186
187 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
188 static DEFINE_IDR(cgroup_hierarchy_idr);
189
190 /*
191 * Assign a monotonically increasing serial number to csses. It guarantees
192 * cgroups with bigger numbers are newer than those with smaller numbers.
193 * Also, as csses are always appended to the parent's ->children list, it
194 * guarantees that sibling csses are always sorted in the ascending serial
195 * number order on the list. Protected by cgroup_mutex.
196 */
197 static u64 css_serial_nr_next = 1;
198
199 /*
200 * These bitmasks identify subsystems with specific features to avoid
201 * having to do iterative checks repeatedly.
202 */
203 static u16 have_fork_callback __read_mostly;
204 static u16 have_exit_callback __read_mostly;
205 static u16 have_release_callback __read_mostly;
206 static u16 have_canfork_callback __read_mostly;
207
208 /* cgroup namespace for init task */
209 struct cgroup_namespace init_cgroup_ns = {
210 .ns.count = REFCOUNT_INIT(2),
211 .user_ns = &init_user_ns,
212 .ns.ops = &cgroupns_operations,
213 .ns.inum = PROC_CGROUP_INIT_INO,
214 .root_cset = &init_css_set,
215 };
216
217 static struct file_system_type cgroup2_fs_type;
218 static struct cftype cgroup_base_files[];
219
220 /* cgroup optional features */
221 enum cgroup_opt_features {
222 #ifdef CONFIG_PSI
223 OPT_FEATURE_PRESSURE,
224 #endif
225 OPT_FEATURE_COUNT
226 };
227
228 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
229 #ifdef CONFIG_PSI
230 "pressure",
231 #endif
232 };
233
234 static u16 cgroup_feature_disable_mask __read_mostly;
235
236 static int cgroup_apply_control(struct cgroup *cgrp);
237 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
238 static void css_task_iter_skip(struct css_task_iter *it,
239 struct task_struct *task);
240 static int cgroup_destroy_locked(struct cgroup *cgrp);
241 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
242 struct cgroup_subsys *ss);
243 static void css_release(struct percpu_ref *ref);
244 static void kill_css(struct cgroup_subsys_state *css);
245 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
246 struct cgroup *cgrp, struct cftype cfts[],
247 bool is_add);
248
249 /**
250 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
251 * @ssid: subsys ID of interest
252 *
253 * cgroup_subsys_enabled() can only be used with literal subsys names which
254 * is fine for individual subsystems but unsuitable for cgroup core. This
255 * is slower static_key_enabled() based test indexed by @ssid.
256 */
cgroup_ssid_enabled(int ssid)257 bool cgroup_ssid_enabled(int ssid)
258 {
259 if (!CGROUP_HAS_SUBSYS_CONFIG)
260 return false;
261
262 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
263 }
264
265 /**
266 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
267 * @cgrp: the cgroup of interest
268 *
269 * The default hierarchy is the v2 interface of cgroup and this function
270 * can be used to test whether a cgroup is on the default hierarchy for
271 * cases where a subsystem should behave differently depending on the
272 * interface version.
273 *
274 * List of changed behaviors:
275 *
276 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
277 * and "name" are disallowed.
278 *
279 * - When mounting an existing superblock, mount options should match.
280 *
281 * - Remount is disallowed.
282 *
283 * - rename(2) is disallowed.
284 *
285 * - "tasks" is removed. Everything should be at process granularity. Use
286 * "cgroup.procs" instead.
287 *
288 * - "cgroup.procs" is not sorted. pids will be unique unless they got
289 * recycled in-between reads.
290 *
291 * - "release_agent" and "notify_on_release" are removed. Replacement
292 * notification mechanism will be implemented.
293 *
294 * - "cgroup.clone_children" is removed.
295 *
296 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
297 * and its descendants contain no task; otherwise, 1. The file also
298 * generates kernfs notification which can be monitored through poll and
299 * [di]notify when the value of the file changes.
300 *
301 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
302 * take masks of ancestors with non-empty cpus/mems, instead of being
303 * moved to an ancestor.
304 *
305 * - cpuset: a task can be moved into an empty cpuset, and again it takes
306 * masks of ancestors.
307 *
308 * - blkcg: blk-throttle becomes properly hierarchical.
309 *
310 * - debug: disallowed on the default hierarchy.
311 */
cgroup_on_dfl(const struct cgroup * cgrp)312 bool cgroup_on_dfl(const struct cgroup *cgrp)
313 {
314 return cgrp->root == &cgrp_dfl_root;
315 }
316
317 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)318 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
319 gfp_t gfp_mask)
320 {
321 int ret;
322
323 idr_preload(gfp_mask);
324 spin_lock_bh(&cgroup_idr_lock);
325 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
326 spin_unlock_bh(&cgroup_idr_lock);
327 idr_preload_end();
328 return ret;
329 }
330
cgroup_idr_replace(struct idr * idr,void * ptr,int id)331 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
332 {
333 void *ret;
334
335 spin_lock_bh(&cgroup_idr_lock);
336 ret = idr_replace(idr, ptr, id);
337 spin_unlock_bh(&cgroup_idr_lock);
338 return ret;
339 }
340
cgroup_idr_remove(struct idr * idr,int id)341 static void cgroup_idr_remove(struct idr *idr, int id)
342 {
343 spin_lock_bh(&cgroup_idr_lock);
344 idr_remove(idr, id);
345 spin_unlock_bh(&cgroup_idr_lock);
346 }
347
cgroup_has_tasks(struct cgroup * cgrp)348 static bool cgroup_has_tasks(struct cgroup *cgrp)
349 {
350 return cgrp->nr_populated_csets;
351 }
352
cgroup_is_threaded(struct cgroup * cgrp)353 bool cgroup_is_threaded(struct cgroup *cgrp)
354 {
355 return cgrp->dom_cgrp != cgrp;
356 }
357
358 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)359 static bool cgroup_is_mixable(struct cgroup *cgrp)
360 {
361 /*
362 * Root isn't under domain level resource control exempting it from
363 * the no-internal-process constraint, so it can serve as a thread
364 * root and a parent of resource domains at the same time.
365 */
366 return !cgroup_parent(cgrp);
367 }
368
369 /* can @cgrp become a thread root? Should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)370 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
371 {
372 /* mixables don't care */
373 if (cgroup_is_mixable(cgrp))
374 return true;
375
376 /* domain roots can't be nested under threaded */
377 if (cgroup_is_threaded(cgrp))
378 return false;
379
380 /* can only have either domain or threaded children */
381 if (cgrp->nr_populated_domain_children)
382 return false;
383
384 /* and no domain controllers can be enabled */
385 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
386 return false;
387
388 return true;
389 }
390
391 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)392 bool cgroup_is_thread_root(struct cgroup *cgrp)
393 {
394 /* thread root should be a domain */
395 if (cgroup_is_threaded(cgrp))
396 return false;
397
398 /* a domain w/ threaded children is a thread root */
399 if (cgrp->nr_threaded_children)
400 return true;
401
402 /*
403 * A domain which has tasks and explicit threaded controllers
404 * enabled is a thread root.
405 */
406 if (cgroup_has_tasks(cgrp) &&
407 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
408 return true;
409
410 return false;
411 }
412
413 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)414 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
415 {
416 /* the cgroup itself can be a thread root */
417 if (cgroup_is_threaded(cgrp))
418 return false;
419
420 /* but the ancestors can't be unless mixable */
421 while ((cgrp = cgroup_parent(cgrp))) {
422 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
423 return false;
424 if (cgroup_is_threaded(cgrp))
425 return false;
426 }
427
428 return true;
429 }
430
431 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)432 static u16 cgroup_control(struct cgroup *cgrp)
433 {
434 struct cgroup *parent = cgroup_parent(cgrp);
435 u16 root_ss_mask = cgrp->root->subsys_mask;
436
437 if (parent) {
438 u16 ss_mask = parent->subtree_control;
439
440 /* threaded cgroups can only have threaded controllers */
441 if (cgroup_is_threaded(cgrp))
442 ss_mask &= cgrp_dfl_threaded_ss_mask;
443 return ss_mask;
444 }
445
446 if (cgroup_on_dfl(cgrp))
447 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
448 cgrp_dfl_implicit_ss_mask);
449 return root_ss_mask;
450 }
451
452 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)453 static u16 cgroup_ss_mask(struct cgroup *cgrp)
454 {
455 struct cgroup *parent = cgroup_parent(cgrp);
456
457 if (parent) {
458 u16 ss_mask = parent->subtree_ss_mask;
459
460 /* threaded cgroups can only have threaded controllers */
461 if (cgroup_is_threaded(cgrp))
462 ss_mask &= cgrp_dfl_threaded_ss_mask;
463 return ss_mask;
464 }
465
466 return cgrp->root->subsys_mask;
467 }
468
469 /**
470 * cgroup_css - obtain a cgroup's css for the specified subsystem
471 * @cgrp: the cgroup of interest
472 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
473 *
474 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
475 * function must be called either under cgroup_mutex or rcu_read_lock() and
476 * the caller is responsible for pinning the returned css if it wants to
477 * keep accessing it outside the said locks. This function may return
478 * %NULL if @cgrp doesn't have @subsys_id enabled.
479 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)480 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
481 struct cgroup_subsys *ss)
482 {
483 if (CGROUP_HAS_SUBSYS_CONFIG && ss)
484 return rcu_dereference_check(cgrp->subsys[ss->id],
485 lockdep_is_held(&cgroup_mutex));
486 else
487 return &cgrp->self;
488 }
489
490 /**
491 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
492 * @cgrp: the cgroup of interest
493 * @ss: the subsystem of interest
494 *
495 * Find and get @cgrp's css associated with @ss. If the css doesn't exist
496 * or is offline, %NULL is returned.
497 */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)498 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
499 struct cgroup_subsys *ss)
500 {
501 struct cgroup_subsys_state *css;
502
503 rcu_read_lock();
504 css = cgroup_css(cgrp, ss);
505 if (css && !css_tryget_online(css))
506 css = NULL;
507 rcu_read_unlock();
508
509 return css;
510 }
511
512 /**
513 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
514 * @cgrp: the cgroup of interest
515 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
516 *
517 * Similar to cgroup_css() but returns the effective css, which is defined
518 * as the matching css of the nearest ancestor including self which has @ss
519 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
520 * function is guaranteed to return non-NULL css.
521 */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)522 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
523 struct cgroup_subsys *ss)
524 {
525 lockdep_assert_held(&cgroup_mutex);
526
527 if (!ss)
528 return &cgrp->self;
529
530 /*
531 * This function is used while updating css associations and thus
532 * can't test the csses directly. Test ss_mask.
533 */
534 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
535 cgrp = cgroup_parent(cgrp);
536 if (!cgrp)
537 return NULL;
538 }
539
540 return cgroup_css(cgrp, ss);
541 }
542
543 /**
544 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
545 * @cgrp: the cgroup of interest
546 * @ss: the subsystem of interest
547 *
548 * Find and get the effective css of @cgrp for @ss. The effective css is
549 * defined as the matching css of the nearest ancestor including self which
550 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
551 * the root css is returned, so this function always returns a valid css.
552 *
553 * The returned css is not guaranteed to be online, and therefore it is the
554 * callers responsibility to try get a reference for it.
555 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)556 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
557 struct cgroup_subsys *ss)
558 {
559 struct cgroup_subsys_state *css;
560
561 if (!CGROUP_HAS_SUBSYS_CONFIG)
562 return NULL;
563
564 do {
565 css = cgroup_css(cgrp, ss);
566
567 if (css)
568 return css;
569 cgrp = cgroup_parent(cgrp);
570 } while (cgrp);
571
572 return init_css_set.subsys[ss->id];
573 }
574
575 /**
576 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
577 * @cgrp: the cgroup of interest
578 * @ss: the subsystem of interest
579 *
580 * Find and get the effective css of @cgrp for @ss. The effective css is
581 * defined as the matching css of the nearest ancestor including self which
582 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
583 * the root css is returned, so this function always returns a valid css.
584 * The returned css must be put using css_put().
585 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)586 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
587 struct cgroup_subsys *ss)
588 {
589 struct cgroup_subsys_state *css;
590
591 if (!CGROUP_HAS_SUBSYS_CONFIG)
592 return NULL;
593
594 rcu_read_lock();
595
596 do {
597 css = cgroup_css(cgrp, ss);
598
599 if (css && css_tryget_online(css))
600 goto out_unlock;
601 cgrp = cgroup_parent(cgrp);
602 } while (cgrp);
603
604 css = init_css_set.subsys[ss->id];
605 css_get(css);
606 out_unlock:
607 rcu_read_unlock();
608 return css;
609 }
610 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
611
cgroup_get_live(struct cgroup * cgrp)612 static void cgroup_get_live(struct cgroup *cgrp)
613 {
614 WARN_ON_ONCE(cgroup_is_dead(cgrp));
615 css_get(&cgrp->self);
616 }
617
618 /**
619 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
620 * is responsible for taking the css_set_lock.
621 * @cgrp: the cgroup in question
622 */
__cgroup_task_count(const struct cgroup * cgrp)623 int __cgroup_task_count(const struct cgroup *cgrp)
624 {
625 int count = 0;
626 struct cgrp_cset_link *link;
627
628 lockdep_assert_held(&css_set_lock);
629
630 list_for_each_entry(link, &cgrp->cset_links, cset_link)
631 count += link->cset->nr_tasks;
632
633 return count;
634 }
635
636 /**
637 * cgroup_task_count - count the number of tasks in a cgroup.
638 * @cgrp: the cgroup in question
639 */
cgroup_task_count(const struct cgroup * cgrp)640 int cgroup_task_count(const struct cgroup *cgrp)
641 {
642 int count;
643
644 spin_lock_irq(&css_set_lock);
645 count = __cgroup_task_count(cgrp);
646 spin_unlock_irq(&css_set_lock);
647
648 return count;
649 }
650
of_css(struct kernfs_open_file * of)651 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
652 {
653 struct cgroup *cgrp = of->kn->parent->priv;
654 struct cftype *cft = of_cft(of);
655
656 /*
657 * This is open and unprotected implementation of cgroup_css().
658 * seq_css() is only called from a kernfs file operation which has
659 * an active reference on the file. Because all the subsystem
660 * files are drained before a css is disassociated with a cgroup,
661 * the matching css from the cgroup's subsys table is guaranteed to
662 * be and stay valid until the enclosing operation is complete.
663 */
664 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
665 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
666 else
667 return &cgrp->self;
668 }
669 EXPORT_SYMBOL_GPL(of_css);
670
671 /**
672 * for_each_css - iterate all css's of a cgroup
673 * @css: the iteration cursor
674 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
675 * @cgrp: the target cgroup to iterate css's of
676 *
677 * Should be called under cgroup_[tree_]mutex.
678 */
679 #define for_each_css(css, ssid, cgrp) \
680 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
681 if (!((css) = rcu_dereference_check( \
682 (cgrp)->subsys[(ssid)], \
683 lockdep_is_held(&cgroup_mutex)))) { } \
684 else
685
686 /**
687 * for_each_e_css - iterate all effective css's of a cgroup
688 * @css: the iteration cursor
689 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
690 * @cgrp: the target cgroup to iterate css's of
691 *
692 * Should be called under cgroup_[tree_]mutex.
693 */
694 #define for_each_e_css(css, ssid, cgrp) \
695 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
696 if (!((css) = cgroup_e_css_by_mask(cgrp, \
697 cgroup_subsys[(ssid)]))) \
698 ; \
699 else
700
701 /**
702 * do_each_subsys_mask - filter for_each_subsys with a bitmask
703 * @ss: the iteration cursor
704 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
705 * @ss_mask: the bitmask
706 *
707 * The block will only run for cases where the ssid-th bit (1 << ssid) of
708 * @ss_mask is set.
709 */
710 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
711 unsigned long __ss_mask = (ss_mask); \
712 if (!CGROUP_HAS_SUBSYS_CONFIG) { \
713 (ssid) = 0; \
714 break; \
715 } \
716 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
717 (ss) = cgroup_subsys[ssid]; \
718 {
719
720 #define while_each_subsys_mask() \
721 } \
722 } \
723 } while (false)
724
725 /* iterate over child cgrps, lock should be held throughout iteration */
726 #define cgroup_for_each_live_child(child, cgrp) \
727 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
728 if (({ lockdep_assert_held(&cgroup_mutex); \
729 cgroup_is_dead(child); })) \
730 ; \
731 else
732
733 /* walk live descendants in pre order */
734 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
735 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
736 if (({ lockdep_assert_held(&cgroup_mutex); \
737 (dsct) = (d_css)->cgroup; \
738 cgroup_is_dead(dsct); })) \
739 ; \
740 else
741
742 /* walk live descendants in postorder */
743 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
744 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
745 if (({ lockdep_assert_held(&cgroup_mutex); \
746 (dsct) = (d_css)->cgroup; \
747 cgroup_is_dead(dsct); })) \
748 ; \
749 else
750
751 /*
752 * The default css_set - used by init and its children prior to any
753 * hierarchies being mounted. It contains a pointer to the root state
754 * for each subsystem. Also used to anchor the list of css_sets. Not
755 * reference-counted, to improve performance when child cgroups
756 * haven't been created.
757 */
758 struct css_set init_css_set = {
759 .refcount = REFCOUNT_INIT(1),
760 .dom_cset = &init_css_set,
761 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
762 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
763 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
764 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
765 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
766 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
767 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
768 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
769
770 /*
771 * The following field is re-initialized when this cset gets linked
772 * in cgroup_init(). However, let's initialize the field
773 * statically too so that the default cgroup can be accessed safely
774 * early during boot.
775 */
776 .dfl_cgrp = &cgrp_dfl_root.cgrp,
777 };
778
779 static int css_set_count = 1; /* 1 for init_css_set */
780
css_set_threaded(struct css_set * cset)781 static bool css_set_threaded(struct css_set *cset)
782 {
783 return cset->dom_cset != cset;
784 }
785
786 /**
787 * css_set_populated - does a css_set contain any tasks?
788 * @cset: target css_set
789 *
790 * css_set_populated() should be the same as !!cset->nr_tasks at steady
791 * state. However, css_set_populated() can be called while a task is being
792 * added to or removed from the linked list before the nr_tasks is
793 * properly updated. Hence, we can't just look at ->nr_tasks here.
794 */
css_set_populated(struct css_set * cset)795 static bool css_set_populated(struct css_set *cset)
796 {
797 lockdep_assert_held(&css_set_lock);
798
799 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
800 }
801
802 /**
803 * cgroup_update_populated - update the populated count of a cgroup
804 * @cgrp: the target cgroup
805 * @populated: inc or dec populated count
806 *
807 * One of the css_sets associated with @cgrp is either getting its first
808 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
809 * count is propagated towards root so that a given cgroup's
810 * nr_populated_children is zero iff none of its descendants contain any
811 * tasks.
812 *
813 * @cgrp's interface file "cgroup.populated" is zero if both
814 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
815 * 1 otherwise. When the sum changes from or to zero, userland is notified
816 * that the content of the interface file has changed. This can be used to
817 * detect when @cgrp and its descendants become populated or empty.
818 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)819 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
820 {
821 struct cgroup *child = NULL;
822 int adj = populated ? 1 : -1;
823
824 lockdep_assert_held(&css_set_lock);
825
826 do {
827 bool was_populated = cgroup_is_populated(cgrp);
828
829 if (!child) {
830 cgrp->nr_populated_csets += adj;
831 } else {
832 if (cgroup_is_threaded(child))
833 cgrp->nr_populated_threaded_children += adj;
834 else
835 cgrp->nr_populated_domain_children += adj;
836 }
837
838 if (was_populated == cgroup_is_populated(cgrp))
839 break;
840
841 cgroup1_check_for_release(cgrp);
842 TRACE_CGROUP_PATH(notify_populated, cgrp,
843 cgroup_is_populated(cgrp));
844 cgroup_file_notify(&cgrp->events_file);
845
846 child = cgrp;
847 cgrp = cgroup_parent(cgrp);
848 } while (cgrp);
849 }
850
851 /**
852 * css_set_update_populated - update populated state of a css_set
853 * @cset: target css_set
854 * @populated: whether @cset is populated or depopulated
855 *
856 * @cset is either getting the first task or losing the last. Update the
857 * populated counters of all associated cgroups accordingly.
858 */
css_set_update_populated(struct css_set * cset,bool populated)859 static void css_set_update_populated(struct css_set *cset, bool populated)
860 {
861 struct cgrp_cset_link *link;
862
863 lockdep_assert_held(&css_set_lock);
864
865 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
866 cgroup_update_populated(link->cgrp, populated);
867 }
868
869 /*
870 * @task is leaving, advance task iterators which are pointing to it so
871 * that they can resume at the next position. Advancing an iterator might
872 * remove it from the list, use safe walk. See css_task_iter_skip() for
873 * details.
874 */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)875 static void css_set_skip_task_iters(struct css_set *cset,
876 struct task_struct *task)
877 {
878 struct css_task_iter *it, *pos;
879
880 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
881 css_task_iter_skip(it, task);
882 }
883
884 /**
885 * css_set_move_task - move a task from one css_set to another
886 * @task: task being moved
887 * @from_cset: css_set @task currently belongs to (may be NULL)
888 * @to_cset: new css_set @task is being moved to (may be NULL)
889 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
890 *
891 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
892 * css_set, @from_cset can be NULL. If @task is being disassociated
893 * instead of moved, @to_cset can be NULL.
894 *
895 * This function automatically handles populated counter updates and
896 * css_task_iter adjustments but the caller is responsible for managing
897 * @from_cset and @to_cset's reference counts.
898 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)899 static void css_set_move_task(struct task_struct *task,
900 struct css_set *from_cset, struct css_set *to_cset,
901 bool use_mg_tasks)
902 {
903 lockdep_assert_held(&css_set_lock);
904
905 if (to_cset && !css_set_populated(to_cset))
906 css_set_update_populated(to_cset, true);
907
908 if (from_cset) {
909 WARN_ON_ONCE(list_empty(&task->cg_list));
910
911 css_set_skip_task_iters(from_cset, task);
912 list_del_init(&task->cg_list);
913 if (!css_set_populated(from_cset))
914 css_set_update_populated(from_cset, false);
915 } else {
916 WARN_ON_ONCE(!list_empty(&task->cg_list));
917 }
918
919 if (to_cset) {
920 /*
921 * We are synchronized through cgroup_threadgroup_rwsem
922 * against PF_EXITING setting such that we can't race
923 * against cgroup_exit()/cgroup_free() dropping the css_set.
924 */
925 WARN_ON_ONCE(task->flags & PF_EXITING);
926
927 cgroup_move_task(task, to_cset);
928 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
929 &to_cset->tasks);
930 }
931 }
932
933 /*
934 * hash table for cgroup groups. This improves the performance to find
935 * an existing css_set. This hash doesn't (currently) take into
936 * account cgroups in empty hierarchies.
937 */
938 #define CSS_SET_HASH_BITS 7
939 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
940
css_set_hash(struct cgroup_subsys_state * css[])941 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
942 {
943 unsigned long key = 0UL;
944 struct cgroup_subsys *ss;
945 int i;
946
947 for_each_subsys(ss, i)
948 key += (unsigned long)css[i];
949 key = (key >> 16) ^ key;
950
951 return key;
952 }
953
put_css_set_locked(struct css_set * cset)954 void put_css_set_locked(struct css_set *cset)
955 {
956 struct cgrp_cset_link *link, *tmp_link;
957 struct cgroup_subsys *ss;
958 int ssid;
959
960 lockdep_assert_held(&css_set_lock);
961
962 if (!refcount_dec_and_test(&cset->refcount))
963 return;
964
965 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
966
967 /* This css_set is dead. Unlink it and release cgroup and css refs */
968 for_each_subsys(ss, ssid) {
969 list_del(&cset->e_cset_node[ssid]);
970 css_put(cset->subsys[ssid]);
971 }
972 hash_del(&cset->hlist);
973 css_set_count--;
974
975 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
976 list_del(&link->cset_link);
977 list_del(&link->cgrp_link);
978 if (cgroup_parent(link->cgrp))
979 cgroup_put(link->cgrp);
980 kfree(link);
981 }
982
983 if (css_set_threaded(cset)) {
984 list_del(&cset->threaded_csets_node);
985 put_css_set_locked(cset->dom_cset);
986 }
987
988 kfree_rcu(cset, rcu_head);
989 }
990
991 /**
992 * compare_css_sets - helper function for find_existing_css_set().
993 * @cset: candidate css_set being tested
994 * @old_cset: existing css_set for a task
995 * @new_cgrp: cgroup that's being entered by the task
996 * @template: desired set of css pointers in css_set (pre-calculated)
997 *
998 * Returns true if "cset" matches "old_cset" except for the hierarchy
999 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1000 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])1001 static bool compare_css_sets(struct css_set *cset,
1002 struct css_set *old_cset,
1003 struct cgroup *new_cgrp,
1004 struct cgroup_subsys_state *template[])
1005 {
1006 struct cgroup *new_dfl_cgrp;
1007 struct list_head *l1, *l2;
1008
1009 /*
1010 * On the default hierarchy, there can be csets which are
1011 * associated with the same set of cgroups but different csses.
1012 * Let's first ensure that csses match.
1013 */
1014 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1015 return false;
1016
1017
1018 /* @cset's domain should match the default cgroup's */
1019 if (cgroup_on_dfl(new_cgrp))
1020 new_dfl_cgrp = new_cgrp;
1021 else
1022 new_dfl_cgrp = old_cset->dfl_cgrp;
1023
1024 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1025 return false;
1026
1027 /*
1028 * Compare cgroup pointers in order to distinguish between
1029 * different cgroups in hierarchies. As different cgroups may
1030 * share the same effective css, this comparison is always
1031 * necessary.
1032 */
1033 l1 = &cset->cgrp_links;
1034 l2 = &old_cset->cgrp_links;
1035 while (1) {
1036 struct cgrp_cset_link *link1, *link2;
1037 struct cgroup *cgrp1, *cgrp2;
1038
1039 l1 = l1->next;
1040 l2 = l2->next;
1041 /* See if we reached the end - both lists are equal length. */
1042 if (l1 == &cset->cgrp_links) {
1043 BUG_ON(l2 != &old_cset->cgrp_links);
1044 break;
1045 } else {
1046 BUG_ON(l2 == &old_cset->cgrp_links);
1047 }
1048 /* Locate the cgroups associated with these links. */
1049 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1050 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1051 cgrp1 = link1->cgrp;
1052 cgrp2 = link2->cgrp;
1053 /* Hierarchies should be linked in the same order. */
1054 BUG_ON(cgrp1->root != cgrp2->root);
1055
1056 /*
1057 * If this hierarchy is the hierarchy of the cgroup
1058 * that's changing, then we need to check that this
1059 * css_set points to the new cgroup; if it's any other
1060 * hierarchy, then this css_set should point to the
1061 * same cgroup as the old css_set.
1062 */
1063 if (cgrp1->root == new_cgrp->root) {
1064 if (cgrp1 != new_cgrp)
1065 return false;
1066 } else {
1067 if (cgrp1 != cgrp2)
1068 return false;
1069 }
1070 }
1071 return true;
1072 }
1073
1074 /**
1075 * find_existing_css_set - init css array and find the matching css_set
1076 * @old_cset: the css_set that we're using before the cgroup transition
1077 * @cgrp: the cgroup that we're moving into
1078 * @template: out param for the new set of csses, should be clear on entry
1079 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1080 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1081 struct cgroup *cgrp,
1082 struct cgroup_subsys_state *template[])
1083 {
1084 struct cgroup_root *root = cgrp->root;
1085 struct cgroup_subsys *ss;
1086 struct css_set *cset;
1087 unsigned long key;
1088 int i;
1089
1090 /*
1091 * Build the set of subsystem state objects that we want to see in the
1092 * new css_set. While subsystems can change globally, the entries here
1093 * won't change, so no need for locking.
1094 */
1095 for_each_subsys(ss, i) {
1096 if (root->subsys_mask & (1UL << i)) {
1097 /*
1098 * @ss is in this hierarchy, so we want the
1099 * effective css from @cgrp.
1100 */
1101 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1102 } else {
1103 /*
1104 * @ss is not in this hierarchy, so we don't want
1105 * to change the css.
1106 */
1107 template[i] = old_cset->subsys[i];
1108 }
1109 }
1110
1111 key = css_set_hash(template);
1112 hash_for_each_possible(css_set_table, cset, hlist, key) {
1113 if (!compare_css_sets(cset, old_cset, cgrp, template))
1114 continue;
1115
1116 /* This css_set matches what we need */
1117 return cset;
1118 }
1119
1120 /* No existing cgroup group matched */
1121 return NULL;
1122 }
1123
free_cgrp_cset_links(struct list_head * links_to_free)1124 static void free_cgrp_cset_links(struct list_head *links_to_free)
1125 {
1126 struct cgrp_cset_link *link, *tmp_link;
1127
1128 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1129 list_del(&link->cset_link);
1130 kfree(link);
1131 }
1132 }
1133
1134 /**
1135 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1136 * @count: the number of links to allocate
1137 * @tmp_links: list_head the allocated links are put on
1138 *
1139 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1140 * through ->cset_link. Returns 0 on success or -errno.
1141 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1142 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1143 {
1144 struct cgrp_cset_link *link;
1145 int i;
1146
1147 INIT_LIST_HEAD(tmp_links);
1148
1149 for (i = 0; i < count; i++) {
1150 link = kzalloc(sizeof(*link), GFP_KERNEL);
1151 if (!link) {
1152 free_cgrp_cset_links(tmp_links);
1153 return -ENOMEM;
1154 }
1155 list_add(&link->cset_link, tmp_links);
1156 }
1157 return 0;
1158 }
1159
1160 /**
1161 * link_css_set - a helper function to link a css_set to a cgroup
1162 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1163 * @cset: the css_set to be linked
1164 * @cgrp: the destination cgroup
1165 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1166 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1167 struct cgroup *cgrp)
1168 {
1169 struct cgrp_cset_link *link;
1170
1171 BUG_ON(list_empty(tmp_links));
1172
1173 if (cgroup_on_dfl(cgrp))
1174 cset->dfl_cgrp = cgrp;
1175
1176 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1177 link->cset = cset;
1178 link->cgrp = cgrp;
1179
1180 /*
1181 * Always add links to the tail of the lists so that the lists are
1182 * in chronological order.
1183 */
1184 list_move_tail(&link->cset_link, &cgrp->cset_links);
1185 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1186
1187 if (cgroup_parent(cgrp))
1188 cgroup_get_live(cgrp);
1189 }
1190
1191 /**
1192 * find_css_set - return a new css_set with one cgroup updated
1193 * @old_cset: the baseline css_set
1194 * @cgrp: the cgroup to be updated
1195 *
1196 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1197 * substituted into the appropriate hierarchy.
1198 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1199 static struct css_set *find_css_set(struct css_set *old_cset,
1200 struct cgroup *cgrp)
1201 {
1202 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1203 struct css_set *cset;
1204 struct list_head tmp_links;
1205 struct cgrp_cset_link *link;
1206 struct cgroup_subsys *ss;
1207 unsigned long key;
1208 int ssid;
1209
1210 lockdep_assert_held(&cgroup_mutex);
1211
1212 /* First see if we already have a cgroup group that matches
1213 * the desired set */
1214 spin_lock_irq(&css_set_lock);
1215 cset = find_existing_css_set(old_cset, cgrp, template);
1216 if (cset)
1217 get_css_set(cset);
1218 spin_unlock_irq(&css_set_lock);
1219
1220 if (cset)
1221 return cset;
1222
1223 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1224 if (!cset)
1225 return NULL;
1226
1227 /* Allocate all the cgrp_cset_link objects that we'll need */
1228 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1229 kfree(cset);
1230 return NULL;
1231 }
1232
1233 refcount_set(&cset->refcount, 1);
1234 cset->dom_cset = cset;
1235 INIT_LIST_HEAD(&cset->tasks);
1236 INIT_LIST_HEAD(&cset->mg_tasks);
1237 INIT_LIST_HEAD(&cset->dying_tasks);
1238 INIT_LIST_HEAD(&cset->task_iters);
1239 INIT_LIST_HEAD(&cset->threaded_csets);
1240 INIT_HLIST_NODE(&cset->hlist);
1241 INIT_LIST_HEAD(&cset->cgrp_links);
1242 INIT_LIST_HEAD(&cset->mg_preload_node);
1243 INIT_LIST_HEAD(&cset->mg_node);
1244
1245 /* Copy the set of subsystem state objects generated in
1246 * find_existing_css_set() */
1247 memcpy(cset->subsys, template, sizeof(cset->subsys));
1248
1249 spin_lock_irq(&css_set_lock);
1250 /* Add reference counts and links from the new css_set. */
1251 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1252 struct cgroup *c = link->cgrp;
1253
1254 if (c->root == cgrp->root)
1255 c = cgrp;
1256 link_css_set(&tmp_links, cset, c);
1257 }
1258
1259 BUG_ON(!list_empty(&tmp_links));
1260
1261 css_set_count++;
1262
1263 /* Add @cset to the hash table */
1264 key = css_set_hash(cset->subsys);
1265 hash_add(css_set_table, &cset->hlist, key);
1266
1267 for_each_subsys(ss, ssid) {
1268 struct cgroup_subsys_state *css = cset->subsys[ssid];
1269
1270 list_add_tail(&cset->e_cset_node[ssid],
1271 &css->cgroup->e_csets[ssid]);
1272 css_get(css);
1273 }
1274
1275 spin_unlock_irq(&css_set_lock);
1276
1277 /*
1278 * If @cset should be threaded, look up the matching dom_cset and
1279 * link them up. We first fully initialize @cset then look for the
1280 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1281 * to stay empty until we return.
1282 */
1283 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1284 struct css_set *dcset;
1285
1286 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1287 if (!dcset) {
1288 put_css_set(cset);
1289 return NULL;
1290 }
1291
1292 spin_lock_irq(&css_set_lock);
1293 cset->dom_cset = dcset;
1294 list_add_tail(&cset->threaded_csets_node,
1295 &dcset->threaded_csets);
1296 spin_unlock_irq(&css_set_lock);
1297 }
1298
1299 return cset;
1300 }
1301
cgroup_root_from_kf(struct kernfs_root * kf_root)1302 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1303 {
1304 struct cgroup *root_cgrp = kf_root->kn->priv;
1305
1306 return root_cgrp->root;
1307 }
1308
cgroup_init_root_id(struct cgroup_root * root)1309 static int cgroup_init_root_id(struct cgroup_root *root)
1310 {
1311 int id;
1312
1313 lockdep_assert_held(&cgroup_mutex);
1314
1315 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1316 if (id < 0)
1317 return id;
1318
1319 root->hierarchy_id = id;
1320 return 0;
1321 }
1322
cgroup_exit_root_id(struct cgroup_root * root)1323 static void cgroup_exit_root_id(struct cgroup_root *root)
1324 {
1325 lockdep_assert_held(&cgroup_mutex);
1326
1327 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1328 }
1329
cgroup_free_root(struct cgroup_root * root)1330 void cgroup_free_root(struct cgroup_root *root)
1331 {
1332 kfree(root);
1333 }
1334
cgroup_destroy_root(struct cgroup_root * root)1335 static void cgroup_destroy_root(struct cgroup_root *root)
1336 {
1337 struct cgroup *cgrp = &root->cgrp;
1338 struct cgrp_cset_link *link, *tmp_link;
1339
1340 trace_cgroup_destroy_root(root);
1341
1342 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1343
1344 BUG_ON(atomic_read(&root->nr_cgrps));
1345 BUG_ON(!list_empty(&cgrp->self.children));
1346
1347 /* Rebind all subsystems back to the default hierarchy */
1348 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1349
1350 /*
1351 * Release all the links from cset_links to this hierarchy's
1352 * root cgroup
1353 */
1354 spin_lock_irq(&css_set_lock);
1355
1356 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1357 list_del(&link->cset_link);
1358 list_del(&link->cgrp_link);
1359 kfree(link);
1360 }
1361
1362 spin_unlock_irq(&css_set_lock);
1363
1364 if (!list_empty(&root->root_list)) {
1365 list_del(&root->root_list);
1366 cgroup_root_count--;
1367 }
1368
1369 cgroup_exit_root_id(root);
1370
1371 mutex_unlock(&cgroup_mutex);
1372
1373 cgroup_rstat_exit(cgrp);
1374 kernfs_destroy_root(root->kf_root);
1375 cgroup_free_root(root);
1376 }
1377
1378 /*
1379 * look up cgroup associated with current task's cgroup namespace on the
1380 * specified hierarchy
1381 */
1382 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1383 current_cgns_cgroup_from_root(struct cgroup_root *root)
1384 {
1385 struct cgroup *res = NULL;
1386 struct css_set *cset;
1387
1388 lockdep_assert_held(&css_set_lock);
1389
1390 rcu_read_lock();
1391
1392 cset = current->nsproxy->cgroup_ns->root_cset;
1393 if (cset == &init_css_set) {
1394 res = &root->cgrp;
1395 } else if (root == &cgrp_dfl_root) {
1396 res = cset->dfl_cgrp;
1397 } else {
1398 struct cgrp_cset_link *link;
1399
1400 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1401 struct cgroup *c = link->cgrp;
1402
1403 if (c->root == root) {
1404 res = c;
1405 break;
1406 }
1407 }
1408 }
1409 rcu_read_unlock();
1410
1411 BUG_ON(!res);
1412 return res;
1413 }
1414
1415 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1416 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1417 struct cgroup_root *root)
1418 {
1419 struct cgroup *res = NULL;
1420
1421 lockdep_assert_held(&cgroup_mutex);
1422 lockdep_assert_held(&css_set_lock);
1423
1424 if (cset == &init_css_set) {
1425 res = &root->cgrp;
1426 } else if (root == &cgrp_dfl_root) {
1427 res = cset->dfl_cgrp;
1428 } else {
1429 struct cgrp_cset_link *link;
1430
1431 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1432 struct cgroup *c = link->cgrp;
1433
1434 if (c->root == root) {
1435 res = c;
1436 break;
1437 }
1438 }
1439 }
1440
1441 BUG_ON(!res);
1442 return res;
1443 }
1444
1445 /*
1446 * Return the cgroup for "task" from the given hierarchy. Must be
1447 * called with cgroup_mutex and css_set_lock held.
1448 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1449 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1450 struct cgroup_root *root)
1451 {
1452 /*
1453 * No need to lock the task - since we hold css_set_lock the
1454 * task can't change groups.
1455 */
1456 return cset_cgroup_from_root(task_css_set(task), root);
1457 }
1458
1459 /*
1460 * A task must hold cgroup_mutex to modify cgroups.
1461 *
1462 * Any task can increment and decrement the count field without lock.
1463 * So in general, code holding cgroup_mutex can't rely on the count
1464 * field not changing. However, if the count goes to zero, then only
1465 * cgroup_attach_task() can increment it again. Because a count of zero
1466 * means that no tasks are currently attached, therefore there is no
1467 * way a task attached to that cgroup can fork (the other way to
1468 * increment the count). So code holding cgroup_mutex can safely
1469 * assume that if the count is zero, it will stay zero. Similarly, if
1470 * a task holds cgroup_mutex on a cgroup with zero count, it
1471 * knows that the cgroup won't be removed, as cgroup_rmdir()
1472 * needs that mutex.
1473 *
1474 * A cgroup can only be deleted if both its 'count' of using tasks
1475 * is zero, and its list of 'children' cgroups is empty. Since all
1476 * tasks in the system use _some_ cgroup, and since there is always at
1477 * least one task in the system (init, pid == 1), therefore, root cgroup
1478 * always has either children cgroups and/or using tasks. So we don't
1479 * need a special hack to ensure that root cgroup cannot be deleted.
1480 *
1481 * P.S. One more locking exception. RCU is used to guard the
1482 * update of a tasks cgroup pointer by cgroup_attach_task()
1483 */
1484
1485 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1486
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1487 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1488 char *buf)
1489 {
1490 struct cgroup_subsys *ss = cft->ss;
1491
1492 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1493 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1494 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1495
1496 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1497 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1498 cft->name);
1499 } else {
1500 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1501 }
1502 return buf;
1503 }
1504
1505 /**
1506 * cgroup_file_mode - deduce file mode of a control file
1507 * @cft: the control file in question
1508 *
1509 * S_IRUGO for read, S_IWUSR for write.
1510 */
cgroup_file_mode(const struct cftype * cft)1511 static umode_t cgroup_file_mode(const struct cftype *cft)
1512 {
1513 umode_t mode = 0;
1514
1515 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1516 mode |= S_IRUGO;
1517
1518 if (cft->write_u64 || cft->write_s64 || cft->write) {
1519 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1520 mode |= S_IWUGO;
1521 else
1522 mode |= S_IWUSR;
1523 }
1524
1525 return mode;
1526 }
1527
1528 /**
1529 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1530 * @subtree_control: the new subtree_control mask to consider
1531 * @this_ss_mask: available subsystems
1532 *
1533 * On the default hierarchy, a subsystem may request other subsystems to be
1534 * enabled together through its ->depends_on mask. In such cases, more
1535 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1536 *
1537 * This function calculates which subsystems need to be enabled if
1538 * @subtree_control is to be applied while restricted to @this_ss_mask.
1539 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1540 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1541 {
1542 u16 cur_ss_mask = subtree_control;
1543 struct cgroup_subsys *ss;
1544 int ssid;
1545
1546 lockdep_assert_held(&cgroup_mutex);
1547
1548 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1549
1550 while (true) {
1551 u16 new_ss_mask = cur_ss_mask;
1552
1553 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1554 new_ss_mask |= ss->depends_on;
1555 } while_each_subsys_mask();
1556
1557 /*
1558 * Mask out subsystems which aren't available. This can
1559 * happen only if some depended-upon subsystems were bound
1560 * to non-default hierarchies.
1561 */
1562 new_ss_mask &= this_ss_mask;
1563
1564 if (new_ss_mask == cur_ss_mask)
1565 break;
1566 cur_ss_mask = new_ss_mask;
1567 }
1568
1569 return cur_ss_mask;
1570 }
1571
1572 /**
1573 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1574 * @kn: the kernfs_node being serviced
1575 *
1576 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1577 * the method finishes if locking succeeded. Note that once this function
1578 * returns the cgroup returned by cgroup_kn_lock_live() may become
1579 * inaccessible any time. If the caller intends to continue to access the
1580 * cgroup, it should pin it before invoking this function.
1581 */
cgroup_kn_unlock(struct kernfs_node * kn)1582 void cgroup_kn_unlock(struct kernfs_node *kn)
1583 {
1584 struct cgroup *cgrp;
1585
1586 if (kernfs_type(kn) == KERNFS_DIR)
1587 cgrp = kn->priv;
1588 else
1589 cgrp = kn->parent->priv;
1590
1591 mutex_unlock(&cgroup_mutex);
1592
1593 kernfs_unbreak_active_protection(kn);
1594 cgroup_put(cgrp);
1595 }
1596
1597 /**
1598 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1599 * @kn: the kernfs_node being serviced
1600 * @drain_offline: perform offline draining on the cgroup
1601 *
1602 * This helper is to be used by a cgroup kernfs method currently servicing
1603 * @kn. It breaks the active protection, performs cgroup locking and
1604 * verifies that the associated cgroup is alive. Returns the cgroup if
1605 * alive; otherwise, %NULL. A successful return should be undone by a
1606 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1607 * cgroup is drained of offlining csses before return.
1608 *
1609 * Any cgroup kernfs method implementation which requires locking the
1610 * associated cgroup should use this helper. It avoids nesting cgroup
1611 * locking under kernfs active protection and allows all kernfs operations
1612 * including self-removal.
1613 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1614 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1615 {
1616 struct cgroup *cgrp;
1617
1618 if (kernfs_type(kn) == KERNFS_DIR)
1619 cgrp = kn->priv;
1620 else
1621 cgrp = kn->parent->priv;
1622
1623 /*
1624 * We're gonna grab cgroup_mutex which nests outside kernfs
1625 * active_ref. cgroup liveliness check alone provides enough
1626 * protection against removal. Ensure @cgrp stays accessible and
1627 * break the active_ref protection.
1628 */
1629 if (!cgroup_tryget(cgrp))
1630 return NULL;
1631 kernfs_break_active_protection(kn);
1632
1633 if (drain_offline)
1634 cgroup_lock_and_drain_offline(cgrp);
1635 else
1636 mutex_lock(&cgroup_mutex);
1637
1638 if (!cgroup_is_dead(cgrp))
1639 return cgrp;
1640
1641 cgroup_kn_unlock(kn);
1642 return NULL;
1643 }
1644
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1645 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1646 {
1647 char name[CGROUP_FILE_NAME_MAX];
1648
1649 lockdep_assert_held(&cgroup_mutex);
1650
1651 if (cft->file_offset) {
1652 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1653 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1654
1655 spin_lock_irq(&cgroup_file_kn_lock);
1656 cfile->kn = NULL;
1657 spin_unlock_irq(&cgroup_file_kn_lock);
1658
1659 del_timer_sync(&cfile->notify_timer);
1660 }
1661
1662 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1663 }
1664
1665 /**
1666 * css_clear_dir - remove subsys files in a cgroup directory
1667 * @css: target css
1668 */
css_clear_dir(struct cgroup_subsys_state * css)1669 static void css_clear_dir(struct cgroup_subsys_state *css)
1670 {
1671 struct cgroup *cgrp = css->cgroup;
1672 struct cftype *cfts;
1673
1674 if (!(css->flags & CSS_VISIBLE))
1675 return;
1676
1677 css->flags &= ~CSS_VISIBLE;
1678
1679 if (!css->ss) {
1680 if (cgroup_on_dfl(cgrp))
1681 cfts = cgroup_base_files;
1682 else
1683 cfts = cgroup1_base_files;
1684
1685 cgroup_addrm_files(css, cgrp, cfts, false);
1686 } else {
1687 list_for_each_entry(cfts, &css->ss->cfts, node)
1688 cgroup_addrm_files(css, cgrp, cfts, false);
1689 }
1690 }
1691
1692 /**
1693 * css_populate_dir - create subsys files in a cgroup directory
1694 * @css: target css
1695 *
1696 * On failure, no file is added.
1697 */
css_populate_dir(struct cgroup_subsys_state * css)1698 static int css_populate_dir(struct cgroup_subsys_state *css)
1699 {
1700 struct cgroup *cgrp = css->cgroup;
1701 struct cftype *cfts, *failed_cfts;
1702 int ret;
1703
1704 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1705 return 0;
1706
1707 if (!css->ss) {
1708 if (cgroup_on_dfl(cgrp))
1709 cfts = cgroup_base_files;
1710 else
1711 cfts = cgroup1_base_files;
1712
1713 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1714 if (ret < 0)
1715 return ret;
1716 } else {
1717 list_for_each_entry(cfts, &css->ss->cfts, node) {
1718 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1719 if (ret < 0) {
1720 failed_cfts = cfts;
1721 goto err;
1722 }
1723 }
1724 }
1725
1726 css->flags |= CSS_VISIBLE;
1727
1728 return 0;
1729 err:
1730 list_for_each_entry(cfts, &css->ss->cfts, node) {
1731 if (cfts == failed_cfts)
1732 break;
1733 cgroup_addrm_files(css, cgrp, cfts, false);
1734 }
1735 return ret;
1736 }
1737
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1738 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1739 {
1740 struct cgroup *dcgrp = &dst_root->cgrp;
1741 struct cgroup_subsys *ss;
1742 int ssid, i, ret;
1743 u16 dfl_disable_ss_mask = 0;
1744
1745 lockdep_assert_held(&cgroup_mutex);
1746
1747 do_each_subsys_mask(ss, ssid, ss_mask) {
1748 /*
1749 * If @ss has non-root csses attached to it, can't move.
1750 * If @ss is an implicit controller, it is exempt from this
1751 * rule and can be stolen.
1752 */
1753 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1754 !ss->implicit_on_dfl)
1755 return -EBUSY;
1756
1757 /* can't move between two non-dummy roots either */
1758 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1759 return -EBUSY;
1760
1761 /*
1762 * Collect ssid's that need to be disabled from default
1763 * hierarchy.
1764 */
1765 if (ss->root == &cgrp_dfl_root)
1766 dfl_disable_ss_mask |= 1 << ssid;
1767
1768 } while_each_subsys_mask();
1769
1770 if (dfl_disable_ss_mask) {
1771 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1772
1773 /*
1774 * Controllers from default hierarchy that need to be rebound
1775 * are all disabled together in one go.
1776 */
1777 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1778 WARN_ON(cgroup_apply_control(scgrp));
1779 cgroup_finalize_control(scgrp, 0);
1780 }
1781
1782 do_each_subsys_mask(ss, ssid, ss_mask) {
1783 struct cgroup_root *src_root = ss->root;
1784 struct cgroup *scgrp = &src_root->cgrp;
1785 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1786 struct css_set *cset;
1787
1788 WARN_ON(!css || cgroup_css(dcgrp, ss));
1789
1790 if (src_root != &cgrp_dfl_root) {
1791 /* disable from the source */
1792 src_root->subsys_mask &= ~(1 << ssid);
1793 WARN_ON(cgroup_apply_control(scgrp));
1794 cgroup_finalize_control(scgrp, 0);
1795 }
1796
1797 /* rebind */
1798 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1799 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1800 ss->root = dst_root;
1801 css->cgroup = dcgrp;
1802
1803 spin_lock_irq(&css_set_lock);
1804 hash_for_each(css_set_table, i, cset, hlist)
1805 list_move_tail(&cset->e_cset_node[ss->id],
1806 &dcgrp->e_csets[ss->id]);
1807 spin_unlock_irq(&css_set_lock);
1808
1809 if (ss->css_rstat_flush) {
1810 list_del_rcu(&css->rstat_css_node);
1811 list_add_rcu(&css->rstat_css_node,
1812 &dcgrp->rstat_css_list);
1813 }
1814
1815 /* default hierarchy doesn't enable controllers by default */
1816 dst_root->subsys_mask |= 1 << ssid;
1817 if (dst_root == &cgrp_dfl_root) {
1818 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1819 } else {
1820 dcgrp->subtree_control |= 1 << ssid;
1821 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1822 }
1823
1824 ret = cgroup_apply_control(dcgrp);
1825 if (ret)
1826 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1827 ss->name, ret);
1828
1829 if (ss->bind)
1830 ss->bind(css);
1831 } while_each_subsys_mask();
1832
1833 kernfs_activate(dcgrp->kn);
1834 return 0;
1835 }
1836
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1837 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1838 struct kernfs_root *kf_root)
1839 {
1840 int len = 0;
1841 char *buf = NULL;
1842 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1843 struct cgroup *ns_cgroup;
1844
1845 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1846 if (!buf)
1847 return -ENOMEM;
1848
1849 spin_lock_irq(&css_set_lock);
1850 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1851 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1852 spin_unlock_irq(&css_set_lock);
1853
1854 if (len >= PATH_MAX)
1855 len = -ERANGE;
1856 else if (len > 0) {
1857 seq_escape(sf, buf, " \t\n\\");
1858 len = 0;
1859 }
1860 kfree(buf);
1861 return len;
1862 }
1863
1864 enum cgroup2_param {
1865 Opt_nsdelegate,
1866 Opt_memory_localevents,
1867 Opt_memory_recursiveprot,
1868 nr__cgroup2_params
1869 };
1870
1871 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1872 fsparam_flag("nsdelegate", Opt_nsdelegate),
1873 fsparam_flag("memory_localevents", Opt_memory_localevents),
1874 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1875 {}
1876 };
1877
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1878 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1879 {
1880 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1881 struct fs_parse_result result;
1882 int opt;
1883
1884 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1885 if (opt < 0)
1886 return opt;
1887
1888 switch (opt) {
1889 case Opt_nsdelegate:
1890 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1891 return 0;
1892 case Opt_memory_localevents:
1893 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1894 return 0;
1895 case Opt_memory_recursiveprot:
1896 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1897 return 0;
1898 }
1899 return -EINVAL;
1900 }
1901
apply_cgroup_root_flags(unsigned int root_flags)1902 static void apply_cgroup_root_flags(unsigned int root_flags)
1903 {
1904 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1905 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1906 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1907 else
1908 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1909
1910 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1911 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1912 else
1913 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1914
1915 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1916 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1917 else
1918 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1919 }
1920 }
1921
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1922 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1923 {
1924 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1925 seq_puts(seq, ",nsdelegate");
1926 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1927 seq_puts(seq, ",memory_localevents");
1928 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1929 seq_puts(seq, ",memory_recursiveprot");
1930 return 0;
1931 }
1932
cgroup_reconfigure(struct fs_context * fc)1933 static int cgroup_reconfigure(struct fs_context *fc)
1934 {
1935 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1936
1937 apply_cgroup_root_flags(ctx->flags);
1938 return 0;
1939 }
1940
init_cgroup_housekeeping(struct cgroup * cgrp)1941 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1942 {
1943 struct cgroup_subsys *ss;
1944 int ssid;
1945
1946 INIT_LIST_HEAD(&cgrp->self.sibling);
1947 INIT_LIST_HEAD(&cgrp->self.children);
1948 INIT_LIST_HEAD(&cgrp->cset_links);
1949 INIT_LIST_HEAD(&cgrp->pidlists);
1950 mutex_init(&cgrp->pidlist_mutex);
1951 cgrp->self.cgroup = cgrp;
1952 cgrp->self.flags |= CSS_ONLINE;
1953 cgrp->dom_cgrp = cgrp;
1954 cgrp->max_descendants = INT_MAX;
1955 cgrp->max_depth = INT_MAX;
1956 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1957 prev_cputime_init(&cgrp->prev_cputime);
1958
1959 for_each_subsys(ss, ssid)
1960 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1961
1962 init_waitqueue_head(&cgrp->offline_waitq);
1963 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1964 }
1965
init_cgroup_root(struct cgroup_fs_context * ctx)1966 void init_cgroup_root(struct cgroup_fs_context *ctx)
1967 {
1968 struct cgroup_root *root = ctx->root;
1969 struct cgroup *cgrp = &root->cgrp;
1970
1971 INIT_LIST_HEAD(&root->root_list);
1972 atomic_set(&root->nr_cgrps, 1);
1973 cgrp->root = root;
1974 init_cgroup_housekeeping(cgrp);
1975
1976 root->flags = ctx->flags;
1977 if (ctx->release_agent)
1978 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1979 if (ctx->name)
1980 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1981 if (ctx->cpuset_clone_children)
1982 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1983 }
1984
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1985 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1986 {
1987 LIST_HEAD(tmp_links);
1988 struct cgroup *root_cgrp = &root->cgrp;
1989 struct kernfs_syscall_ops *kf_sops;
1990 struct css_set *cset;
1991 int i, ret;
1992
1993 lockdep_assert_held(&cgroup_mutex);
1994
1995 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1996 0, GFP_KERNEL);
1997 if (ret)
1998 goto out;
1999
2000 /*
2001 * We're accessing css_set_count without locking css_set_lock here,
2002 * but that's OK - it can only be increased by someone holding
2003 * cgroup_lock, and that's us. Later rebinding may disable
2004 * controllers on the default hierarchy and thus create new csets,
2005 * which can't be more than the existing ones. Allocate 2x.
2006 */
2007 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2008 if (ret)
2009 goto cancel_ref;
2010
2011 ret = cgroup_init_root_id(root);
2012 if (ret)
2013 goto cancel_ref;
2014
2015 kf_sops = root == &cgrp_dfl_root ?
2016 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2017
2018 root->kf_root = kernfs_create_root(kf_sops,
2019 KERNFS_ROOT_CREATE_DEACTIVATED |
2020 KERNFS_ROOT_SUPPORT_EXPORTOP |
2021 KERNFS_ROOT_SUPPORT_USER_XATTR,
2022 root_cgrp);
2023 if (IS_ERR(root->kf_root)) {
2024 ret = PTR_ERR(root->kf_root);
2025 goto exit_root_id;
2026 }
2027 root_cgrp->kn = root->kf_root->kn;
2028 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2029 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2030
2031 ret = css_populate_dir(&root_cgrp->self);
2032 if (ret)
2033 goto destroy_root;
2034
2035 ret = cgroup_rstat_init(root_cgrp);
2036 if (ret)
2037 goto destroy_root;
2038
2039 ret = rebind_subsystems(root, ss_mask);
2040 if (ret)
2041 goto exit_stats;
2042
2043 ret = cgroup_bpf_inherit(root_cgrp);
2044 WARN_ON_ONCE(ret);
2045
2046 trace_cgroup_setup_root(root);
2047
2048 /*
2049 * There must be no failure case after here, since rebinding takes
2050 * care of subsystems' refcounts, which are explicitly dropped in
2051 * the failure exit path.
2052 */
2053 list_add(&root->root_list, &cgroup_roots);
2054 cgroup_root_count++;
2055
2056 /*
2057 * Link the root cgroup in this hierarchy into all the css_set
2058 * objects.
2059 */
2060 spin_lock_irq(&css_set_lock);
2061 hash_for_each(css_set_table, i, cset, hlist) {
2062 link_css_set(&tmp_links, cset, root_cgrp);
2063 if (css_set_populated(cset))
2064 cgroup_update_populated(root_cgrp, true);
2065 }
2066 spin_unlock_irq(&css_set_lock);
2067
2068 BUG_ON(!list_empty(&root_cgrp->self.children));
2069 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2070
2071 ret = 0;
2072 goto out;
2073
2074 exit_stats:
2075 cgroup_rstat_exit(root_cgrp);
2076 destroy_root:
2077 kernfs_destroy_root(root->kf_root);
2078 root->kf_root = NULL;
2079 exit_root_id:
2080 cgroup_exit_root_id(root);
2081 cancel_ref:
2082 percpu_ref_exit(&root_cgrp->self.refcnt);
2083 out:
2084 free_cgrp_cset_links(&tmp_links);
2085 return ret;
2086 }
2087
cgroup_do_get_tree(struct fs_context * fc)2088 int cgroup_do_get_tree(struct fs_context *fc)
2089 {
2090 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2091 int ret;
2092
2093 ctx->kfc.root = ctx->root->kf_root;
2094 if (fc->fs_type == &cgroup2_fs_type)
2095 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2096 else
2097 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2098 ret = kernfs_get_tree(fc);
2099
2100 /*
2101 * In non-init cgroup namespace, instead of root cgroup's dentry,
2102 * we return the dentry corresponding to the cgroupns->root_cgrp.
2103 */
2104 if (!ret && ctx->ns != &init_cgroup_ns) {
2105 struct dentry *nsdentry;
2106 struct super_block *sb = fc->root->d_sb;
2107 struct cgroup *cgrp;
2108
2109 mutex_lock(&cgroup_mutex);
2110 spin_lock_irq(&css_set_lock);
2111
2112 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2113
2114 spin_unlock_irq(&css_set_lock);
2115 mutex_unlock(&cgroup_mutex);
2116
2117 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2118 dput(fc->root);
2119 if (IS_ERR(nsdentry)) {
2120 deactivate_locked_super(sb);
2121 ret = PTR_ERR(nsdentry);
2122 nsdentry = NULL;
2123 }
2124 fc->root = nsdentry;
2125 }
2126
2127 if (!ctx->kfc.new_sb_created)
2128 cgroup_put(&ctx->root->cgrp);
2129
2130 return ret;
2131 }
2132
2133 /*
2134 * Destroy a cgroup filesystem context.
2135 */
cgroup_fs_context_free(struct fs_context * fc)2136 static void cgroup_fs_context_free(struct fs_context *fc)
2137 {
2138 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2139
2140 kfree(ctx->name);
2141 kfree(ctx->release_agent);
2142 put_cgroup_ns(ctx->ns);
2143 kernfs_free_fs_context(fc);
2144 kfree(ctx);
2145 }
2146
cgroup_get_tree(struct fs_context * fc)2147 static int cgroup_get_tree(struct fs_context *fc)
2148 {
2149 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2150 int ret;
2151
2152 cgrp_dfl_visible = true;
2153 cgroup_get_live(&cgrp_dfl_root.cgrp);
2154 ctx->root = &cgrp_dfl_root;
2155
2156 ret = cgroup_do_get_tree(fc);
2157 if (!ret)
2158 apply_cgroup_root_flags(ctx->flags);
2159 return ret;
2160 }
2161
2162 static const struct fs_context_operations cgroup_fs_context_ops = {
2163 .free = cgroup_fs_context_free,
2164 .parse_param = cgroup2_parse_param,
2165 .get_tree = cgroup_get_tree,
2166 .reconfigure = cgroup_reconfigure,
2167 };
2168
2169 static const struct fs_context_operations cgroup1_fs_context_ops = {
2170 .free = cgroup_fs_context_free,
2171 .parse_param = cgroup1_parse_param,
2172 .get_tree = cgroup1_get_tree,
2173 .reconfigure = cgroup1_reconfigure,
2174 };
2175
2176 /*
2177 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2178 * we select the namespace we're going to use.
2179 */
cgroup_init_fs_context(struct fs_context * fc)2180 static int cgroup_init_fs_context(struct fs_context *fc)
2181 {
2182 struct cgroup_fs_context *ctx;
2183
2184 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2185 if (!ctx)
2186 return -ENOMEM;
2187
2188 ctx->ns = current->nsproxy->cgroup_ns;
2189 get_cgroup_ns(ctx->ns);
2190 fc->fs_private = &ctx->kfc;
2191 if (fc->fs_type == &cgroup2_fs_type)
2192 fc->ops = &cgroup_fs_context_ops;
2193 else
2194 fc->ops = &cgroup1_fs_context_ops;
2195 put_user_ns(fc->user_ns);
2196 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2197 fc->global = true;
2198 return 0;
2199 }
2200
cgroup_kill_sb(struct super_block * sb)2201 static void cgroup_kill_sb(struct super_block *sb)
2202 {
2203 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2204 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2205
2206 /*
2207 * If @root doesn't have any children, start killing it.
2208 * This prevents new mounts by disabling percpu_ref_tryget_live().
2209 *
2210 * And don't kill the default root.
2211 */
2212 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2213 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2214 cgroup_bpf_offline(&root->cgrp);
2215 percpu_ref_kill(&root->cgrp.self.refcnt);
2216 }
2217 cgroup_put(&root->cgrp);
2218 kernfs_kill_sb(sb);
2219 }
2220
2221 struct file_system_type cgroup_fs_type = {
2222 .name = "cgroup",
2223 .init_fs_context = cgroup_init_fs_context,
2224 .parameters = cgroup1_fs_parameters,
2225 .kill_sb = cgroup_kill_sb,
2226 .fs_flags = FS_USERNS_MOUNT,
2227 };
2228
2229 static struct file_system_type cgroup2_fs_type = {
2230 .name = "cgroup2",
2231 .init_fs_context = cgroup_init_fs_context,
2232 .parameters = cgroup2_fs_parameters,
2233 .kill_sb = cgroup_kill_sb,
2234 .fs_flags = FS_USERNS_MOUNT,
2235 };
2236
2237 #ifdef CONFIG_CPUSETS
2238 static const struct fs_context_operations cpuset_fs_context_ops = {
2239 .get_tree = cgroup1_get_tree,
2240 .free = cgroup_fs_context_free,
2241 };
2242
2243 /*
2244 * This is ugly, but preserves the userspace API for existing cpuset
2245 * users. If someone tries to mount the "cpuset" filesystem, we
2246 * silently switch it to mount "cgroup" instead
2247 */
cpuset_init_fs_context(struct fs_context * fc)2248 static int cpuset_init_fs_context(struct fs_context *fc)
2249 {
2250 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2251 struct cgroup_fs_context *ctx;
2252 int err;
2253
2254 err = cgroup_init_fs_context(fc);
2255 if (err) {
2256 kfree(agent);
2257 return err;
2258 }
2259
2260 fc->ops = &cpuset_fs_context_ops;
2261
2262 ctx = cgroup_fc2context(fc);
2263 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2264 ctx->flags |= CGRP_ROOT_NOPREFIX;
2265 ctx->release_agent = agent;
2266
2267 get_filesystem(&cgroup_fs_type);
2268 put_filesystem(fc->fs_type);
2269 fc->fs_type = &cgroup_fs_type;
2270
2271 return 0;
2272 }
2273
2274 static struct file_system_type cpuset_fs_type = {
2275 .name = "cpuset",
2276 .init_fs_context = cpuset_init_fs_context,
2277 .fs_flags = FS_USERNS_MOUNT,
2278 };
2279 #endif
2280
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2281 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2282 struct cgroup_namespace *ns)
2283 {
2284 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2285
2286 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2287 }
2288
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2289 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2290 struct cgroup_namespace *ns)
2291 {
2292 int ret;
2293
2294 mutex_lock(&cgroup_mutex);
2295 spin_lock_irq(&css_set_lock);
2296
2297 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2298
2299 spin_unlock_irq(&css_set_lock);
2300 mutex_unlock(&cgroup_mutex);
2301
2302 return ret;
2303 }
2304 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2305
2306 /**
2307 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2308 * @task: target task
2309 * @buf: the buffer to write the path into
2310 * @buflen: the length of the buffer
2311 *
2312 * Determine @task's cgroup on the first (the one with the lowest non-zero
2313 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2314 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2315 * cgroup controller callbacks.
2316 *
2317 * Return value is the same as kernfs_path().
2318 */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2319 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2320 {
2321 struct cgroup_root *root;
2322 struct cgroup *cgrp;
2323 int hierarchy_id = 1;
2324 int ret;
2325
2326 mutex_lock(&cgroup_mutex);
2327 spin_lock_irq(&css_set_lock);
2328
2329 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2330
2331 if (root) {
2332 cgrp = task_cgroup_from_root(task, root);
2333 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2334 } else {
2335 /* if no hierarchy exists, everyone is in "/" */
2336 ret = strlcpy(buf, "/", buflen);
2337 }
2338
2339 spin_unlock_irq(&css_set_lock);
2340 mutex_unlock(&cgroup_mutex);
2341 return ret;
2342 }
2343 EXPORT_SYMBOL_GPL(task_cgroup_path);
2344
2345 /**
2346 * cgroup_migrate_add_task - add a migration target task to a migration context
2347 * @task: target task
2348 * @mgctx: target migration context
2349 *
2350 * Add @task, which is a migration target, to @mgctx->tset. This function
2351 * becomes noop if @task doesn't need to be migrated. @task's css_set
2352 * should have been added as a migration source and @task->cg_list will be
2353 * moved from the css_set's tasks list to mg_tasks one.
2354 */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2355 static void cgroup_migrate_add_task(struct task_struct *task,
2356 struct cgroup_mgctx *mgctx)
2357 {
2358 struct css_set *cset;
2359
2360 lockdep_assert_held(&css_set_lock);
2361
2362 /* @task either already exited or can't exit until the end */
2363 if (task->flags & PF_EXITING)
2364 return;
2365
2366 /* cgroup_threadgroup_rwsem protects racing against forks */
2367 WARN_ON_ONCE(list_empty(&task->cg_list));
2368
2369 cset = task_css_set(task);
2370 if (!cset->mg_src_cgrp)
2371 return;
2372
2373 mgctx->tset.nr_tasks++;
2374
2375 list_move_tail(&task->cg_list, &cset->mg_tasks);
2376 if (list_empty(&cset->mg_node))
2377 list_add_tail(&cset->mg_node,
2378 &mgctx->tset.src_csets);
2379 if (list_empty(&cset->mg_dst_cset->mg_node))
2380 list_add_tail(&cset->mg_dst_cset->mg_node,
2381 &mgctx->tset.dst_csets);
2382 }
2383
2384 /**
2385 * cgroup_taskset_first - reset taskset and return the first task
2386 * @tset: taskset of interest
2387 * @dst_cssp: output variable for the destination css
2388 *
2389 * @tset iteration is initialized and the first task is returned.
2390 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2391 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2392 struct cgroup_subsys_state **dst_cssp)
2393 {
2394 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2395 tset->cur_task = NULL;
2396
2397 return cgroup_taskset_next(tset, dst_cssp);
2398 }
2399
2400 /**
2401 * cgroup_taskset_next - iterate to the next task in taskset
2402 * @tset: taskset of interest
2403 * @dst_cssp: output variable for the destination css
2404 *
2405 * Return the next task in @tset. Iteration must have been initialized
2406 * with cgroup_taskset_first().
2407 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2408 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2409 struct cgroup_subsys_state **dst_cssp)
2410 {
2411 struct css_set *cset = tset->cur_cset;
2412 struct task_struct *task = tset->cur_task;
2413
2414 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2415 if (!task)
2416 task = list_first_entry(&cset->mg_tasks,
2417 struct task_struct, cg_list);
2418 else
2419 task = list_next_entry(task, cg_list);
2420
2421 if (&task->cg_list != &cset->mg_tasks) {
2422 tset->cur_cset = cset;
2423 tset->cur_task = task;
2424
2425 /*
2426 * This function may be called both before and
2427 * after cgroup_taskset_migrate(). The two cases
2428 * can be distinguished by looking at whether @cset
2429 * has its ->mg_dst_cset set.
2430 */
2431 if (cset->mg_dst_cset)
2432 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2433 else
2434 *dst_cssp = cset->subsys[tset->ssid];
2435
2436 return task;
2437 }
2438
2439 cset = list_next_entry(cset, mg_node);
2440 task = NULL;
2441 }
2442
2443 return NULL;
2444 }
2445
2446 /**
2447 * cgroup_migrate_execute - migrate a taskset
2448 * @mgctx: migration context
2449 *
2450 * Migrate tasks in @mgctx as setup by migration preparation functions.
2451 * This function fails iff one of the ->can_attach callbacks fails and
2452 * guarantees that either all or none of the tasks in @mgctx are migrated.
2453 * @mgctx is consumed regardless of success.
2454 */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2455 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2456 {
2457 struct cgroup_taskset *tset = &mgctx->tset;
2458 struct cgroup_subsys *ss;
2459 struct task_struct *task, *tmp_task;
2460 struct css_set *cset, *tmp_cset;
2461 int ssid, failed_ssid, ret;
2462
2463 /* check that we can legitimately attach to the cgroup */
2464 if (tset->nr_tasks) {
2465 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2466 if (ss->can_attach) {
2467 tset->ssid = ssid;
2468 ret = ss->can_attach(tset);
2469 if (ret) {
2470 failed_ssid = ssid;
2471 goto out_cancel_attach;
2472 }
2473 }
2474 } while_each_subsys_mask();
2475 }
2476
2477 /*
2478 * Now that we're guaranteed success, proceed to move all tasks to
2479 * the new cgroup. There are no failure cases after here, so this
2480 * is the commit point.
2481 */
2482 spin_lock_irq(&css_set_lock);
2483 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2484 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2485 struct css_set *from_cset = task_css_set(task);
2486 struct css_set *to_cset = cset->mg_dst_cset;
2487
2488 get_css_set(to_cset);
2489 to_cset->nr_tasks++;
2490 css_set_move_task(task, from_cset, to_cset, true);
2491 from_cset->nr_tasks--;
2492 /*
2493 * If the source or destination cgroup is frozen,
2494 * the task might require to change its state.
2495 */
2496 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2497 to_cset->dfl_cgrp);
2498 put_css_set_locked(from_cset);
2499
2500 }
2501 }
2502 spin_unlock_irq(&css_set_lock);
2503
2504 /*
2505 * Migration is committed, all target tasks are now on dst_csets.
2506 * Nothing is sensitive to fork() after this point. Notify
2507 * controllers that migration is complete.
2508 */
2509 tset->csets = &tset->dst_csets;
2510
2511 if (tset->nr_tasks) {
2512 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2513 if (ss->attach) {
2514 tset->ssid = ssid;
2515 ss->attach(tset);
2516 }
2517 } while_each_subsys_mask();
2518 }
2519
2520 ret = 0;
2521 goto out_release_tset;
2522
2523 out_cancel_attach:
2524 if (tset->nr_tasks) {
2525 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2526 if (ssid == failed_ssid)
2527 break;
2528 if (ss->cancel_attach) {
2529 tset->ssid = ssid;
2530 ss->cancel_attach(tset);
2531 }
2532 } while_each_subsys_mask();
2533 }
2534 out_release_tset:
2535 spin_lock_irq(&css_set_lock);
2536 list_splice_init(&tset->dst_csets, &tset->src_csets);
2537 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2538 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2539 list_del_init(&cset->mg_node);
2540 }
2541 spin_unlock_irq(&css_set_lock);
2542
2543 /*
2544 * Re-initialize the cgroup_taskset structure in case it is reused
2545 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2546 * iteration.
2547 */
2548 tset->nr_tasks = 0;
2549 tset->csets = &tset->src_csets;
2550 return ret;
2551 }
2552
2553 /**
2554 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2555 * @dst_cgrp: destination cgroup to test
2556 *
2557 * On the default hierarchy, except for the mixable, (possible) thread root
2558 * and threaded cgroups, subtree_control must be zero for migration
2559 * destination cgroups with tasks so that child cgroups don't compete
2560 * against tasks.
2561 */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2562 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2563 {
2564 /* v1 doesn't have any restriction */
2565 if (!cgroup_on_dfl(dst_cgrp))
2566 return 0;
2567
2568 /* verify @dst_cgrp can host resources */
2569 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2570 return -EOPNOTSUPP;
2571
2572 /* mixables don't care */
2573 if (cgroup_is_mixable(dst_cgrp))
2574 return 0;
2575
2576 /*
2577 * If @dst_cgrp is already or can become a thread root or is
2578 * threaded, it doesn't matter.
2579 */
2580 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2581 return 0;
2582
2583 /* apply no-internal-process constraint */
2584 if (dst_cgrp->subtree_control)
2585 return -EBUSY;
2586
2587 return 0;
2588 }
2589
2590 /**
2591 * cgroup_migrate_finish - cleanup after attach
2592 * @mgctx: migration context
2593 *
2594 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2595 * those functions for details.
2596 */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2597 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2598 {
2599 LIST_HEAD(preloaded);
2600 struct css_set *cset, *tmp_cset;
2601
2602 lockdep_assert_held(&cgroup_mutex);
2603
2604 spin_lock_irq(&css_set_lock);
2605
2606 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2607 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2608
2609 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2610 cset->mg_src_cgrp = NULL;
2611 cset->mg_dst_cgrp = NULL;
2612 cset->mg_dst_cset = NULL;
2613 list_del_init(&cset->mg_preload_node);
2614 put_css_set_locked(cset);
2615 }
2616
2617 spin_unlock_irq(&css_set_lock);
2618 }
2619
2620 /**
2621 * cgroup_migrate_add_src - add a migration source css_set
2622 * @src_cset: the source css_set to add
2623 * @dst_cgrp: the destination cgroup
2624 * @mgctx: migration context
2625 *
2626 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2627 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2628 * up by cgroup_migrate_finish().
2629 *
2630 * This function may be called without holding cgroup_threadgroup_rwsem
2631 * even if the target is a process. Threads may be created and destroyed
2632 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2633 * into play and the preloaded css_sets are guaranteed to cover all
2634 * migrations.
2635 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2636 void cgroup_migrate_add_src(struct css_set *src_cset,
2637 struct cgroup *dst_cgrp,
2638 struct cgroup_mgctx *mgctx)
2639 {
2640 struct cgroup *src_cgrp;
2641
2642 lockdep_assert_held(&cgroup_mutex);
2643 lockdep_assert_held(&css_set_lock);
2644
2645 /*
2646 * If ->dead, @src_set is associated with one or more dead cgroups
2647 * and doesn't contain any migratable tasks. Ignore it early so
2648 * that the rest of migration path doesn't get confused by it.
2649 */
2650 if (src_cset->dead)
2651 return;
2652
2653 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2654
2655 if (!list_empty(&src_cset->mg_preload_node))
2656 return;
2657
2658 WARN_ON(src_cset->mg_src_cgrp);
2659 WARN_ON(src_cset->mg_dst_cgrp);
2660 WARN_ON(!list_empty(&src_cset->mg_tasks));
2661 WARN_ON(!list_empty(&src_cset->mg_node));
2662
2663 src_cset->mg_src_cgrp = src_cgrp;
2664 src_cset->mg_dst_cgrp = dst_cgrp;
2665 get_css_set(src_cset);
2666 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2667 }
2668
2669 /**
2670 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2671 * @mgctx: migration context
2672 *
2673 * Tasks are about to be moved and all the source css_sets have been
2674 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2675 * pins all destination css_sets, links each to its source, and append them
2676 * to @mgctx->preloaded_dst_csets.
2677 *
2678 * This function must be called after cgroup_migrate_add_src() has been
2679 * called on each migration source css_set. After migration is performed
2680 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2681 * @mgctx.
2682 */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2683 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2684 {
2685 struct css_set *src_cset, *tmp_cset;
2686
2687 lockdep_assert_held(&cgroup_mutex);
2688
2689 /* look up the dst cset for each src cset and link it to src */
2690 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2691 mg_preload_node) {
2692 struct css_set *dst_cset;
2693 struct cgroup_subsys *ss;
2694 int ssid;
2695
2696 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2697 if (!dst_cset)
2698 return -ENOMEM;
2699
2700 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2701
2702 /*
2703 * If src cset equals dst, it's noop. Drop the src.
2704 * cgroup_migrate() will skip the cset too. Note that we
2705 * can't handle src == dst as some nodes are used by both.
2706 */
2707 if (src_cset == dst_cset) {
2708 src_cset->mg_src_cgrp = NULL;
2709 src_cset->mg_dst_cgrp = NULL;
2710 list_del_init(&src_cset->mg_preload_node);
2711 put_css_set(src_cset);
2712 put_css_set(dst_cset);
2713 continue;
2714 }
2715
2716 src_cset->mg_dst_cset = dst_cset;
2717
2718 if (list_empty(&dst_cset->mg_preload_node))
2719 list_add_tail(&dst_cset->mg_preload_node,
2720 &mgctx->preloaded_dst_csets);
2721 else
2722 put_css_set(dst_cset);
2723
2724 for_each_subsys(ss, ssid)
2725 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2726 mgctx->ss_mask |= 1 << ssid;
2727 }
2728
2729 return 0;
2730 }
2731
2732 /**
2733 * cgroup_migrate - migrate a process or task to a cgroup
2734 * @leader: the leader of the process or the task to migrate
2735 * @threadgroup: whether @leader points to the whole process or a single task
2736 * @mgctx: migration context
2737 *
2738 * Migrate a process or task denoted by @leader. If migrating a process,
2739 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2740 * responsible for invoking cgroup_migrate_add_src() and
2741 * cgroup_migrate_prepare_dst() on the targets before invoking this
2742 * function and following up with cgroup_migrate_finish().
2743 *
2744 * As long as a controller's ->can_attach() doesn't fail, this function is
2745 * guaranteed to succeed. This means that, excluding ->can_attach()
2746 * failure, when migrating multiple targets, the success or failure can be
2747 * decided for all targets by invoking group_migrate_prepare_dst() before
2748 * actually starting migrating.
2749 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2750 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2751 struct cgroup_mgctx *mgctx)
2752 {
2753 struct task_struct *task;
2754
2755 /*
2756 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2757 * already PF_EXITING could be freed from underneath us unless we
2758 * take an rcu_read_lock.
2759 */
2760 spin_lock_irq(&css_set_lock);
2761 rcu_read_lock();
2762 task = leader;
2763 do {
2764 cgroup_migrate_add_task(task, mgctx);
2765 if (!threadgroup)
2766 break;
2767 } while_each_thread(leader, task);
2768 rcu_read_unlock();
2769 spin_unlock_irq(&css_set_lock);
2770
2771 return cgroup_migrate_execute(mgctx);
2772 }
2773
2774 /**
2775 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2776 * @dst_cgrp: the cgroup to attach to
2777 * @leader: the task or the leader of the threadgroup to be attached
2778 * @threadgroup: attach the whole threadgroup?
2779 *
2780 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2781 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2782 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2783 bool threadgroup)
2784 {
2785 DEFINE_CGROUP_MGCTX(mgctx);
2786 struct task_struct *task;
2787 int ret = 0;
2788
2789 /* look up all src csets */
2790 spin_lock_irq(&css_set_lock);
2791 rcu_read_lock();
2792 task = leader;
2793 do {
2794 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2795 if (!threadgroup)
2796 break;
2797 } while_each_thread(leader, task);
2798 rcu_read_unlock();
2799 spin_unlock_irq(&css_set_lock);
2800
2801 /* prepare dst csets and commit */
2802 ret = cgroup_migrate_prepare_dst(&mgctx);
2803 if (!ret)
2804 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2805
2806 cgroup_migrate_finish(&mgctx);
2807
2808 if (!ret)
2809 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2810
2811 return ret;
2812 }
2813
cgroup_procs_write_start(char * buf,bool threadgroup,bool * locked)2814 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2815 bool *locked)
2816 __acquires(&cgroup_threadgroup_rwsem)
2817 {
2818 struct task_struct *tsk;
2819 pid_t pid;
2820
2821 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2822 return ERR_PTR(-EINVAL);
2823
2824 /*
2825 * If we migrate a single thread, we don't care about threadgroup
2826 * stability. If the thread is `current`, it won't exit(2) under our
2827 * hands or change PID through exec(2). We exclude
2828 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2829 * callers by cgroup_mutex.
2830 * Therefore, we can skip the global lock.
2831 */
2832 lockdep_assert_held(&cgroup_mutex);
2833 if (pid || threadgroup) {
2834 percpu_down_write(&cgroup_threadgroup_rwsem);
2835 *locked = true;
2836 } else {
2837 *locked = false;
2838 }
2839
2840 rcu_read_lock();
2841 if (pid) {
2842 tsk = find_task_by_vpid(pid);
2843 if (!tsk) {
2844 tsk = ERR_PTR(-ESRCH);
2845 goto out_unlock_threadgroup;
2846 }
2847 } else {
2848 tsk = current;
2849 }
2850
2851 if (threadgroup)
2852 tsk = tsk->group_leader;
2853
2854 /*
2855 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2856 * If userland migrates such a kthread to a non-root cgroup, it can
2857 * become trapped in a cpuset, or RT kthread may be born in a
2858 * cgroup with no rt_runtime allocated. Just say no.
2859 */
2860 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2861 tsk = ERR_PTR(-EINVAL);
2862 goto out_unlock_threadgroup;
2863 }
2864
2865 get_task_struct(tsk);
2866 goto out_unlock_rcu;
2867
2868 out_unlock_threadgroup:
2869 if (*locked) {
2870 percpu_up_write(&cgroup_threadgroup_rwsem);
2871 *locked = false;
2872 }
2873 out_unlock_rcu:
2874 rcu_read_unlock();
2875 return tsk;
2876 }
2877
cgroup_procs_write_finish(struct task_struct * task,bool locked)2878 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2879 __releases(&cgroup_threadgroup_rwsem)
2880 {
2881 struct cgroup_subsys *ss;
2882 int ssid;
2883
2884 /* release reference from cgroup_procs_write_start() */
2885 put_task_struct(task);
2886
2887 if (locked)
2888 percpu_up_write(&cgroup_threadgroup_rwsem);
2889 for_each_subsys(ss, ssid)
2890 if (ss->post_attach)
2891 ss->post_attach();
2892 }
2893
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)2894 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2895 {
2896 struct cgroup_subsys *ss;
2897 bool printed = false;
2898 int ssid;
2899
2900 do_each_subsys_mask(ss, ssid, ss_mask) {
2901 if (printed)
2902 seq_putc(seq, ' ');
2903 seq_puts(seq, ss->name);
2904 printed = true;
2905 } while_each_subsys_mask();
2906 if (printed)
2907 seq_putc(seq, '\n');
2908 }
2909
2910 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)2911 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2912 {
2913 struct cgroup *cgrp = seq_css(seq)->cgroup;
2914
2915 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2916 return 0;
2917 }
2918
2919 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)2920 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2921 {
2922 struct cgroup *cgrp = seq_css(seq)->cgroup;
2923
2924 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2925 return 0;
2926 }
2927
2928 /**
2929 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2930 * @cgrp: root of the subtree to update csses for
2931 *
2932 * @cgrp's control masks have changed and its subtree's css associations
2933 * need to be updated accordingly. This function looks up all css_sets
2934 * which are attached to the subtree, creates the matching updated css_sets
2935 * and migrates the tasks to the new ones.
2936 */
cgroup_update_dfl_csses(struct cgroup * cgrp)2937 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2938 {
2939 DEFINE_CGROUP_MGCTX(mgctx);
2940 struct cgroup_subsys_state *d_css;
2941 struct cgroup *dsct;
2942 struct css_set *src_cset;
2943 int ret;
2944
2945 lockdep_assert_held(&cgroup_mutex);
2946
2947 percpu_down_write(&cgroup_threadgroup_rwsem);
2948
2949 /* look up all csses currently attached to @cgrp's subtree */
2950 spin_lock_irq(&css_set_lock);
2951 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2952 struct cgrp_cset_link *link;
2953
2954 list_for_each_entry(link, &dsct->cset_links, cset_link)
2955 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2956 }
2957 spin_unlock_irq(&css_set_lock);
2958
2959 /* NULL dst indicates self on default hierarchy */
2960 ret = cgroup_migrate_prepare_dst(&mgctx);
2961 if (ret)
2962 goto out_finish;
2963
2964 spin_lock_irq(&css_set_lock);
2965 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2966 struct task_struct *task, *ntask;
2967
2968 /* all tasks in src_csets need to be migrated */
2969 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2970 cgroup_migrate_add_task(task, &mgctx);
2971 }
2972 spin_unlock_irq(&css_set_lock);
2973
2974 ret = cgroup_migrate_execute(&mgctx);
2975 out_finish:
2976 cgroup_migrate_finish(&mgctx);
2977 percpu_up_write(&cgroup_threadgroup_rwsem);
2978 return ret;
2979 }
2980
2981 /**
2982 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2983 * @cgrp: root of the target subtree
2984 *
2985 * Because css offlining is asynchronous, userland may try to re-enable a
2986 * controller while the previous css is still around. This function grabs
2987 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2988 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)2989 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2990 __acquires(&cgroup_mutex)
2991 {
2992 struct cgroup *dsct;
2993 struct cgroup_subsys_state *d_css;
2994 struct cgroup_subsys *ss;
2995 int ssid;
2996
2997 restart:
2998 mutex_lock(&cgroup_mutex);
2999
3000 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3001 for_each_subsys(ss, ssid) {
3002 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3003 DEFINE_WAIT(wait);
3004
3005 if (!css || !percpu_ref_is_dying(&css->refcnt))
3006 continue;
3007
3008 cgroup_get_live(dsct);
3009 prepare_to_wait(&dsct->offline_waitq, &wait,
3010 TASK_UNINTERRUPTIBLE);
3011
3012 mutex_unlock(&cgroup_mutex);
3013 schedule();
3014 finish_wait(&dsct->offline_waitq, &wait);
3015
3016 cgroup_put(dsct);
3017 goto restart;
3018 }
3019 }
3020 }
3021
3022 /**
3023 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3024 * @cgrp: root of the target subtree
3025 *
3026 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3027 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3028 * itself.
3029 */
cgroup_save_control(struct cgroup * cgrp)3030 static void cgroup_save_control(struct cgroup *cgrp)
3031 {
3032 struct cgroup *dsct;
3033 struct cgroup_subsys_state *d_css;
3034
3035 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3036 dsct->old_subtree_control = dsct->subtree_control;
3037 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3038 dsct->old_dom_cgrp = dsct->dom_cgrp;
3039 }
3040 }
3041
3042 /**
3043 * cgroup_propagate_control - refresh control masks of a subtree
3044 * @cgrp: root of the target subtree
3045 *
3046 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3047 * ->subtree_control and propagate controller availability through the
3048 * subtree so that descendants don't have unavailable controllers enabled.
3049 */
cgroup_propagate_control(struct cgroup * cgrp)3050 static void cgroup_propagate_control(struct cgroup *cgrp)
3051 {
3052 struct cgroup *dsct;
3053 struct cgroup_subsys_state *d_css;
3054
3055 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3056 dsct->subtree_control &= cgroup_control(dsct);
3057 dsct->subtree_ss_mask =
3058 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3059 cgroup_ss_mask(dsct));
3060 }
3061 }
3062
3063 /**
3064 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3065 * @cgrp: root of the target subtree
3066 *
3067 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3068 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3069 * itself.
3070 */
cgroup_restore_control(struct cgroup * cgrp)3071 static void cgroup_restore_control(struct cgroup *cgrp)
3072 {
3073 struct cgroup *dsct;
3074 struct cgroup_subsys_state *d_css;
3075
3076 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3077 dsct->subtree_control = dsct->old_subtree_control;
3078 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3079 dsct->dom_cgrp = dsct->old_dom_cgrp;
3080 }
3081 }
3082
css_visible(struct cgroup_subsys_state * css)3083 static bool css_visible(struct cgroup_subsys_state *css)
3084 {
3085 struct cgroup_subsys *ss = css->ss;
3086 struct cgroup *cgrp = css->cgroup;
3087
3088 if (cgroup_control(cgrp) & (1 << ss->id))
3089 return true;
3090 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3091 return false;
3092 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3093 }
3094
3095 /**
3096 * cgroup_apply_control_enable - enable or show csses according to control
3097 * @cgrp: root of the target subtree
3098 *
3099 * Walk @cgrp's subtree and create new csses or make the existing ones
3100 * visible. A css is created invisible if it's being implicitly enabled
3101 * through dependency. An invisible css is made visible when the userland
3102 * explicitly enables it.
3103 *
3104 * Returns 0 on success, -errno on failure. On failure, csses which have
3105 * been processed already aren't cleaned up. The caller is responsible for
3106 * cleaning up with cgroup_apply_control_disable().
3107 */
cgroup_apply_control_enable(struct cgroup * cgrp)3108 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3109 {
3110 struct cgroup *dsct;
3111 struct cgroup_subsys_state *d_css;
3112 struct cgroup_subsys *ss;
3113 int ssid, ret;
3114
3115 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3116 for_each_subsys(ss, ssid) {
3117 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3118
3119 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3120 continue;
3121
3122 if (!css) {
3123 css = css_create(dsct, ss);
3124 if (IS_ERR(css))
3125 return PTR_ERR(css);
3126 }
3127
3128 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3129
3130 if (css_visible(css)) {
3131 ret = css_populate_dir(css);
3132 if (ret)
3133 return ret;
3134 }
3135 }
3136 }
3137
3138 return 0;
3139 }
3140
3141 /**
3142 * cgroup_apply_control_disable - kill or hide csses according to control
3143 * @cgrp: root of the target subtree
3144 *
3145 * Walk @cgrp's subtree and kill and hide csses so that they match
3146 * cgroup_ss_mask() and cgroup_visible_mask().
3147 *
3148 * A css is hidden when the userland requests it to be disabled while other
3149 * subsystems are still depending on it. The css must not actively control
3150 * resources and be in the vanilla state if it's made visible again later.
3151 * Controllers which may be depended upon should provide ->css_reset() for
3152 * this purpose.
3153 */
cgroup_apply_control_disable(struct cgroup * cgrp)3154 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3155 {
3156 struct cgroup *dsct;
3157 struct cgroup_subsys_state *d_css;
3158 struct cgroup_subsys *ss;
3159 int ssid;
3160
3161 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3162 for_each_subsys(ss, ssid) {
3163 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3164
3165 if (!css)
3166 continue;
3167
3168 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3169
3170 if (css->parent &&
3171 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3172 kill_css(css);
3173 } else if (!css_visible(css)) {
3174 css_clear_dir(css);
3175 if (ss->css_reset)
3176 ss->css_reset(css);
3177 }
3178 }
3179 }
3180 }
3181
3182 /**
3183 * cgroup_apply_control - apply control mask updates to the subtree
3184 * @cgrp: root of the target subtree
3185 *
3186 * subsystems can be enabled and disabled in a subtree using the following
3187 * steps.
3188 *
3189 * 1. Call cgroup_save_control() to stash the current state.
3190 * 2. Update ->subtree_control masks in the subtree as desired.
3191 * 3. Call cgroup_apply_control() to apply the changes.
3192 * 4. Optionally perform other related operations.
3193 * 5. Call cgroup_finalize_control() to finish up.
3194 *
3195 * This function implements step 3 and propagates the mask changes
3196 * throughout @cgrp's subtree, updates csses accordingly and perform
3197 * process migrations.
3198 */
cgroup_apply_control(struct cgroup * cgrp)3199 static int cgroup_apply_control(struct cgroup *cgrp)
3200 {
3201 int ret;
3202
3203 cgroup_propagate_control(cgrp);
3204
3205 ret = cgroup_apply_control_enable(cgrp);
3206 if (ret)
3207 return ret;
3208
3209 /*
3210 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3211 * making the following cgroup_update_dfl_csses() properly update
3212 * css associations of all tasks in the subtree.
3213 */
3214 ret = cgroup_update_dfl_csses(cgrp);
3215 if (ret)
3216 return ret;
3217
3218 return 0;
3219 }
3220
3221 /**
3222 * cgroup_finalize_control - finalize control mask update
3223 * @cgrp: root of the target subtree
3224 * @ret: the result of the update
3225 *
3226 * Finalize control mask update. See cgroup_apply_control() for more info.
3227 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3228 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3229 {
3230 if (ret) {
3231 cgroup_restore_control(cgrp);
3232 cgroup_propagate_control(cgrp);
3233 }
3234
3235 cgroup_apply_control_disable(cgrp);
3236 }
3237
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3238 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3239 {
3240 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3241
3242 /* if nothing is getting enabled, nothing to worry about */
3243 if (!enable)
3244 return 0;
3245
3246 /* can @cgrp host any resources? */
3247 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3248 return -EOPNOTSUPP;
3249
3250 /* mixables don't care */
3251 if (cgroup_is_mixable(cgrp))
3252 return 0;
3253
3254 if (domain_enable) {
3255 /* can't enable domain controllers inside a thread subtree */
3256 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3257 return -EOPNOTSUPP;
3258 } else {
3259 /*
3260 * Threaded controllers can handle internal competitions
3261 * and are always allowed inside a (prospective) thread
3262 * subtree.
3263 */
3264 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3265 return 0;
3266 }
3267
3268 /*
3269 * Controllers can't be enabled for a cgroup with tasks to avoid
3270 * child cgroups competing against tasks.
3271 */
3272 if (cgroup_has_tasks(cgrp))
3273 return -EBUSY;
3274
3275 return 0;
3276 }
3277
3278 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3279 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3280 char *buf, size_t nbytes,
3281 loff_t off)
3282 {
3283 u16 enable = 0, disable = 0;
3284 struct cgroup *cgrp, *child;
3285 struct cgroup_subsys *ss;
3286 char *tok;
3287 int ssid, ret;
3288
3289 /*
3290 * Parse input - space separated list of subsystem names prefixed
3291 * with either + or -.
3292 */
3293 buf = strstrip(buf);
3294 while ((tok = strsep(&buf, " "))) {
3295 if (tok[0] == '\0')
3296 continue;
3297 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3298 if (!cgroup_ssid_enabled(ssid) ||
3299 strcmp(tok + 1, ss->name))
3300 continue;
3301
3302 if (*tok == '+') {
3303 enable |= 1 << ssid;
3304 disable &= ~(1 << ssid);
3305 } else if (*tok == '-') {
3306 disable |= 1 << ssid;
3307 enable &= ~(1 << ssid);
3308 } else {
3309 return -EINVAL;
3310 }
3311 break;
3312 } while_each_subsys_mask();
3313 if (ssid == CGROUP_SUBSYS_COUNT)
3314 return -EINVAL;
3315 }
3316
3317 cgrp = cgroup_kn_lock_live(of->kn, true);
3318 if (!cgrp)
3319 return -ENODEV;
3320
3321 for_each_subsys(ss, ssid) {
3322 if (enable & (1 << ssid)) {
3323 if (cgrp->subtree_control & (1 << ssid)) {
3324 enable &= ~(1 << ssid);
3325 continue;
3326 }
3327
3328 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3329 ret = -ENOENT;
3330 goto out_unlock;
3331 }
3332 } else if (disable & (1 << ssid)) {
3333 if (!(cgrp->subtree_control & (1 << ssid))) {
3334 disable &= ~(1 << ssid);
3335 continue;
3336 }
3337
3338 /* a child has it enabled? */
3339 cgroup_for_each_live_child(child, cgrp) {
3340 if (child->subtree_control & (1 << ssid)) {
3341 ret = -EBUSY;
3342 goto out_unlock;
3343 }
3344 }
3345 }
3346 }
3347
3348 if (!enable && !disable) {
3349 ret = 0;
3350 goto out_unlock;
3351 }
3352
3353 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3354 if (ret)
3355 goto out_unlock;
3356
3357 /* save and update control masks and prepare csses */
3358 cgroup_save_control(cgrp);
3359
3360 cgrp->subtree_control |= enable;
3361 cgrp->subtree_control &= ~disable;
3362
3363 ret = cgroup_apply_control(cgrp);
3364 cgroup_finalize_control(cgrp, ret);
3365 if (ret)
3366 goto out_unlock;
3367
3368 kernfs_activate(cgrp->kn);
3369 out_unlock:
3370 cgroup_kn_unlock(of->kn);
3371 return ret ?: nbytes;
3372 }
3373
3374 /**
3375 * cgroup_enable_threaded - make @cgrp threaded
3376 * @cgrp: the target cgroup
3377 *
3378 * Called when "threaded" is written to the cgroup.type interface file and
3379 * tries to make @cgrp threaded and join the parent's resource domain.
3380 * This function is never called on the root cgroup as cgroup.type doesn't
3381 * exist on it.
3382 */
cgroup_enable_threaded(struct cgroup * cgrp)3383 static int cgroup_enable_threaded(struct cgroup *cgrp)
3384 {
3385 struct cgroup *parent = cgroup_parent(cgrp);
3386 struct cgroup *dom_cgrp = parent->dom_cgrp;
3387 struct cgroup *dsct;
3388 struct cgroup_subsys_state *d_css;
3389 int ret;
3390
3391 lockdep_assert_held(&cgroup_mutex);
3392
3393 /* noop if already threaded */
3394 if (cgroup_is_threaded(cgrp))
3395 return 0;
3396
3397 /*
3398 * If @cgroup is populated or has domain controllers enabled, it
3399 * can't be switched. While the below cgroup_can_be_thread_root()
3400 * test can catch the same conditions, that's only when @parent is
3401 * not mixable, so let's check it explicitly.
3402 */
3403 if (cgroup_is_populated(cgrp) ||
3404 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3405 return -EOPNOTSUPP;
3406
3407 /* we're joining the parent's domain, ensure its validity */
3408 if (!cgroup_is_valid_domain(dom_cgrp) ||
3409 !cgroup_can_be_thread_root(dom_cgrp))
3410 return -EOPNOTSUPP;
3411
3412 /*
3413 * The following shouldn't cause actual migrations and should
3414 * always succeed.
3415 */
3416 cgroup_save_control(cgrp);
3417
3418 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3419 if (dsct == cgrp || cgroup_is_threaded(dsct))
3420 dsct->dom_cgrp = dom_cgrp;
3421
3422 ret = cgroup_apply_control(cgrp);
3423 if (!ret)
3424 parent->nr_threaded_children++;
3425
3426 cgroup_finalize_control(cgrp, ret);
3427 return ret;
3428 }
3429
cgroup_type_show(struct seq_file * seq,void * v)3430 static int cgroup_type_show(struct seq_file *seq, void *v)
3431 {
3432 struct cgroup *cgrp = seq_css(seq)->cgroup;
3433
3434 if (cgroup_is_threaded(cgrp))
3435 seq_puts(seq, "threaded\n");
3436 else if (!cgroup_is_valid_domain(cgrp))
3437 seq_puts(seq, "domain invalid\n");
3438 else if (cgroup_is_thread_root(cgrp))
3439 seq_puts(seq, "domain threaded\n");
3440 else
3441 seq_puts(seq, "domain\n");
3442
3443 return 0;
3444 }
3445
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3446 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3447 size_t nbytes, loff_t off)
3448 {
3449 struct cgroup *cgrp;
3450 int ret;
3451
3452 /* only switching to threaded mode is supported */
3453 if (strcmp(strstrip(buf), "threaded"))
3454 return -EINVAL;
3455
3456 /* drain dying csses before we re-apply (threaded) subtree control */
3457 cgrp = cgroup_kn_lock_live(of->kn, true);
3458 if (!cgrp)
3459 return -ENOENT;
3460
3461 /* threaded can only be enabled */
3462 ret = cgroup_enable_threaded(cgrp);
3463
3464 cgroup_kn_unlock(of->kn);
3465 return ret ?: nbytes;
3466 }
3467
cgroup_max_descendants_show(struct seq_file * seq,void * v)3468 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3469 {
3470 struct cgroup *cgrp = seq_css(seq)->cgroup;
3471 int descendants = READ_ONCE(cgrp->max_descendants);
3472
3473 if (descendants == INT_MAX)
3474 seq_puts(seq, "max\n");
3475 else
3476 seq_printf(seq, "%d\n", descendants);
3477
3478 return 0;
3479 }
3480
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3481 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3482 char *buf, size_t nbytes, loff_t off)
3483 {
3484 struct cgroup *cgrp;
3485 int descendants;
3486 ssize_t ret;
3487
3488 buf = strstrip(buf);
3489 if (!strcmp(buf, "max")) {
3490 descendants = INT_MAX;
3491 } else {
3492 ret = kstrtoint(buf, 0, &descendants);
3493 if (ret)
3494 return ret;
3495 }
3496
3497 if (descendants < 0)
3498 return -ERANGE;
3499
3500 cgrp = cgroup_kn_lock_live(of->kn, false);
3501 if (!cgrp)
3502 return -ENOENT;
3503
3504 cgrp->max_descendants = descendants;
3505
3506 cgroup_kn_unlock(of->kn);
3507
3508 return nbytes;
3509 }
3510
cgroup_max_depth_show(struct seq_file * seq,void * v)3511 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3512 {
3513 struct cgroup *cgrp = seq_css(seq)->cgroup;
3514 int depth = READ_ONCE(cgrp->max_depth);
3515
3516 if (depth == INT_MAX)
3517 seq_puts(seq, "max\n");
3518 else
3519 seq_printf(seq, "%d\n", depth);
3520
3521 return 0;
3522 }
3523
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3524 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3525 char *buf, size_t nbytes, loff_t off)
3526 {
3527 struct cgroup *cgrp;
3528 ssize_t ret;
3529 int depth;
3530
3531 buf = strstrip(buf);
3532 if (!strcmp(buf, "max")) {
3533 depth = INT_MAX;
3534 } else {
3535 ret = kstrtoint(buf, 0, &depth);
3536 if (ret)
3537 return ret;
3538 }
3539
3540 if (depth < 0)
3541 return -ERANGE;
3542
3543 cgrp = cgroup_kn_lock_live(of->kn, false);
3544 if (!cgrp)
3545 return -ENOENT;
3546
3547 cgrp->max_depth = depth;
3548
3549 cgroup_kn_unlock(of->kn);
3550
3551 return nbytes;
3552 }
3553
cgroup_events_show(struct seq_file * seq,void * v)3554 static int cgroup_events_show(struct seq_file *seq, void *v)
3555 {
3556 struct cgroup *cgrp = seq_css(seq)->cgroup;
3557
3558 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3559 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3560
3561 return 0;
3562 }
3563
cgroup_stat_show(struct seq_file * seq,void * v)3564 static int cgroup_stat_show(struct seq_file *seq, void *v)
3565 {
3566 struct cgroup *cgroup = seq_css(seq)->cgroup;
3567
3568 seq_printf(seq, "nr_descendants %d\n",
3569 cgroup->nr_descendants);
3570 seq_printf(seq, "nr_dying_descendants %d\n",
3571 cgroup->nr_dying_descendants);
3572
3573 return 0;
3574 }
3575
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3576 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3577 struct cgroup *cgrp, int ssid)
3578 {
3579 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3580 struct cgroup_subsys_state *css;
3581 int ret;
3582
3583 if (!ss->css_extra_stat_show)
3584 return 0;
3585
3586 css = cgroup_tryget_css(cgrp, ss);
3587 if (!css)
3588 return 0;
3589
3590 ret = ss->css_extra_stat_show(seq, css);
3591 css_put(css);
3592 return ret;
3593 }
3594
cpu_stat_show(struct seq_file * seq,void * v)3595 static int cpu_stat_show(struct seq_file *seq, void *v)
3596 {
3597 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3598 int ret = 0;
3599
3600 cgroup_base_stat_cputime_show(seq);
3601 #ifdef CONFIG_CGROUP_SCHED
3602 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3603 #endif
3604 return ret;
3605 }
3606
3607 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3608 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3609 {
3610 struct cgroup *cgrp = seq_css(seq)->cgroup;
3611 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3612
3613 return psi_show(seq, psi, PSI_IO);
3614 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3615 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3616 {
3617 struct cgroup *cgrp = seq_css(seq)->cgroup;
3618 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3619
3620 return psi_show(seq, psi, PSI_MEM);
3621 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3622 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3623 {
3624 struct cgroup *cgrp = seq_css(seq)->cgroup;
3625 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3626
3627 return psi_show(seq, psi, PSI_CPU);
3628 }
3629
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3630 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3631 size_t nbytes, enum psi_res res)
3632 {
3633 struct cgroup_file_ctx *ctx = of->priv;
3634 struct psi_trigger *new;
3635 struct cgroup *cgrp;
3636 struct psi_group *psi;
3637
3638 cgrp = cgroup_kn_lock_live(of->kn, false);
3639 if (!cgrp)
3640 return -ENODEV;
3641
3642 cgroup_get(cgrp);
3643 cgroup_kn_unlock(of->kn);
3644
3645 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3646 new = psi_trigger_create(psi, buf, nbytes, res);
3647 if (IS_ERR(new)) {
3648 cgroup_put(cgrp);
3649 return PTR_ERR(new);
3650 }
3651
3652 psi_trigger_replace(&ctx->psi.trigger, new);
3653
3654 cgroup_put(cgrp);
3655
3656 return nbytes;
3657 }
3658
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3659 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3660 char *buf, size_t nbytes,
3661 loff_t off)
3662 {
3663 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3664 }
3665
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3666 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3667 char *buf, size_t nbytes,
3668 loff_t off)
3669 {
3670 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3671 }
3672
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3673 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3674 char *buf, size_t nbytes,
3675 loff_t off)
3676 {
3677 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3678 }
3679
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3680 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3681 poll_table *pt)
3682 {
3683 struct cgroup_file_ctx *ctx = of->priv;
3684
3685 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3686 }
3687
cgroup_pressure_release(struct kernfs_open_file * of)3688 static void cgroup_pressure_release(struct kernfs_open_file *of)
3689 {
3690 struct cgroup_file_ctx *ctx = of->priv;
3691
3692 psi_trigger_replace(&ctx->psi.trigger, NULL);
3693 }
3694
cgroup_psi_enabled(void)3695 bool cgroup_psi_enabled(void)
3696 {
3697 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3698 }
3699
3700 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)3701 bool cgroup_psi_enabled(void)
3702 {
3703 return false;
3704 }
3705
3706 #endif /* CONFIG_PSI */
3707
cgroup_freeze_show(struct seq_file * seq,void * v)3708 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3709 {
3710 struct cgroup *cgrp = seq_css(seq)->cgroup;
3711
3712 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3713
3714 return 0;
3715 }
3716
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3717 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3718 char *buf, size_t nbytes, loff_t off)
3719 {
3720 struct cgroup *cgrp;
3721 ssize_t ret;
3722 int freeze;
3723
3724 ret = kstrtoint(strstrip(buf), 0, &freeze);
3725 if (ret)
3726 return ret;
3727
3728 if (freeze < 0 || freeze > 1)
3729 return -ERANGE;
3730
3731 cgrp = cgroup_kn_lock_live(of->kn, false);
3732 if (!cgrp)
3733 return -ENOENT;
3734
3735 cgroup_freeze(cgrp, freeze);
3736
3737 cgroup_kn_unlock(of->kn);
3738
3739 return nbytes;
3740 }
3741
__cgroup_kill(struct cgroup * cgrp)3742 static void __cgroup_kill(struct cgroup *cgrp)
3743 {
3744 struct css_task_iter it;
3745 struct task_struct *task;
3746
3747 lockdep_assert_held(&cgroup_mutex);
3748
3749 spin_lock_irq(&css_set_lock);
3750 set_bit(CGRP_KILL, &cgrp->flags);
3751 spin_unlock_irq(&css_set_lock);
3752
3753 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3754 while ((task = css_task_iter_next(&it))) {
3755 /* Ignore kernel threads here. */
3756 if (task->flags & PF_KTHREAD)
3757 continue;
3758
3759 /* Skip tasks that are already dying. */
3760 if (__fatal_signal_pending(task))
3761 continue;
3762
3763 send_sig(SIGKILL, task, 0);
3764 }
3765 css_task_iter_end(&it);
3766
3767 spin_lock_irq(&css_set_lock);
3768 clear_bit(CGRP_KILL, &cgrp->flags);
3769 spin_unlock_irq(&css_set_lock);
3770 }
3771
cgroup_kill(struct cgroup * cgrp)3772 static void cgroup_kill(struct cgroup *cgrp)
3773 {
3774 struct cgroup_subsys_state *css;
3775 struct cgroup *dsct;
3776
3777 lockdep_assert_held(&cgroup_mutex);
3778
3779 cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3780 __cgroup_kill(dsct);
3781 }
3782
cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3783 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3784 size_t nbytes, loff_t off)
3785 {
3786 ssize_t ret = 0;
3787 int kill;
3788 struct cgroup *cgrp;
3789
3790 ret = kstrtoint(strstrip(buf), 0, &kill);
3791 if (ret)
3792 return ret;
3793
3794 if (kill != 1)
3795 return -ERANGE;
3796
3797 cgrp = cgroup_kn_lock_live(of->kn, false);
3798 if (!cgrp)
3799 return -ENOENT;
3800
3801 /*
3802 * Killing is a process directed operation, i.e. the whole thread-group
3803 * is taken down so act like we do for cgroup.procs and only make this
3804 * writable in non-threaded cgroups.
3805 */
3806 if (cgroup_is_threaded(cgrp))
3807 ret = -EOPNOTSUPP;
3808 else
3809 cgroup_kill(cgrp);
3810
3811 cgroup_kn_unlock(of->kn);
3812
3813 return ret ?: nbytes;
3814 }
3815
cgroup_file_open(struct kernfs_open_file * of)3816 static int cgroup_file_open(struct kernfs_open_file *of)
3817 {
3818 struct cftype *cft = of_cft(of);
3819 struct cgroup_file_ctx *ctx;
3820 int ret;
3821
3822 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3823 if (!ctx)
3824 return -ENOMEM;
3825
3826 ctx->ns = current->nsproxy->cgroup_ns;
3827 get_cgroup_ns(ctx->ns);
3828 of->priv = ctx;
3829
3830 if (!cft->open)
3831 return 0;
3832
3833 ret = cft->open(of);
3834 if (ret) {
3835 put_cgroup_ns(ctx->ns);
3836 kfree(ctx);
3837 }
3838 return ret;
3839 }
3840
cgroup_file_release(struct kernfs_open_file * of)3841 static void cgroup_file_release(struct kernfs_open_file *of)
3842 {
3843 struct cftype *cft = of_cft(of);
3844 struct cgroup_file_ctx *ctx = of->priv;
3845
3846 if (cft->release)
3847 cft->release(of);
3848 put_cgroup_ns(ctx->ns);
3849 kfree(ctx);
3850 }
3851
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3852 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3853 size_t nbytes, loff_t off)
3854 {
3855 struct cgroup_file_ctx *ctx = of->priv;
3856 struct cgroup *cgrp = of->kn->parent->priv;
3857 struct cftype *cft = of_cft(of);
3858 struct cgroup_subsys_state *css;
3859 int ret;
3860
3861 if (!nbytes)
3862 return 0;
3863
3864 /*
3865 * If namespaces are delegation boundaries, disallow writes to
3866 * files in an non-init namespace root from inside the namespace
3867 * except for the files explicitly marked delegatable -
3868 * cgroup.procs and cgroup.subtree_control.
3869 */
3870 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3871 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3872 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3873 return -EPERM;
3874
3875 if (cft->write)
3876 return cft->write(of, buf, nbytes, off);
3877
3878 /*
3879 * kernfs guarantees that a file isn't deleted with operations in
3880 * flight, which means that the matching css is and stays alive and
3881 * doesn't need to be pinned. The RCU locking is not necessary
3882 * either. It's just for the convenience of using cgroup_css().
3883 */
3884 rcu_read_lock();
3885 css = cgroup_css(cgrp, cft->ss);
3886 rcu_read_unlock();
3887
3888 if (cft->write_u64) {
3889 unsigned long long v;
3890 ret = kstrtoull(buf, 0, &v);
3891 if (!ret)
3892 ret = cft->write_u64(css, cft, v);
3893 } else if (cft->write_s64) {
3894 long long v;
3895 ret = kstrtoll(buf, 0, &v);
3896 if (!ret)
3897 ret = cft->write_s64(css, cft, v);
3898 } else {
3899 ret = -EINVAL;
3900 }
3901
3902 return ret ?: nbytes;
3903 }
3904
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)3905 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3906 {
3907 struct cftype *cft = of_cft(of);
3908
3909 if (cft->poll)
3910 return cft->poll(of, pt);
3911
3912 return kernfs_generic_poll(of, pt);
3913 }
3914
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3915 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3916 {
3917 return seq_cft(seq)->seq_start(seq, ppos);
3918 }
3919
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3920 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3921 {
3922 return seq_cft(seq)->seq_next(seq, v, ppos);
3923 }
3924
cgroup_seqfile_stop(struct seq_file * seq,void * v)3925 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3926 {
3927 if (seq_cft(seq)->seq_stop)
3928 seq_cft(seq)->seq_stop(seq, v);
3929 }
3930
cgroup_seqfile_show(struct seq_file * m,void * arg)3931 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3932 {
3933 struct cftype *cft = seq_cft(m);
3934 struct cgroup_subsys_state *css = seq_css(m);
3935
3936 if (cft->seq_show)
3937 return cft->seq_show(m, arg);
3938
3939 if (cft->read_u64)
3940 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3941 else if (cft->read_s64)
3942 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3943 else
3944 return -EINVAL;
3945 return 0;
3946 }
3947
3948 static struct kernfs_ops cgroup_kf_single_ops = {
3949 .atomic_write_len = PAGE_SIZE,
3950 .open = cgroup_file_open,
3951 .release = cgroup_file_release,
3952 .write = cgroup_file_write,
3953 .poll = cgroup_file_poll,
3954 .seq_show = cgroup_seqfile_show,
3955 };
3956
3957 static struct kernfs_ops cgroup_kf_ops = {
3958 .atomic_write_len = PAGE_SIZE,
3959 .open = cgroup_file_open,
3960 .release = cgroup_file_release,
3961 .write = cgroup_file_write,
3962 .poll = cgroup_file_poll,
3963 .seq_start = cgroup_seqfile_start,
3964 .seq_next = cgroup_seqfile_next,
3965 .seq_stop = cgroup_seqfile_stop,
3966 .seq_show = cgroup_seqfile_show,
3967 };
3968
3969 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3970 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3971 {
3972 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3973 .ia_uid = current_fsuid(),
3974 .ia_gid = current_fsgid(), };
3975
3976 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3977 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3978 return 0;
3979
3980 return kernfs_setattr(kn, &iattr);
3981 }
3982
cgroup_file_notify_timer(struct timer_list * timer)3983 static void cgroup_file_notify_timer(struct timer_list *timer)
3984 {
3985 cgroup_file_notify(container_of(timer, struct cgroup_file,
3986 notify_timer));
3987 }
3988
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3989 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3990 struct cftype *cft)
3991 {
3992 char name[CGROUP_FILE_NAME_MAX];
3993 struct kernfs_node *kn;
3994 struct lock_class_key *key = NULL;
3995 int ret;
3996
3997 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3998 key = &cft->lockdep_key;
3999 #endif
4000 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4001 cgroup_file_mode(cft),
4002 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4003 0, cft->kf_ops, cft,
4004 NULL, key);
4005 if (IS_ERR(kn))
4006 return PTR_ERR(kn);
4007
4008 ret = cgroup_kn_set_ugid(kn);
4009 if (ret) {
4010 kernfs_remove(kn);
4011 return ret;
4012 }
4013
4014 if (cft->file_offset) {
4015 struct cgroup_file *cfile = (void *)css + cft->file_offset;
4016
4017 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4018
4019 spin_lock_irq(&cgroup_file_kn_lock);
4020 cfile->kn = kn;
4021 spin_unlock_irq(&cgroup_file_kn_lock);
4022 }
4023
4024 return 0;
4025 }
4026
4027 /**
4028 * cgroup_addrm_files - add or remove files to a cgroup directory
4029 * @css: the target css
4030 * @cgrp: the target cgroup (usually css->cgroup)
4031 * @cfts: array of cftypes to be added
4032 * @is_add: whether to add or remove
4033 *
4034 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4035 * For removals, this function never fails.
4036 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4037 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4038 struct cgroup *cgrp, struct cftype cfts[],
4039 bool is_add)
4040 {
4041 struct cftype *cft, *cft_end = NULL;
4042 int ret = 0;
4043
4044 lockdep_assert_held(&cgroup_mutex);
4045
4046 restart:
4047 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4048 /* does cft->flags tell us to skip this file on @cgrp? */
4049 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4050 continue;
4051 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4052 continue;
4053 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4054 continue;
4055 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4056 continue;
4057 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4058 continue;
4059 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4060 continue;
4061 if (is_add) {
4062 ret = cgroup_add_file(css, cgrp, cft);
4063 if (ret) {
4064 pr_warn("%s: failed to add %s, err=%d\n",
4065 __func__, cft->name, ret);
4066 cft_end = cft;
4067 is_add = false;
4068 goto restart;
4069 }
4070 } else {
4071 cgroup_rm_file(cgrp, cft);
4072 }
4073 }
4074 return ret;
4075 }
4076
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4077 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4078 {
4079 struct cgroup_subsys *ss = cfts[0].ss;
4080 struct cgroup *root = &ss->root->cgrp;
4081 struct cgroup_subsys_state *css;
4082 int ret = 0;
4083
4084 lockdep_assert_held(&cgroup_mutex);
4085
4086 /* add/rm files for all cgroups created before */
4087 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4088 struct cgroup *cgrp = css->cgroup;
4089
4090 if (!(css->flags & CSS_VISIBLE))
4091 continue;
4092
4093 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4094 if (ret)
4095 break;
4096 }
4097
4098 if (is_add && !ret)
4099 kernfs_activate(root->kn);
4100 return ret;
4101 }
4102
cgroup_exit_cftypes(struct cftype * cfts)4103 static void cgroup_exit_cftypes(struct cftype *cfts)
4104 {
4105 struct cftype *cft;
4106
4107 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4108 /* free copy for custom atomic_write_len, see init_cftypes() */
4109 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4110 kfree(cft->kf_ops);
4111 cft->kf_ops = NULL;
4112 cft->ss = NULL;
4113
4114 /* revert flags set by cgroup core while adding @cfts */
4115 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4116 }
4117 }
4118
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4119 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4120 {
4121 struct cftype *cft;
4122
4123 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4124 struct kernfs_ops *kf_ops;
4125
4126 WARN_ON(cft->ss || cft->kf_ops);
4127
4128 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4129 continue;
4130
4131 if (cft->seq_start)
4132 kf_ops = &cgroup_kf_ops;
4133 else
4134 kf_ops = &cgroup_kf_single_ops;
4135
4136 /*
4137 * Ugh... if @cft wants a custom max_write_len, we need to
4138 * make a copy of kf_ops to set its atomic_write_len.
4139 */
4140 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4141 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4142 if (!kf_ops) {
4143 cgroup_exit_cftypes(cfts);
4144 return -ENOMEM;
4145 }
4146 kf_ops->atomic_write_len = cft->max_write_len;
4147 }
4148
4149 cft->kf_ops = kf_ops;
4150 cft->ss = ss;
4151 }
4152
4153 return 0;
4154 }
4155
cgroup_rm_cftypes_locked(struct cftype * cfts)4156 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4157 {
4158 lockdep_assert_held(&cgroup_mutex);
4159
4160 if (!cfts || !cfts[0].ss)
4161 return -ENOENT;
4162
4163 list_del(&cfts->node);
4164 cgroup_apply_cftypes(cfts, false);
4165 cgroup_exit_cftypes(cfts);
4166 return 0;
4167 }
4168
4169 /**
4170 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4171 * @cfts: zero-length name terminated array of cftypes
4172 *
4173 * Unregister @cfts. Files described by @cfts are removed from all
4174 * existing cgroups and all future cgroups won't have them either. This
4175 * function can be called anytime whether @cfts' subsys is attached or not.
4176 *
4177 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4178 * registered.
4179 */
cgroup_rm_cftypes(struct cftype * cfts)4180 int cgroup_rm_cftypes(struct cftype *cfts)
4181 {
4182 int ret;
4183
4184 mutex_lock(&cgroup_mutex);
4185 ret = cgroup_rm_cftypes_locked(cfts);
4186 mutex_unlock(&cgroup_mutex);
4187 return ret;
4188 }
4189
4190 /**
4191 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4192 * @ss: target cgroup subsystem
4193 * @cfts: zero-length name terminated array of cftypes
4194 *
4195 * Register @cfts to @ss. Files described by @cfts are created for all
4196 * existing cgroups to which @ss is attached and all future cgroups will
4197 * have them too. This function can be called anytime whether @ss is
4198 * attached or not.
4199 *
4200 * Returns 0 on successful registration, -errno on failure. Note that this
4201 * function currently returns 0 as long as @cfts registration is successful
4202 * even if some file creation attempts on existing cgroups fail.
4203 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4204 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4205 {
4206 int ret;
4207
4208 if (!cgroup_ssid_enabled(ss->id))
4209 return 0;
4210
4211 if (!cfts || cfts[0].name[0] == '\0')
4212 return 0;
4213
4214 ret = cgroup_init_cftypes(ss, cfts);
4215 if (ret)
4216 return ret;
4217
4218 mutex_lock(&cgroup_mutex);
4219
4220 list_add_tail(&cfts->node, &ss->cfts);
4221 ret = cgroup_apply_cftypes(cfts, true);
4222 if (ret)
4223 cgroup_rm_cftypes_locked(cfts);
4224
4225 mutex_unlock(&cgroup_mutex);
4226 return ret;
4227 }
4228
4229 /**
4230 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4231 * @ss: target cgroup subsystem
4232 * @cfts: zero-length name terminated array of cftypes
4233 *
4234 * Similar to cgroup_add_cftypes() but the added files are only used for
4235 * the default hierarchy.
4236 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4237 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4238 {
4239 struct cftype *cft;
4240
4241 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4242 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4243 return cgroup_add_cftypes(ss, cfts);
4244 }
4245
4246 /**
4247 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4248 * @ss: target cgroup subsystem
4249 * @cfts: zero-length name terminated array of cftypes
4250 *
4251 * Similar to cgroup_add_cftypes() but the added files are only used for
4252 * the legacy hierarchies.
4253 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4254 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4255 {
4256 struct cftype *cft;
4257
4258 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4259 cft->flags |= __CFTYPE_NOT_ON_DFL;
4260 return cgroup_add_cftypes(ss, cfts);
4261 }
4262
4263 /**
4264 * cgroup_file_notify - generate a file modified event for a cgroup_file
4265 * @cfile: target cgroup_file
4266 *
4267 * @cfile must have been obtained by setting cftype->file_offset.
4268 */
cgroup_file_notify(struct cgroup_file * cfile)4269 void cgroup_file_notify(struct cgroup_file *cfile)
4270 {
4271 unsigned long flags;
4272
4273 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4274 if (cfile->kn) {
4275 unsigned long last = cfile->notified_at;
4276 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4277
4278 if (time_in_range(jiffies, last, next)) {
4279 timer_reduce(&cfile->notify_timer, next);
4280 } else {
4281 kernfs_notify(cfile->kn);
4282 cfile->notified_at = jiffies;
4283 }
4284 }
4285 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4286 }
4287
4288 /**
4289 * css_next_child - find the next child of a given css
4290 * @pos: the current position (%NULL to initiate traversal)
4291 * @parent: css whose children to walk
4292 *
4293 * This function returns the next child of @parent and should be called
4294 * under either cgroup_mutex or RCU read lock. The only requirement is
4295 * that @parent and @pos are accessible. The next sibling is guaranteed to
4296 * be returned regardless of their states.
4297 *
4298 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4299 * css which finished ->css_online() is guaranteed to be visible in the
4300 * future iterations and will stay visible until the last reference is put.
4301 * A css which hasn't finished ->css_online() or already finished
4302 * ->css_offline() may show up during traversal. It's each subsystem's
4303 * responsibility to synchronize against on/offlining.
4304 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4305 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4306 struct cgroup_subsys_state *parent)
4307 {
4308 struct cgroup_subsys_state *next;
4309
4310 cgroup_assert_mutex_or_rcu_locked();
4311
4312 /*
4313 * @pos could already have been unlinked from the sibling list.
4314 * Once a cgroup is removed, its ->sibling.next is no longer
4315 * updated when its next sibling changes. CSS_RELEASED is set when
4316 * @pos is taken off list, at which time its next pointer is valid,
4317 * and, as releases are serialized, the one pointed to by the next
4318 * pointer is guaranteed to not have started release yet. This
4319 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4320 * critical section, the one pointed to by its next pointer is
4321 * guaranteed to not have finished its RCU grace period even if we
4322 * have dropped rcu_read_lock() in-between iterations.
4323 *
4324 * If @pos has CSS_RELEASED set, its next pointer can't be
4325 * dereferenced; however, as each css is given a monotonically
4326 * increasing unique serial number and always appended to the
4327 * sibling list, the next one can be found by walking the parent's
4328 * children until the first css with higher serial number than
4329 * @pos's. While this path can be slower, it happens iff iteration
4330 * races against release and the race window is very small.
4331 */
4332 if (!pos) {
4333 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4334 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4335 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4336 } else {
4337 list_for_each_entry_rcu(next, &parent->children, sibling,
4338 lockdep_is_held(&cgroup_mutex))
4339 if (next->serial_nr > pos->serial_nr)
4340 break;
4341 }
4342
4343 /*
4344 * @next, if not pointing to the head, can be dereferenced and is
4345 * the next sibling.
4346 */
4347 if (&next->sibling != &parent->children)
4348 return next;
4349 return NULL;
4350 }
4351
4352 /**
4353 * css_next_descendant_pre - find the next descendant for pre-order walk
4354 * @pos: the current position (%NULL to initiate traversal)
4355 * @root: css whose descendants to walk
4356 *
4357 * To be used by css_for_each_descendant_pre(). Find the next descendant
4358 * to visit for pre-order traversal of @root's descendants. @root is
4359 * included in the iteration and the first node to be visited.
4360 *
4361 * While this function requires cgroup_mutex or RCU read locking, it
4362 * doesn't require the whole traversal to be contained in a single critical
4363 * section. This function will return the correct next descendant as long
4364 * as both @pos and @root are accessible and @pos is a descendant of @root.
4365 *
4366 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4367 * css which finished ->css_online() is guaranteed to be visible in the
4368 * future iterations and will stay visible until the last reference is put.
4369 * A css which hasn't finished ->css_online() or already finished
4370 * ->css_offline() may show up during traversal. It's each subsystem's
4371 * responsibility to synchronize against on/offlining.
4372 */
4373 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4374 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4375 struct cgroup_subsys_state *root)
4376 {
4377 struct cgroup_subsys_state *next;
4378
4379 cgroup_assert_mutex_or_rcu_locked();
4380
4381 /* if first iteration, visit @root */
4382 if (!pos)
4383 return root;
4384
4385 /* visit the first child if exists */
4386 next = css_next_child(NULL, pos);
4387 if (next)
4388 return next;
4389
4390 /* no child, visit my or the closest ancestor's next sibling */
4391 while (pos != root) {
4392 next = css_next_child(pos, pos->parent);
4393 if (next)
4394 return next;
4395 pos = pos->parent;
4396 }
4397
4398 return NULL;
4399 }
4400 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4401
4402 /**
4403 * css_rightmost_descendant - return the rightmost descendant of a css
4404 * @pos: css of interest
4405 *
4406 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4407 * is returned. This can be used during pre-order traversal to skip
4408 * subtree of @pos.
4409 *
4410 * While this function requires cgroup_mutex or RCU read locking, it
4411 * doesn't require the whole traversal to be contained in a single critical
4412 * section. This function will return the correct rightmost descendant as
4413 * long as @pos is accessible.
4414 */
4415 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4416 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4417 {
4418 struct cgroup_subsys_state *last, *tmp;
4419
4420 cgroup_assert_mutex_or_rcu_locked();
4421
4422 do {
4423 last = pos;
4424 /* ->prev isn't RCU safe, walk ->next till the end */
4425 pos = NULL;
4426 css_for_each_child(tmp, last)
4427 pos = tmp;
4428 } while (pos);
4429
4430 return last;
4431 }
4432
4433 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4434 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4435 {
4436 struct cgroup_subsys_state *last;
4437
4438 do {
4439 last = pos;
4440 pos = css_next_child(NULL, pos);
4441 } while (pos);
4442
4443 return last;
4444 }
4445
4446 /**
4447 * css_next_descendant_post - find the next descendant for post-order walk
4448 * @pos: the current position (%NULL to initiate traversal)
4449 * @root: css whose descendants to walk
4450 *
4451 * To be used by css_for_each_descendant_post(). Find the next descendant
4452 * to visit for post-order traversal of @root's descendants. @root is
4453 * included in the iteration and the last node to be visited.
4454 *
4455 * While this function requires cgroup_mutex or RCU read locking, it
4456 * doesn't require the whole traversal to be contained in a single critical
4457 * section. This function will return the correct next descendant as long
4458 * as both @pos and @cgroup are accessible and @pos is a descendant of
4459 * @cgroup.
4460 *
4461 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4462 * css which finished ->css_online() is guaranteed to be visible in the
4463 * future iterations and will stay visible until the last reference is put.
4464 * A css which hasn't finished ->css_online() or already finished
4465 * ->css_offline() may show up during traversal. It's each subsystem's
4466 * responsibility to synchronize against on/offlining.
4467 */
4468 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4469 css_next_descendant_post(struct cgroup_subsys_state *pos,
4470 struct cgroup_subsys_state *root)
4471 {
4472 struct cgroup_subsys_state *next;
4473
4474 cgroup_assert_mutex_or_rcu_locked();
4475
4476 /* if first iteration, visit leftmost descendant which may be @root */
4477 if (!pos)
4478 return css_leftmost_descendant(root);
4479
4480 /* if we visited @root, we're done */
4481 if (pos == root)
4482 return NULL;
4483
4484 /* if there's an unvisited sibling, visit its leftmost descendant */
4485 next = css_next_child(pos, pos->parent);
4486 if (next)
4487 return css_leftmost_descendant(next);
4488
4489 /* no sibling left, visit parent */
4490 return pos->parent;
4491 }
4492
4493 /**
4494 * css_has_online_children - does a css have online children
4495 * @css: the target css
4496 *
4497 * Returns %true if @css has any online children; otherwise, %false. This
4498 * function can be called from any context but the caller is responsible
4499 * for synchronizing against on/offlining as necessary.
4500 */
css_has_online_children(struct cgroup_subsys_state * css)4501 bool css_has_online_children(struct cgroup_subsys_state *css)
4502 {
4503 struct cgroup_subsys_state *child;
4504 bool ret = false;
4505
4506 rcu_read_lock();
4507 css_for_each_child(child, css) {
4508 if (child->flags & CSS_ONLINE) {
4509 ret = true;
4510 break;
4511 }
4512 }
4513 rcu_read_unlock();
4514 return ret;
4515 }
4516
css_task_iter_next_css_set(struct css_task_iter * it)4517 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4518 {
4519 struct list_head *l;
4520 struct cgrp_cset_link *link;
4521 struct css_set *cset;
4522
4523 lockdep_assert_held(&css_set_lock);
4524
4525 /* find the next threaded cset */
4526 if (it->tcset_pos) {
4527 l = it->tcset_pos->next;
4528
4529 if (l != it->tcset_head) {
4530 it->tcset_pos = l;
4531 return container_of(l, struct css_set,
4532 threaded_csets_node);
4533 }
4534
4535 it->tcset_pos = NULL;
4536 }
4537
4538 /* find the next cset */
4539 l = it->cset_pos;
4540 l = l->next;
4541 if (l == it->cset_head) {
4542 it->cset_pos = NULL;
4543 return NULL;
4544 }
4545
4546 if (it->ss) {
4547 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4548 } else {
4549 link = list_entry(l, struct cgrp_cset_link, cset_link);
4550 cset = link->cset;
4551 }
4552
4553 it->cset_pos = l;
4554
4555 /* initialize threaded css_set walking */
4556 if (it->flags & CSS_TASK_ITER_THREADED) {
4557 if (it->cur_dcset)
4558 put_css_set_locked(it->cur_dcset);
4559 it->cur_dcset = cset;
4560 get_css_set(cset);
4561
4562 it->tcset_head = &cset->threaded_csets;
4563 it->tcset_pos = &cset->threaded_csets;
4564 }
4565
4566 return cset;
4567 }
4568
4569 /**
4570 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4571 * @it: the iterator to advance
4572 *
4573 * Advance @it to the next css_set to walk.
4574 */
css_task_iter_advance_css_set(struct css_task_iter * it)4575 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4576 {
4577 struct css_set *cset;
4578
4579 lockdep_assert_held(&css_set_lock);
4580
4581 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4582 while ((cset = css_task_iter_next_css_set(it))) {
4583 if (!list_empty(&cset->tasks)) {
4584 it->cur_tasks_head = &cset->tasks;
4585 break;
4586 } else if (!list_empty(&cset->mg_tasks)) {
4587 it->cur_tasks_head = &cset->mg_tasks;
4588 break;
4589 } else if (!list_empty(&cset->dying_tasks)) {
4590 it->cur_tasks_head = &cset->dying_tasks;
4591 break;
4592 }
4593 }
4594 if (!cset) {
4595 it->task_pos = NULL;
4596 return;
4597 }
4598 it->task_pos = it->cur_tasks_head->next;
4599
4600 /*
4601 * We don't keep css_sets locked across iteration steps and thus
4602 * need to take steps to ensure that iteration can be resumed after
4603 * the lock is re-acquired. Iteration is performed at two levels -
4604 * css_sets and tasks in them.
4605 *
4606 * Once created, a css_set never leaves its cgroup lists, so a
4607 * pinned css_set is guaranteed to stay put and we can resume
4608 * iteration afterwards.
4609 *
4610 * Tasks may leave @cset across iteration steps. This is resolved
4611 * by registering each iterator with the css_set currently being
4612 * walked and making css_set_move_task() advance iterators whose
4613 * next task is leaving.
4614 */
4615 if (it->cur_cset) {
4616 list_del(&it->iters_node);
4617 put_css_set_locked(it->cur_cset);
4618 }
4619 get_css_set(cset);
4620 it->cur_cset = cset;
4621 list_add(&it->iters_node, &cset->task_iters);
4622 }
4623
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4624 static void css_task_iter_skip(struct css_task_iter *it,
4625 struct task_struct *task)
4626 {
4627 lockdep_assert_held(&css_set_lock);
4628
4629 if (it->task_pos == &task->cg_list) {
4630 it->task_pos = it->task_pos->next;
4631 it->flags |= CSS_TASK_ITER_SKIPPED;
4632 }
4633 }
4634
css_task_iter_advance(struct css_task_iter * it)4635 static void css_task_iter_advance(struct css_task_iter *it)
4636 {
4637 struct task_struct *task;
4638
4639 lockdep_assert_held(&css_set_lock);
4640 repeat:
4641 if (it->task_pos) {
4642 /*
4643 * Advance iterator to find next entry. We go through cset
4644 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4645 * the next cset.
4646 */
4647 if (it->flags & CSS_TASK_ITER_SKIPPED)
4648 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4649 else
4650 it->task_pos = it->task_pos->next;
4651
4652 if (it->task_pos == &it->cur_cset->tasks) {
4653 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4654 it->task_pos = it->cur_tasks_head->next;
4655 }
4656 if (it->task_pos == &it->cur_cset->mg_tasks) {
4657 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4658 it->task_pos = it->cur_tasks_head->next;
4659 }
4660 if (it->task_pos == &it->cur_cset->dying_tasks)
4661 css_task_iter_advance_css_set(it);
4662 } else {
4663 /* called from start, proceed to the first cset */
4664 css_task_iter_advance_css_set(it);
4665 }
4666
4667 if (!it->task_pos)
4668 return;
4669
4670 task = list_entry(it->task_pos, struct task_struct, cg_list);
4671
4672 if (it->flags & CSS_TASK_ITER_PROCS) {
4673 /* if PROCS, skip over tasks which aren't group leaders */
4674 if (!thread_group_leader(task))
4675 goto repeat;
4676
4677 /* and dying leaders w/o live member threads */
4678 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4679 !atomic_read(&task->signal->live))
4680 goto repeat;
4681 } else {
4682 /* skip all dying ones */
4683 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4684 goto repeat;
4685 }
4686 }
4687
4688 /**
4689 * css_task_iter_start - initiate task iteration
4690 * @css: the css to walk tasks of
4691 * @flags: CSS_TASK_ITER_* flags
4692 * @it: the task iterator to use
4693 *
4694 * Initiate iteration through the tasks of @css. The caller can call
4695 * css_task_iter_next() to walk through the tasks until the function
4696 * returns NULL. On completion of iteration, css_task_iter_end() must be
4697 * called.
4698 */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4699 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4700 struct css_task_iter *it)
4701 {
4702 memset(it, 0, sizeof(*it));
4703
4704 spin_lock_irq(&css_set_lock);
4705
4706 it->ss = css->ss;
4707 it->flags = flags;
4708
4709 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4710 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4711 else
4712 it->cset_pos = &css->cgroup->cset_links;
4713
4714 it->cset_head = it->cset_pos;
4715
4716 css_task_iter_advance(it);
4717
4718 spin_unlock_irq(&css_set_lock);
4719 }
4720
4721 /**
4722 * css_task_iter_next - return the next task for the iterator
4723 * @it: the task iterator being iterated
4724 *
4725 * The "next" function for task iteration. @it should have been
4726 * initialized via css_task_iter_start(). Returns NULL when the iteration
4727 * reaches the end.
4728 */
css_task_iter_next(struct css_task_iter * it)4729 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4730 {
4731 if (it->cur_task) {
4732 put_task_struct(it->cur_task);
4733 it->cur_task = NULL;
4734 }
4735
4736 spin_lock_irq(&css_set_lock);
4737
4738 /* @it may be half-advanced by skips, finish advancing */
4739 if (it->flags & CSS_TASK_ITER_SKIPPED)
4740 css_task_iter_advance(it);
4741
4742 if (it->task_pos) {
4743 it->cur_task = list_entry(it->task_pos, struct task_struct,
4744 cg_list);
4745 get_task_struct(it->cur_task);
4746 css_task_iter_advance(it);
4747 }
4748
4749 spin_unlock_irq(&css_set_lock);
4750
4751 return it->cur_task;
4752 }
4753
4754 /**
4755 * css_task_iter_end - finish task iteration
4756 * @it: the task iterator to finish
4757 *
4758 * Finish task iteration started by css_task_iter_start().
4759 */
css_task_iter_end(struct css_task_iter * it)4760 void css_task_iter_end(struct css_task_iter *it)
4761 {
4762 if (it->cur_cset) {
4763 spin_lock_irq(&css_set_lock);
4764 list_del(&it->iters_node);
4765 put_css_set_locked(it->cur_cset);
4766 spin_unlock_irq(&css_set_lock);
4767 }
4768
4769 if (it->cur_dcset)
4770 put_css_set(it->cur_dcset);
4771
4772 if (it->cur_task)
4773 put_task_struct(it->cur_task);
4774 }
4775
cgroup_procs_release(struct kernfs_open_file * of)4776 static void cgroup_procs_release(struct kernfs_open_file *of)
4777 {
4778 struct cgroup_file_ctx *ctx = of->priv;
4779
4780 if (ctx->procs.started)
4781 css_task_iter_end(&ctx->procs.iter);
4782 }
4783
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)4784 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4785 {
4786 struct kernfs_open_file *of = s->private;
4787 struct cgroup_file_ctx *ctx = of->priv;
4788
4789 if (pos)
4790 (*pos)++;
4791
4792 return css_task_iter_next(&ctx->procs.iter);
4793 }
4794
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)4795 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4796 unsigned int iter_flags)
4797 {
4798 struct kernfs_open_file *of = s->private;
4799 struct cgroup *cgrp = seq_css(s)->cgroup;
4800 struct cgroup_file_ctx *ctx = of->priv;
4801 struct css_task_iter *it = &ctx->procs.iter;
4802
4803 /*
4804 * When a seq_file is seeked, it's always traversed sequentially
4805 * from position 0, so we can simply keep iterating on !0 *pos.
4806 */
4807 if (!ctx->procs.started) {
4808 if (WARN_ON_ONCE((*pos)))
4809 return ERR_PTR(-EINVAL);
4810 css_task_iter_start(&cgrp->self, iter_flags, it);
4811 ctx->procs.started = true;
4812 } else if (!(*pos)) {
4813 css_task_iter_end(it);
4814 css_task_iter_start(&cgrp->self, iter_flags, it);
4815 } else
4816 return it->cur_task;
4817
4818 return cgroup_procs_next(s, NULL, NULL);
4819 }
4820
cgroup_procs_start(struct seq_file * s,loff_t * pos)4821 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4822 {
4823 struct cgroup *cgrp = seq_css(s)->cgroup;
4824
4825 /*
4826 * All processes of a threaded subtree belong to the domain cgroup
4827 * of the subtree. Only threads can be distributed across the
4828 * subtree. Reject reads on cgroup.procs in the subtree proper.
4829 * They're always empty anyway.
4830 */
4831 if (cgroup_is_threaded(cgrp))
4832 return ERR_PTR(-EOPNOTSUPP);
4833
4834 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4835 CSS_TASK_ITER_THREADED);
4836 }
4837
cgroup_procs_show(struct seq_file * s,void * v)4838 static int cgroup_procs_show(struct seq_file *s, void *v)
4839 {
4840 seq_printf(s, "%d\n", task_pid_vnr(v));
4841 return 0;
4842 }
4843
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)4844 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4845 {
4846 int ret;
4847 struct inode *inode;
4848
4849 lockdep_assert_held(&cgroup_mutex);
4850
4851 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4852 if (!inode)
4853 return -ENOMEM;
4854
4855 ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4856 iput(inode);
4857 return ret;
4858 }
4859
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)4860 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4861 struct cgroup *dst_cgrp,
4862 struct super_block *sb,
4863 struct cgroup_namespace *ns)
4864 {
4865 struct cgroup *com_cgrp = src_cgrp;
4866 int ret;
4867
4868 lockdep_assert_held(&cgroup_mutex);
4869
4870 /* find the common ancestor */
4871 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4872 com_cgrp = cgroup_parent(com_cgrp);
4873
4874 /* %current should be authorized to migrate to the common ancestor */
4875 ret = cgroup_may_write(com_cgrp, sb);
4876 if (ret)
4877 return ret;
4878
4879 /*
4880 * If namespaces are delegation boundaries, %current must be able
4881 * to see both source and destination cgroups from its namespace.
4882 */
4883 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4884 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4885 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4886 return -ENOENT;
4887
4888 return 0;
4889 }
4890
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)4891 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4892 struct cgroup *dst_cgrp,
4893 struct super_block *sb, bool threadgroup,
4894 struct cgroup_namespace *ns)
4895 {
4896 int ret = 0;
4897
4898 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4899 if (ret)
4900 return ret;
4901
4902 ret = cgroup_migrate_vet_dst(dst_cgrp);
4903 if (ret)
4904 return ret;
4905
4906 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4907 ret = -EOPNOTSUPP;
4908
4909 return ret;
4910 }
4911
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)4912 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4913 bool threadgroup)
4914 {
4915 struct cgroup_file_ctx *ctx = of->priv;
4916 struct cgroup *src_cgrp, *dst_cgrp;
4917 struct task_struct *task;
4918 const struct cred *saved_cred;
4919 ssize_t ret;
4920 bool locked;
4921
4922 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4923 if (!dst_cgrp)
4924 return -ENODEV;
4925
4926 task = cgroup_procs_write_start(buf, threadgroup, &locked);
4927 ret = PTR_ERR_OR_ZERO(task);
4928 if (ret)
4929 goto out_unlock;
4930
4931 /* find the source cgroup */
4932 spin_lock_irq(&css_set_lock);
4933 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4934 spin_unlock_irq(&css_set_lock);
4935
4936 /*
4937 * Process and thread migrations follow same delegation rule. Check
4938 * permissions using the credentials from file open to protect against
4939 * inherited fd attacks.
4940 */
4941 saved_cred = override_creds(of->file->f_cred);
4942 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4943 of->file->f_path.dentry->d_sb,
4944 threadgroup, ctx->ns);
4945 revert_creds(saved_cred);
4946 if (ret)
4947 goto out_finish;
4948
4949 ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4950
4951 out_finish:
4952 cgroup_procs_write_finish(task, locked);
4953 out_unlock:
4954 cgroup_kn_unlock(of->kn);
4955
4956 return ret;
4957 }
4958
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4959 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4960 char *buf, size_t nbytes, loff_t off)
4961 {
4962 return __cgroup_procs_write(of, buf, true) ?: nbytes;
4963 }
4964
cgroup_threads_start(struct seq_file * s,loff_t * pos)4965 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4966 {
4967 return __cgroup_procs_start(s, pos, 0);
4968 }
4969
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4970 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4971 char *buf, size_t nbytes, loff_t off)
4972 {
4973 return __cgroup_procs_write(of, buf, false) ?: nbytes;
4974 }
4975
4976 /* cgroup core interface files for the default hierarchy */
4977 static struct cftype cgroup_base_files[] = {
4978 {
4979 .name = "cgroup.type",
4980 .flags = CFTYPE_NOT_ON_ROOT,
4981 .seq_show = cgroup_type_show,
4982 .write = cgroup_type_write,
4983 },
4984 {
4985 .name = "cgroup.procs",
4986 .flags = CFTYPE_NS_DELEGATABLE,
4987 .file_offset = offsetof(struct cgroup, procs_file),
4988 .release = cgroup_procs_release,
4989 .seq_start = cgroup_procs_start,
4990 .seq_next = cgroup_procs_next,
4991 .seq_show = cgroup_procs_show,
4992 .write = cgroup_procs_write,
4993 },
4994 {
4995 .name = "cgroup.threads",
4996 .flags = CFTYPE_NS_DELEGATABLE,
4997 .release = cgroup_procs_release,
4998 .seq_start = cgroup_threads_start,
4999 .seq_next = cgroup_procs_next,
5000 .seq_show = cgroup_procs_show,
5001 .write = cgroup_threads_write,
5002 },
5003 {
5004 .name = "cgroup.controllers",
5005 .seq_show = cgroup_controllers_show,
5006 },
5007 {
5008 .name = "cgroup.subtree_control",
5009 .flags = CFTYPE_NS_DELEGATABLE,
5010 .seq_show = cgroup_subtree_control_show,
5011 .write = cgroup_subtree_control_write,
5012 },
5013 {
5014 .name = "cgroup.events",
5015 .flags = CFTYPE_NOT_ON_ROOT,
5016 .file_offset = offsetof(struct cgroup, events_file),
5017 .seq_show = cgroup_events_show,
5018 },
5019 {
5020 .name = "cgroup.max.descendants",
5021 .seq_show = cgroup_max_descendants_show,
5022 .write = cgroup_max_descendants_write,
5023 },
5024 {
5025 .name = "cgroup.max.depth",
5026 .seq_show = cgroup_max_depth_show,
5027 .write = cgroup_max_depth_write,
5028 },
5029 {
5030 .name = "cgroup.stat",
5031 .seq_show = cgroup_stat_show,
5032 },
5033 {
5034 .name = "cgroup.freeze",
5035 .flags = CFTYPE_NOT_ON_ROOT,
5036 .seq_show = cgroup_freeze_show,
5037 .write = cgroup_freeze_write,
5038 },
5039 {
5040 .name = "cgroup.kill",
5041 .flags = CFTYPE_NOT_ON_ROOT,
5042 .write = cgroup_kill_write,
5043 },
5044 {
5045 .name = "cpu.stat",
5046 .seq_show = cpu_stat_show,
5047 },
5048 #ifdef CONFIG_PSI
5049 {
5050 .name = "io.pressure",
5051 .flags = CFTYPE_PRESSURE,
5052 .seq_show = cgroup_io_pressure_show,
5053 .write = cgroup_io_pressure_write,
5054 .poll = cgroup_pressure_poll,
5055 .release = cgroup_pressure_release,
5056 },
5057 {
5058 .name = "memory.pressure",
5059 .flags = CFTYPE_PRESSURE,
5060 .seq_show = cgroup_memory_pressure_show,
5061 .write = cgroup_memory_pressure_write,
5062 .poll = cgroup_pressure_poll,
5063 .release = cgroup_pressure_release,
5064 },
5065 {
5066 .name = "cpu.pressure",
5067 .flags = CFTYPE_PRESSURE,
5068 .seq_show = cgroup_cpu_pressure_show,
5069 .write = cgroup_cpu_pressure_write,
5070 .poll = cgroup_pressure_poll,
5071 .release = cgroup_pressure_release,
5072 },
5073 #endif /* CONFIG_PSI */
5074 { } /* terminate */
5075 };
5076
5077 /*
5078 * css destruction is four-stage process.
5079 *
5080 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5081 * Implemented in kill_css().
5082 *
5083 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5084 * and thus css_tryget_online() is guaranteed to fail, the css can be
5085 * offlined by invoking offline_css(). After offlining, the base ref is
5086 * put. Implemented in css_killed_work_fn().
5087 *
5088 * 3. When the percpu_ref reaches zero, the only possible remaining
5089 * accessors are inside RCU read sections. css_release() schedules the
5090 * RCU callback.
5091 *
5092 * 4. After the grace period, the css can be freed. Implemented in
5093 * css_free_work_fn().
5094 *
5095 * It is actually hairier because both step 2 and 4 require process context
5096 * and thus involve punting to css->destroy_work adding two additional
5097 * steps to the already complex sequence.
5098 */
css_free_rwork_fn(struct work_struct * work)5099 static void css_free_rwork_fn(struct work_struct *work)
5100 {
5101 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5102 struct cgroup_subsys_state, destroy_rwork);
5103 struct cgroup_subsys *ss = css->ss;
5104 struct cgroup *cgrp = css->cgroup;
5105
5106 percpu_ref_exit(&css->refcnt);
5107
5108 if (ss) {
5109 /* css free path */
5110 struct cgroup_subsys_state *parent = css->parent;
5111 int id = css->id;
5112
5113 ss->css_free(css);
5114 cgroup_idr_remove(&ss->css_idr, id);
5115 cgroup_put(cgrp);
5116
5117 if (parent)
5118 css_put(parent);
5119 } else {
5120 /* cgroup free path */
5121 atomic_dec(&cgrp->root->nr_cgrps);
5122 cgroup1_pidlist_destroy_all(cgrp);
5123 cancel_work_sync(&cgrp->release_agent_work);
5124
5125 if (cgroup_parent(cgrp)) {
5126 /*
5127 * We get a ref to the parent, and put the ref when
5128 * this cgroup is being freed, so it's guaranteed
5129 * that the parent won't be destroyed before its
5130 * children.
5131 */
5132 cgroup_put(cgroup_parent(cgrp));
5133 kernfs_put(cgrp->kn);
5134 psi_cgroup_free(cgrp);
5135 cgroup_rstat_exit(cgrp);
5136 kfree(cgrp);
5137 } else {
5138 /*
5139 * This is root cgroup's refcnt reaching zero,
5140 * which indicates that the root should be
5141 * released.
5142 */
5143 cgroup_destroy_root(cgrp->root);
5144 }
5145 }
5146 }
5147
css_release_work_fn(struct work_struct * work)5148 static void css_release_work_fn(struct work_struct *work)
5149 {
5150 struct cgroup_subsys_state *css =
5151 container_of(work, struct cgroup_subsys_state, destroy_work);
5152 struct cgroup_subsys *ss = css->ss;
5153 struct cgroup *cgrp = css->cgroup;
5154
5155 mutex_lock(&cgroup_mutex);
5156
5157 css->flags |= CSS_RELEASED;
5158 list_del_rcu(&css->sibling);
5159
5160 if (ss) {
5161 /* css release path */
5162 if (!list_empty(&css->rstat_css_node)) {
5163 cgroup_rstat_flush(cgrp);
5164 list_del_rcu(&css->rstat_css_node);
5165 }
5166
5167 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5168 if (ss->css_released)
5169 ss->css_released(css);
5170 } else {
5171 struct cgroup *tcgrp;
5172
5173 /* cgroup release path */
5174 TRACE_CGROUP_PATH(release, cgrp);
5175
5176 cgroup_rstat_flush(cgrp);
5177
5178 spin_lock_irq(&css_set_lock);
5179 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5180 tcgrp = cgroup_parent(tcgrp))
5181 tcgrp->nr_dying_descendants--;
5182 spin_unlock_irq(&css_set_lock);
5183
5184 /*
5185 * There are two control paths which try to determine
5186 * cgroup from dentry without going through kernfs -
5187 * cgroupstats_build() and css_tryget_online_from_dir().
5188 * Those are supported by RCU protecting clearing of
5189 * cgrp->kn->priv backpointer.
5190 */
5191 if (cgrp->kn)
5192 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5193 NULL);
5194 }
5195
5196 mutex_unlock(&cgroup_mutex);
5197
5198 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5199 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5200 }
5201
css_release(struct percpu_ref * ref)5202 static void css_release(struct percpu_ref *ref)
5203 {
5204 struct cgroup_subsys_state *css =
5205 container_of(ref, struct cgroup_subsys_state, refcnt);
5206
5207 INIT_WORK(&css->destroy_work, css_release_work_fn);
5208 queue_work(cgroup_destroy_wq, &css->destroy_work);
5209 }
5210
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5211 static void init_and_link_css(struct cgroup_subsys_state *css,
5212 struct cgroup_subsys *ss, struct cgroup *cgrp)
5213 {
5214 lockdep_assert_held(&cgroup_mutex);
5215
5216 cgroup_get_live(cgrp);
5217
5218 memset(css, 0, sizeof(*css));
5219 css->cgroup = cgrp;
5220 css->ss = ss;
5221 css->id = -1;
5222 INIT_LIST_HEAD(&css->sibling);
5223 INIT_LIST_HEAD(&css->children);
5224 INIT_LIST_HEAD(&css->rstat_css_node);
5225 css->serial_nr = css_serial_nr_next++;
5226 atomic_set(&css->online_cnt, 0);
5227
5228 if (cgroup_parent(cgrp)) {
5229 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5230 css_get(css->parent);
5231 }
5232
5233 if (ss->css_rstat_flush)
5234 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5235
5236 BUG_ON(cgroup_css(cgrp, ss));
5237 }
5238
5239 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5240 static int online_css(struct cgroup_subsys_state *css)
5241 {
5242 struct cgroup_subsys *ss = css->ss;
5243 int ret = 0;
5244
5245 lockdep_assert_held(&cgroup_mutex);
5246
5247 if (ss->css_online)
5248 ret = ss->css_online(css);
5249 if (!ret) {
5250 css->flags |= CSS_ONLINE;
5251 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5252
5253 atomic_inc(&css->online_cnt);
5254 if (css->parent)
5255 atomic_inc(&css->parent->online_cnt);
5256 }
5257 return ret;
5258 }
5259
5260 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5261 static void offline_css(struct cgroup_subsys_state *css)
5262 {
5263 struct cgroup_subsys *ss = css->ss;
5264
5265 lockdep_assert_held(&cgroup_mutex);
5266
5267 if (!(css->flags & CSS_ONLINE))
5268 return;
5269
5270 if (ss->css_offline)
5271 ss->css_offline(css);
5272
5273 css->flags &= ~CSS_ONLINE;
5274 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5275
5276 wake_up_all(&css->cgroup->offline_waitq);
5277 }
5278
5279 /**
5280 * css_create - create a cgroup_subsys_state
5281 * @cgrp: the cgroup new css will be associated with
5282 * @ss: the subsys of new css
5283 *
5284 * Create a new css associated with @cgrp - @ss pair. On success, the new
5285 * css is online and installed in @cgrp. This function doesn't create the
5286 * interface files. Returns 0 on success, -errno on failure.
5287 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5288 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5289 struct cgroup_subsys *ss)
5290 {
5291 struct cgroup *parent = cgroup_parent(cgrp);
5292 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5293 struct cgroup_subsys_state *css;
5294 int err;
5295
5296 lockdep_assert_held(&cgroup_mutex);
5297
5298 css = ss->css_alloc(parent_css);
5299 if (!css)
5300 css = ERR_PTR(-ENOMEM);
5301 if (IS_ERR(css))
5302 return css;
5303
5304 init_and_link_css(css, ss, cgrp);
5305
5306 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5307 if (err)
5308 goto err_free_css;
5309
5310 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5311 if (err < 0)
5312 goto err_free_css;
5313 css->id = err;
5314
5315 /* @css is ready to be brought online now, make it visible */
5316 list_add_tail_rcu(&css->sibling, &parent_css->children);
5317 cgroup_idr_replace(&ss->css_idr, css, css->id);
5318
5319 err = online_css(css);
5320 if (err)
5321 goto err_list_del;
5322
5323 return css;
5324
5325 err_list_del:
5326 list_del_rcu(&css->sibling);
5327 err_free_css:
5328 list_del_rcu(&css->rstat_css_node);
5329 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5330 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5331 return ERR_PTR(err);
5332 }
5333
5334 /*
5335 * The returned cgroup is fully initialized including its control mask, but
5336 * it isn't associated with its kernfs_node and doesn't have the control
5337 * mask applied.
5338 */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5339 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5340 umode_t mode)
5341 {
5342 struct cgroup_root *root = parent->root;
5343 struct cgroup *cgrp, *tcgrp;
5344 struct kernfs_node *kn;
5345 int level = parent->level + 1;
5346 int ret;
5347
5348 /* allocate the cgroup and its ID, 0 is reserved for the root */
5349 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5350 GFP_KERNEL);
5351 if (!cgrp)
5352 return ERR_PTR(-ENOMEM);
5353
5354 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5355 if (ret)
5356 goto out_free_cgrp;
5357
5358 ret = cgroup_rstat_init(cgrp);
5359 if (ret)
5360 goto out_cancel_ref;
5361
5362 /* create the directory */
5363 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5364 if (IS_ERR(kn)) {
5365 ret = PTR_ERR(kn);
5366 goto out_stat_exit;
5367 }
5368 cgrp->kn = kn;
5369
5370 init_cgroup_housekeeping(cgrp);
5371
5372 cgrp->self.parent = &parent->self;
5373 cgrp->root = root;
5374 cgrp->level = level;
5375
5376 ret = psi_cgroup_alloc(cgrp);
5377 if (ret)
5378 goto out_kernfs_remove;
5379
5380 ret = cgroup_bpf_inherit(cgrp);
5381 if (ret)
5382 goto out_psi_free;
5383
5384 /*
5385 * New cgroup inherits effective freeze counter, and
5386 * if the parent has to be frozen, the child has too.
5387 */
5388 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5389 if (cgrp->freezer.e_freeze) {
5390 /*
5391 * Set the CGRP_FREEZE flag, so when a process will be
5392 * attached to the child cgroup, it will become frozen.
5393 * At this point the new cgroup is unpopulated, so we can
5394 * consider it frozen immediately.
5395 */
5396 set_bit(CGRP_FREEZE, &cgrp->flags);
5397 set_bit(CGRP_FROZEN, &cgrp->flags);
5398 }
5399
5400 spin_lock_irq(&css_set_lock);
5401 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5402 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5403
5404 if (tcgrp != cgrp) {
5405 tcgrp->nr_descendants++;
5406
5407 /*
5408 * If the new cgroup is frozen, all ancestor cgroups
5409 * get a new frozen descendant, but their state can't
5410 * change because of this.
5411 */
5412 if (cgrp->freezer.e_freeze)
5413 tcgrp->freezer.nr_frozen_descendants++;
5414 }
5415 }
5416 spin_unlock_irq(&css_set_lock);
5417
5418 if (notify_on_release(parent))
5419 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5420
5421 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5422 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5423
5424 cgrp->self.serial_nr = css_serial_nr_next++;
5425
5426 /* allocation complete, commit to creation */
5427 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5428 atomic_inc(&root->nr_cgrps);
5429 cgroup_get_live(parent);
5430
5431 /*
5432 * On the default hierarchy, a child doesn't automatically inherit
5433 * subtree_control from the parent. Each is configured manually.
5434 */
5435 if (!cgroup_on_dfl(cgrp))
5436 cgrp->subtree_control = cgroup_control(cgrp);
5437
5438 cgroup_propagate_control(cgrp);
5439
5440 return cgrp;
5441
5442 out_psi_free:
5443 psi_cgroup_free(cgrp);
5444 out_kernfs_remove:
5445 kernfs_remove(cgrp->kn);
5446 out_stat_exit:
5447 cgroup_rstat_exit(cgrp);
5448 out_cancel_ref:
5449 percpu_ref_exit(&cgrp->self.refcnt);
5450 out_free_cgrp:
5451 kfree(cgrp);
5452 return ERR_PTR(ret);
5453 }
5454
cgroup_check_hierarchy_limits(struct cgroup * parent)5455 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5456 {
5457 struct cgroup *cgroup;
5458 int ret = false;
5459 int level = 1;
5460
5461 lockdep_assert_held(&cgroup_mutex);
5462
5463 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5464 if (cgroup->nr_descendants >= cgroup->max_descendants)
5465 goto fail;
5466
5467 if (level > cgroup->max_depth)
5468 goto fail;
5469
5470 level++;
5471 }
5472
5473 ret = true;
5474 fail:
5475 return ret;
5476 }
5477
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5478 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5479 {
5480 struct cgroup *parent, *cgrp;
5481 int ret;
5482
5483 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5484 if (strchr(name, '\n'))
5485 return -EINVAL;
5486
5487 parent = cgroup_kn_lock_live(parent_kn, false);
5488 if (!parent)
5489 return -ENODEV;
5490
5491 if (!cgroup_check_hierarchy_limits(parent)) {
5492 ret = -EAGAIN;
5493 goto out_unlock;
5494 }
5495
5496 cgrp = cgroup_create(parent, name, mode);
5497 if (IS_ERR(cgrp)) {
5498 ret = PTR_ERR(cgrp);
5499 goto out_unlock;
5500 }
5501
5502 /*
5503 * This extra ref will be put in cgroup_free_fn() and guarantees
5504 * that @cgrp->kn is always accessible.
5505 */
5506 kernfs_get(cgrp->kn);
5507
5508 ret = cgroup_kn_set_ugid(cgrp->kn);
5509 if (ret)
5510 goto out_destroy;
5511
5512 ret = css_populate_dir(&cgrp->self);
5513 if (ret)
5514 goto out_destroy;
5515
5516 ret = cgroup_apply_control_enable(cgrp);
5517 if (ret)
5518 goto out_destroy;
5519
5520 TRACE_CGROUP_PATH(mkdir, cgrp);
5521
5522 /* let's create and online css's */
5523 kernfs_activate(cgrp->kn);
5524
5525 ret = 0;
5526 goto out_unlock;
5527
5528 out_destroy:
5529 cgroup_destroy_locked(cgrp);
5530 out_unlock:
5531 cgroup_kn_unlock(parent_kn);
5532 return ret;
5533 }
5534
5535 /*
5536 * This is called when the refcnt of a css is confirmed to be killed.
5537 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5538 * initiate destruction and put the css ref from kill_css().
5539 */
css_killed_work_fn(struct work_struct * work)5540 static void css_killed_work_fn(struct work_struct *work)
5541 {
5542 struct cgroup_subsys_state *css =
5543 container_of(work, struct cgroup_subsys_state, destroy_work);
5544
5545 mutex_lock(&cgroup_mutex);
5546
5547 do {
5548 offline_css(css);
5549 css_put(css);
5550 /* @css can't go away while we're holding cgroup_mutex */
5551 css = css->parent;
5552 } while (css && atomic_dec_and_test(&css->online_cnt));
5553
5554 mutex_unlock(&cgroup_mutex);
5555 }
5556
5557 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5558 static void css_killed_ref_fn(struct percpu_ref *ref)
5559 {
5560 struct cgroup_subsys_state *css =
5561 container_of(ref, struct cgroup_subsys_state, refcnt);
5562
5563 if (atomic_dec_and_test(&css->online_cnt)) {
5564 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5565 queue_work(cgroup_destroy_wq, &css->destroy_work);
5566 }
5567 }
5568
5569 /**
5570 * kill_css - destroy a css
5571 * @css: css to destroy
5572 *
5573 * This function initiates destruction of @css by removing cgroup interface
5574 * files and putting its base reference. ->css_offline() will be invoked
5575 * asynchronously once css_tryget_online() is guaranteed to fail and when
5576 * the reference count reaches zero, @css will be released.
5577 */
kill_css(struct cgroup_subsys_state * css)5578 static void kill_css(struct cgroup_subsys_state *css)
5579 {
5580 lockdep_assert_held(&cgroup_mutex);
5581
5582 if (css->flags & CSS_DYING)
5583 return;
5584
5585 css->flags |= CSS_DYING;
5586
5587 /*
5588 * This must happen before css is disassociated with its cgroup.
5589 * See seq_css() for details.
5590 */
5591 css_clear_dir(css);
5592
5593 /*
5594 * Killing would put the base ref, but we need to keep it alive
5595 * until after ->css_offline().
5596 */
5597 css_get(css);
5598
5599 /*
5600 * cgroup core guarantees that, by the time ->css_offline() is
5601 * invoked, no new css reference will be given out via
5602 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5603 * proceed to offlining css's because percpu_ref_kill() doesn't
5604 * guarantee that the ref is seen as killed on all CPUs on return.
5605 *
5606 * Use percpu_ref_kill_and_confirm() to get notifications as each
5607 * css is confirmed to be seen as killed on all CPUs.
5608 */
5609 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5610 }
5611
5612 /**
5613 * cgroup_destroy_locked - the first stage of cgroup destruction
5614 * @cgrp: cgroup to be destroyed
5615 *
5616 * css's make use of percpu refcnts whose killing latency shouldn't be
5617 * exposed to userland and are RCU protected. Also, cgroup core needs to
5618 * guarantee that css_tryget_online() won't succeed by the time
5619 * ->css_offline() is invoked. To satisfy all the requirements,
5620 * destruction is implemented in the following two steps.
5621 *
5622 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5623 * userland visible parts and start killing the percpu refcnts of
5624 * css's. Set up so that the next stage will be kicked off once all
5625 * the percpu refcnts are confirmed to be killed.
5626 *
5627 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5628 * rest of destruction. Once all cgroup references are gone, the
5629 * cgroup is RCU-freed.
5630 *
5631 * This function implements s1. After this step, @cgrp is gone as far as
5632 * the userland is concerned and a new cgroup with the same name may be
5633 * created. As cgroup doesn't care about the names internally, this
5634 * doesn't cause any problem.
5635 */
cgroup_destroy_locked(struct cgroup * cgrp)5636 static int cgroup_destroy_locked(struct cgroup *cgrp)
5637 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5638 {
5639 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5640 struct cgroup_subsys_state *css;
5641 struct cgrp_cset_link *link;
5642 int ssid;
5643
5644 lockdep_assert_held(&cgroup_mutex);
5645
5646 /*
5647 * Only migration can raise populated from zero and we're already
5648 * holding cgroup_mutex.
5649 */
5650 if (cgroup_is_populated(cgrp))
5651 return -EBUSY;
5652
5653 /*
5654 * Make sure there's no live children. We can't test emptiness of
5655 * ->self.children as dead children linger on it while being
5656 * drained; otherwise, "rmdir parent/child parent" may fail.
5657 */
5658 if (css_has_online_children(&cgrp->self))
5659 return -EBUSY;
5660
5661 /*
5662 * Mark @cgrp and the associated csets dead. The former prevents
5663 * further task migration and child creation by disabling
5664 * cgroup_lock_live_group(). The latter makes the csets ignored by
5665 * the migration path.
5666 */
5667 cgrp->self.flags &= ~CSS_ONLINE;
5668
5669 spin_lock_irq(&css_set_lock);
5670 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5671 link->cset->dead = true;
5672 spin_unlock_irq(&css_set_lock);
5673
5674 /* initiate massacre of all css's */
5675 for_each_css(css, ssid, cgrp)
5676 kill_css(css);
5677
5678 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5679 css_clear_dir(&cgrp->self);
5680 kernfs_remove(cgrp->kn);
5681
5682 if (parent && cgroup_is_threaded(cgrp))
5683 parent->nr_threaded_children--;
5684
5685 spin_lock_irq(&css_set_lock);
5686 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5687 tcgrp->nr_descendants--;
5688 tcgrp->nr_dying_descendants++;
5689 /*
5690 * If the dying cgroup is frozen, decrease frozen descendants
5691 * counters of ancestor cgroups.
5692 */
5693 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5694 tcgrp->freezer.nr_frozen_descendants--;
5695 }
5696 spin_unlock_irq(&css_set_lock);
5697
5698 cgroup1_check_for_release(parent);
5699
5700 cgroup_bpf_offline(cgrp);
5701
5702 /* put the base reference */
5703 percpu_ref_kill(&cgrp->self.refcnt);
5704
5705 return 0;
5706 };
5707
cgroup_rmdir(struct kernfs_node * kn)5708 int cgroup_rmdir(struct kernfs_node *kn)
5709 {
5710 struct cgroup *cgrp;
5711 int ret = 0;
5712
5713 cgrp = cgroup_kn_lock_live(kn, false);
5714 if (!cgrp)
5715 return 0;
5716
5717 ret = cgroup_destroy_locked(cgrp);
5718 if (!ret)
5719 TRACE_CGROUP_PATH(rmdir, cgrp);
5720
5721 cgroup_kn_unlock(kn);
5722 return ret;
5723 }
5724
5725 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5726 .show_options = cgroup_show_options,
5727 .mkdir = cgroup_mkdir,
5728 .rmdir = cgroup_rmdir,
5729 .show_path = cgroup_show_path,
5730 };
5731
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5732 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5733 {
5734 struct cgroup_subsys_state *css;
5735
5736 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5737
5738 mutex_lock(&cgroup_mutex);
5739
5740 idr_init(&ss->css_idr);
5741 INIT_LIST_HEAD(&ss->cfts);
5742
5743 /* Create the root cgroup state for this subsystem */
5744 ss->root = &cgrp_dfl_root;
5745 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5746 /* We don't handle early failures gracefully */
5747 BUG_ON(IS_ERR(css));
5748 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5749
5750 /*
5751 * Root csses are never destroyed and we can't initialize
5752 * percpu_ref during early init. Disable refcnting.
5753 */
5754 css->flags |= CSS_NO_REF;
5755
5756 if (early) {
5757 /* allocation can't be done safely during early init */
5758 css->id = 1;
5759 } else {
5760 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5761 BUG_ON(css->id < 0);
5762 }
5763
5764 /* Update the init_css_set to contain a subsys
5765 * pointer to this state - since the subsystem is
5766 * newly registered, all tasks and hence the
5767 * init_css_set is in the subsystem's root cgroup. */
5768 init_css_set.subsys[ss->id] = css;
5769
5770 have_fork_callback |= (bool)ss->fork << ss->id;
5771 have_exit_callback |= (bool)ss->exit << ss->id;
5772 have_release_callback |= (bool)ss->release << ss->id;
5773 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5774
5775 /* At system boot, before all subsystems have been
5776 * registered, no tasks have been forked, so we don't
5777 * need to invoke fork callbacks here. */
5778 BUG_ON(!list_empty(&init_task.tasks));
5779
5780 BUG_ON(online_css(css));
5781
5782 mutex_unlock(&cgroup_mutex);
5783 }
5784
5785 /**
5786 * cgroup_init_early - cgroup initialization at system boot
5787 *
5788 * Initialize cgroups at system boot, and initialize any
5789 * subsystems that request early init.
5790 */
cgroup_init_early(void)5791 int __init cgroup_init_early(void)
5792 {
5793 static struct cgroup_fs_context __initdata ctx;
5794 struct cgroup_subsys *ss;
5795 int i;
5796
5797 ctx.root = &cgrp_dfl_root;
5798 init_cgroup_root(&ctx);
5799 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5800
5801 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5802
5803 for_each_subsys(ss, i) {
5804 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5805 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5806 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5807 ss->id, ss->name);
5808 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5809 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5810
5811 ss->id = i;
5812 ss->name = cgroup_subsys_name[i];
5813 if (!ss->legacy_name)
5814 ss->legacy_name = cgroup_subsys_name[i];
5815
5816 if (ss->early_init)
5817 cgroup_init_subsys(ss, true);
5818 }
5819 return 0;
5820 }
5821
5822 /**
5823 * cgroup_init - cgroup initialization
5824 *
5825 * Register cgroup filesystem and /proc file, and initialize
5826 * any subsystems that didn't request early init.
5827 */
cgroup_init(void)5828 int __init cgroup_init(void)
5829 {
5830 struct cgroup_subsys *ss;
5831 int ssid;
5832
5833 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5834 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5835 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5836
5837 cgroup_rstat_boot();
5838
5839 /*
5840 * The latency of the synchronize_rcu() is too high for cgroups,
5841 * avoid it at the cost of forcing all readers into the slow path.
5842 */
5843 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5844
5845 get_user_ns(init_cgroup_ns.user_ns);
5846
5847 mutex_lock(&cgroup_mutex);
5848
5849 /*
5850 * Add init_css_set to the hash table so that dfl_root can link to
5851 * it during init.
5852 */
5853 hash_add(css_set_table, &init_css_set.hlist,
5854 css_set_hash(init_css_set.subsys));
5855
5856 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5857
5858 mutex_unlock(&cgroup_mutex);
5859
5860 for_each_subsys(ss, ssid) {
5861 if (ss->early_init) {
5862 struct cgroup_subsys_state *css =
5863 init_css_set.subsys[ss->id];
5864
5865 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5866 GFP_KERNEL);
5867 BUG_ON(css->id < 0);
5868 } else {
5869 cgroup_init_subsys(ss, false);
5870 }
5871
5872 list_add_tail(&init_css_set.e_cset_node[ssid],
5873 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5874
5875 /*
5876 * Setting dfl_root subsys_mask needs to consider the
5877 * disabled flag and cftype registration needs kmalloc,
5878 * both of which aren't available during early_init.
5879 */
5880 if (!cgroup_ssid_enabled(ssid))
5881 continue;
5882
5883 if (cgroup1_ssid_disabled(ssid))
5884 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5885 ss->name);
5886
5887 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5888
5889 /* implicit controllers must be threaded too */
5890 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5891
5892 if (ss->implicit_on_dfl)
5893 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5894 else if (!ss->dfl_cftypes)
5895 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5896
5897 if (ss->threaded)
5898 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5899
5900 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5901 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5902 } else {
5903 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5904 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5905 }
5906
5907 if (ss->bind)
5908 ss->bind(init_css_set.subsys[ssid]);
5909
5910 mutex_lock(&cgroup_mutex);
5911 css_populate_dir(init_css_set.subsys[ssid]);
5912 mutex_unlock(&cgroup_mutex);
5913 }
5914
5915 /* init_css_set.subsys[] has been updated, re-hash */
5916 hash_del(&init_css_set.hlist);
5917 hash_add(css_set_table, &init_css_set.hlist,
5918 css_set_hash(init_css_set.subsys));
5919
5920 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5921 WARN_ON(register_filesystem(&cgroup_fs_type));
5922 WARN_ON(register_filesystem(&cgroup2_fs_type));
5923 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5924 #ifdef CONFIG_CPUSETS
5925 WARN_ON(register_filesystem(&cpuset_fs_type));
5926 #endif
5927
5928 return 0;
5929 }
5930
cgroup_wq_init(void)5931 static int __init cgroup_wq_init(void)
5932 {
5933 /*
5934 * There isn't much point in executing destruction path in
5935 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5936 * Use 1 for @max_active.
5937 *
5938 * We would prefer to do this in cgroup_init() above, but that
5939 * is called before init_workqueues(): so leave this until after.
5940 */
5941 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5942 BUG_ON(!cgroup_destroy_wq);
5943 return 0;
5944 }
5945 core_initcall(cgroup_wq_init);
5946
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)5947 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5948 {
5949 struct kernfs_node *kn;
5950
5951 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5952 if (!kn)
5953 return;
5954 kernfs_path(kn, buf, buflen);
5955 kernfs_put(kn);
5956 }
5957
5958 /*
5959 * cgroup_get_from_id : get the cgroup associated with cgroup id
5960 * @id: cgroup id
5961 * On success return the cgrp, on failure return NULL
5962 */
cgroup_get_from_id(u64 id)5963 struct cgroup *cgroup_get_from_id(u64 id)
5964 {
5965 struct kernfs_node *kn;
5966 struct cgroup *cgrp = NULL;
5967
5968 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5969 if (!kn)
5970 goto out;
5971
5972 rcu_read_lock();
5973
5974 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5975 if (cgrp && !cgroup_tryget(cgrp))
5976 cgrp = NULL;
5977
5978 rcu_read_unlock();
5979
5980 kernfs_put(kn);
5981 out:
5982 return cgrp;
5983 }
5984 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
5985
5986 /*
5987 * proc_cgroup_show()
5988 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5989 * - Used for /proc/<pid>/cgroup.
5990 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5991 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5992 struct pid *pid, struct task_struct *tsk)
5993 {
5994 char *buf;
5995 int retval;
5996 struct cgroup_root *root;
5997
5998 retval = -ENOMEM;
5999 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6000 if (!buf)
6001 goto out;
6002
6003 mutex_lock(&cgroup_mutex);
6004 spin_lock_irq(&css_set_lock);
6005
6006 for_each_root(root) {
6007 struct cgroup_subsys *ss;
6008 struct cgroup *cgrp;
6009 int ssid, count = 0;
6010
6011 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
6012 continue;
6013
6014 seq_printf(m, "%d:", root->hierarchy_id);
6015 if (root != &cgrp_dfl_root)
6016 for_each_subsys(ss, ssid)
6017 if (root->subsys_mask & (1 << ssid))
6018 seq_printf(m, "%s%s", count++ ? "," : "",
6019 ss->legacy_name);
6020 if (strlen(root->name))
6021 seq_printf(m, "%sname=%s", count ? "," : "",
6022 root->name);
6023 seq_putc(m, ':');
6024
6025 cgrp = task_cgroup_from_root(tsk, root);
6026
6027 /*
6028 * On traditional hierarchies, all zombie tasks show up as
6029 * belonging to the root cgroup. On the default hierarchy,
6030 * while a zombie doesn't show up in "cgroup.procs" and
6031 * thus can't be migrated, its /proc/PID/cgroup keeps
6032 * reporting the cgroup it belonged to before exiting. If
6033 * the cgroup is removed before the zombie is reaped,
6034 * " (deleted)" is appended to the cgroup path.
6035 */
6036 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6037 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6038 current->nsproxy->cgroup_ns);
6039 if (retval >= PATH_MAX)
6040 retval = -ENAMETOOLONG;
6041 if (retval < 0)
6042 goto out_unlock;
6043
6044 seq_puts(m, buf);
6045 } else {
6046 seq_puts(m, "/");
6047 }
6048
6049 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6050 seq_puts(m, " (deleted)\n");
6051 else
6052 seq_putc(m, '\n');
6053 }
6054
6055 retval = 0;
6056 out_unlock:
6057 spin_unlock_irq(&css_set_lock);
6058 mutex_unlock(&cgroup_mutex);
6059 kfree(buf);
6060 out:
6061 return retval;
6062 }
6063
6064 /**
6065 * cgroup_fork - initialize cgroup related fields during copy_process()
6066 * @child: pointer to task_struct of forking parent process.
6067 *
6068 * A task is associated with the init_css_set until cgroup_post_fork()
6069 * attaches it to the target css_set.
6070 */
cgroup_fork(struct task_struct * child)6071 void cgroup_fork(struct task_struct *child)
6072 {
6073 RCU_INIT_POINTER(child->cgroups, &init_css_set);
6074 INIT_LIST_HEAD(&child->cg_list);
6075 }
6076
cgroup_get_from_file(struct file * f)6077 static struct cgroup *cgroup_get_from_file(struct file *f)
6078 {
6079 struct cgroup_subsys_state *css;
6080 struct cgroup *cgrp;
6081
6082 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6083 if (IS_ERR(css))
6084 return ERR_CAST(css);
6085
6086 cgrp = css->cgroup;
6087 if (!cgroup_on_dfl(cgrp)) {
6088 cgroup_put(cgrp);
6089 return ERR_PTR(-EBADF);
6090 }
6091
6092 return cgrp;
6093 }
6094
6095 /**
6096 * cgroup_css_set_fork - find or create a css_set for a child process
6097 * @kargs: the arguments passed to create the child process
6098 *
6099 * This functions finds or creates a new css_set which the child
6100 * process will be attached to in cgroup_post_fork(). By default,
6101 * the child process will be given the same css_set as its parent.
6102 *
6103 * If CLONE_INTO_CGROUP is specified this function will try to find an
6104 * existing css_set which includes the requested cgroup and if not create
6105 * a new css_set that the child will be attached to later. If this function
6106 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6107 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6108 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6109 * to the target cgroup.
6110 */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6111 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6112 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6113 {
6114 int ret;
6115 struct cgroup *dst_cgrp = NULL;
6116 struct css_set *cset;
6117 struct super_block *sb;
6118 struct file *f;
6119
6120 if (kargs->flags & CLONE_INTO_CGROUP)
6121 mutex_lock(&cgroup_mutex);
6122
6123 cgroup_threadgroup_change_begin(current);
6124
6125 spin_lock_irq(&css_set_lock);
6126 cset = task_css_set(current);
6127 get_css_set(cset);
6128 spin_unlock_irq(&css_set_lock);
6129
6130 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6131 kargs->cset = cset;
6132 return 0;
6133 }
6134
6135 f = fget_raw(kargs->cgroup);
6136 if (!f) {
6137 ret = -EBADF;
6138 goto err;
6139 }
6140 sb = f->f_path.dentry->d_sb;
6141
6142 dst_cgrp = cgroup_get_from_file(f);
6143 if (IS_ERR(dst_cgrp)) {
6144 ret = PTR_ERR(dst_cgrp);
6145 dst_cgrp = NULL;
6146 goto err;
6147 }
6148
6149 if (cgroup_is_dead(dst_cgrp)) {
6150 ret = -ENODEV;
6151 goto err;
6152 }
6153
6154 /*
6155 * Verify that we the target cgroup is writable for us. This is
6156 * usually done by the vfs layer but since we're not going through
6157 * the vfs layer here we need to do it "manually".
6158 */
6159 ret = cgroup_may_write(dst_cgrp, sb);
6160 if (ret)
6161 goto err;
6162
6163 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6164 !(kargs->flags & CLONE_THREAD),
6165 current->nsproxy->cgroup_ns);
6166 if (ret)
6167 goto err;
6168
6169 kargs->cset = find_css_set(cset, dst_cgrp);
6170 if (!kargs->cset) {
6171 ret = -ENOMEM;
6172 goto err;
6173 }
6174
6175 put_css_set(cset);
6176 fput(f);
6177 kargs->cgrp = dst_cgrp;
6178 return ret;
6179
6180 err:
6181 cgroup_threadgroup_change_end(current);
6182 mutex_unlock(&cgroup_mutex);
6183 if (f)
6184 fput(f);
6185 if (dst_cgrp)
6186 cgroup_put(dst_cgrp);
6187 put_css_set(cset);
6188 if (kargs->cset)
6189 put_css_set(kargs->cset);
6190 return ret;
6191 }
6192
6193 /**
6194 * cgroup_css_set_put_fork - drop references we took during fork
6195 * @kargs: the arguments passed to create the child process
6196 *
6197 * Drop references to the prepared css_set and target cgroup if
6198 * CLONE_INTO_CGROUP was requested.
6199 */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6200 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6201 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6202 {
6203 cgroup_threadgroup_change_end(current);
6204
6205 if (kargs->flags & CLONE_INTO_CGROUP) {
6206 struct cgroup *cgrp = kargs->cgrp;
6207 struct css_set *cset = kargs->cset;
6208
6209 mutex_unlock(&cgroup_mutex);
6210
6211 if (cset) {
6212 put_css_set(cset);
6213 kargs->cset = NULL;
6214 }
6215
6216 if (cgrp) {
6217 cgroup_put(cgrp);
6218 kargs->cgrp = NULL;
6219 }
6220 }
6221 }
6222
6223 /**
6224 * cgroup_can_fork - called on a new task before the process is exposed
6225 * @child: the child process
6226 *
6227 * This prepares a new css_set for the child process which the child will
6228 * be attached to in cgroup_post_fork().
6229 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6230 * callback returns an error, the fork aborts with that error code. This
6231 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6232 */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6233 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6234 {
6235 struct cgroup_subsys *ss;
6236 int i, j, ret;
6237
6238 ret = cgroup_css_set_fork(kargs);
6239 if (ret)
6240 return ret;
6241
6242 do_each_subsys_mask(ss, i, have_canfork_callback) {
6243 ret = ss->can_fork(child, kargs->cset);
6244 if (ret)
6245 goto out_revert;
6246 } while_each_subsys_mask();
6247
6248 return 0;
6249
6250 out_revert:
6251 for_each_subsys(ss, j) {
6252 if (j >= i)
6253 break;
6254 if (ss->cancel_fork)
6255 ss->cancel_fork(child, kargs->cset);
6256 }
6257
6258 cgroup_css_set_put_fork(kargs);
6259
6260 return ret;
6261 }
6262
6263 /**
6264 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6265 * @child: the child process
6266 * @kargs: the arguments passed to create the child process
6267 *
6268 * This calls the cancel_fork() callbacks if a fork failed *after*
6269 * cgroup_can_fork() succeeded and cleans up references we took to
6270 * prepare a new css_set for the child process in cgroup_can_fork().
6271 */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6272 void cgroup_cancel_fork(struct task_struct *child,
6273 struct kernel_clone_args *kargs)
6274 {
6275 struct cgroup_subsys *ss;
6276 int i;
6277
6278 for_each_subsys(ss, i)
6279 if (ss->cancel_fork)
6280 ss->cancel_fork(child, kargs->cset);
6281
6282 cgroup_css_set_put_fork(kargs);
6283 }
6284
6285 /**
6286 * cgroup_post_fork - finalize cgroup setup for the child process
6287 * @child: the child process
6288 *
6289 * Attach the child process to its css_set calling the subsystem fork()
6290 * callbacks.
6291 */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6292 void cgroup_post_fork(struct task_struct *child,
6293 struct kernel_clone_args *kargs)
6294 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6295 {
6296 unsigned long cgrp_flags = 0;
6297 bool kill = false;
6298 struct cgroup_subsys *ss;
6299 struct css_set *cset;
6300 int i;
6301
6302 cset = kargs->cset;
6303 kargs->cset = NULL;
6304
6305 spin_lock_irq(&css_set_lock);
6306
6307 /* init tasks are special, only link regular threads */
6308 if (likely(child->pid)) {
6309 if (kargs->cgrp)
6310 cgrp_flags = kargs->cgrp->flags;
6311 else
6312 cgrp_flags = cset->dfl_cgrp->flags;
6313
6314 WARN_ON_ONCE(!list_empty(&child->cg_list));
6315 cset->nr_tasks++;
6316 css_set_move_task(child, NULL, cset, false);
6317 } else {
6318 put_css_set(cset);
6319 cset = NULL;
6320 }
6321
6322 if (!(child->flags & PF_KTHREAD)) {
6323 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6324 /*
6325 * If the cgroup has to be frozen, the new task has
6326 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6327 * get the task into the frozen state.
6328 */
6329 spin_lock(&child->sighand->siglock);
6330 WARN_ON_ONCE(child->frozen);
6331 child->jobctl |= JOBCTL_TRAP_FREEZE;
6332 spin_unlock(&child->sighand->siglock);
6333
6334 /*
6335 * Calling cgroup_update_frozen() isn't required here,
6336 * because it will be called anyway a bit later from
6337 * do_freezer_trap(). So we avoid cgroup's transient
6338 * switch from the frozen state and back.
6339 */
6340 }
6341
6342 /*
6343 * If the cgroup is to be killed notice it now and take the
6344 * child down right after we finished preparing it for
6345 * userspace.
6346 */
6347 kill = test_bit(CGRP_KILL, &cgrp_flags);
6348 }
6349
6350 spin_unlock_irq(&css_set_lock);
6351
6352 /*
6353 * Call ss->fork(). This must happen after @child is linked on
6354 * css_set; otherwise, @child might change state between ->fork()
6355 * and addition to css_set.
6356 */
6357 do_each_subsys_mask(ss, i, have_fork_callback) {
6358 ss->fork(child);
6359 } while_each_subsys_mask();
6360
6361 /* Make the new cset the root_cset of the new cgroup namespace. */
6362 if (kargs->flags & CLONE_NEWCGROUP) {
6363 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6364
6365 get_css_set(cset);
6366 child->nsproxy->cgroup_ns->root_cset = cset;
6367 put_css_set(rcset);
6368 }
6369
6370 /* Cgroup has to be killed so take down child immediately. */
6371 if (unlikely(kill))
6372 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6373
6374 cgroup_css_set_put_fork(kargs);
6375 }
6376
6377 /**
6378 * cgroup_exit - detach cgroup from exiting task
6379 * @tsk: pointer to task_struct of exiting process
6380 *
6381 * Description: Detach cgroup from @tsk.
6382 *
6383 */
cgroup_exit(struct task_struct * tsk)6384 void cgroup_exit(struct task_struct *tsk)
6385 {
6386 struct cgroup_subsys *ss;
6387 struct css_set *cset;
6388 int i;
6389
6390 spin_lock_irq(&css_set_lock);
6391
6392 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6393 cset = task_css_set(tsk);
6394 css_set_move_task(tsk, cset, NULL, false);
6395 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6396 cset->nr_tasks--;
6397
6398 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6399 if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6400 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6401 cgroup_update_frozen(task_dfl_cgroup(tsk));
6402
6403 spin_unlock_irq(&css_set_lock);
6404
6405 /* see cgroup_post_fork() for details */
6406 do_each_subsys_mask(ss, i, have_exit_callback) {
6407 ss->exit(tsk);
6408 } while_each_subsys_mask();
6409 }
6410
cgroup_release(struct task_struct * task)6411 void cgroup_release(struct task_struct *task)
6412 {
6413 struct cgroup_subsys *ss;
6414 int ssid;
6415
6416 do_each_subsys_mask(ss, ssid, have_release_callback) {
6417 ss->release(task);
6418 } while_each_subsys_mask();
6419
6420 spin_lock_irq(&css_set_lock);
6421 css_set_skip_task_iters(task_css_set(task), task);
6422 list_del_init(&task->cg_list);
6423 spin_unlock_irq(&css_set_lock);
6424 }
6425
cgroup_free(struct task_struct * task)6426 void cgroup_free(struct task_struct *task)
6427 {
6428 struct css_set *cset = task_css_set(task);
6429 put_css_set(cset);
6430 }
6431
cgroup_disable(char * str)6432 static int __init cgroup_disable(char *str)
6433 {
6434 struct cgroup_subsys *ss;
6435 char *token;
6436 int i;
6437
6438 while ((token = strsep(&str, ",")) != NULL) {
6439 if (!*token)
6440 continue;
6441
6442 for_each_subsys(ss, i) {
6443 if (strcmp(token, ss->name) &&
6444 strcmp(token, ss->legacy_name))
6445 continue;
6446
6447 static_branch_disable(cgroup_subsys_enabled_key[i]);
6448 pr_info("Disabling %s control group subsystem\n",
6449 ss->name);
6450 }
6451
6452 for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6453 if (strcmp(token, cgroup_opt_feature_names[i]))
6454 continue;
6455 cgroup_feature_disable_mask |= 1 << i;
6456 pr_info("Disabling %s control group feature\n",
6457 cgroup_opt_feature_names[i]);
6458 break;
6459 }
6460 }
6461 return 1;
6462 }
6463 __setup("cgroup_disable=", cgroup_disable);
6464
enable_debug_cgroup(void)6465 void __init __weak enable_debug_cgroup(void) { }
6466
enable_cgroup_debug(char * str)6467 static int __init enable_cgroup_debug(char *str)
6468 {
6469 cgroup_debug = true;
6470 enable_debug_cgroup();
6471 return 1;
6472 }
6473 __setup("cgroup_debug", enable_cgroup_debug);
6474
6475 /**
6476 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6477 * @dentry: directory dentry of interest
6478 * @ss: subsystem of interest
6479 *
6480 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6481 * to get the corresponding css and return it. If such css doesn't exist
6482 * or can't be pinned, an ERR_PTR value is returned.
6483 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6484 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6485 struct cgroup_subsys *ss)
6486 {
6487 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6488 struct file_system_type *s_type = dentry->d_sb->s_type;
6489 struct cgroup_subsys_state *css = NULL;
6490 struct cgroup *cgrp;
6491
6492 /* is @dentry a cgroup dir? */
6493 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6494 !kn || kernfs_type(kn) != KERNFS_DIR)
6495 return ERR_PTR(-EBADF);
6496
6497 rcu_read_lock();
6498
6499 /*
6500 * This path doesn't originate from kernfs and @kn could already
6501 * have been or be removed at any point. @kn->priv is RCU
6502 * protected for this access. See css_release_work_fn() for details.
6503 */
6504 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6505 if (cgrp)
6506 css = cgroup_css(cgrp, ss);
6507
6508 if (!css || !css_tryget_online(css))
6509 css = ERR_PTR(-ENOENT);
6510
6511 rcu_read_unlock();
6512 return css;
6513 }
6514
6515 /**
6516 * css_from_id - lookup css by id
6517 * @id: the cgroup id
6518 * @ss: cgroup subsys to be looked into
6519 *
6520 * Returns the css if there's valid one with @id, otherwise returns NULL.
6521 * Should be called under rcu_read_lock().
6522 */
css_from_id(int id,struct cgroup_subsys * ss)6523 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6524 {
6525 WARN_ON_ONCE(!rcu_read_lock_held());
6526 return idr_find(&ss->css_idr, id);
6527 }
6528
6529 /**
6530 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6531 * @path: path on the default hierarchy
6532 *
6533 * Find the cgroup at @path on the default hierarchy, increment its
6534 * reference count and return it. Returns pointer to the found cgroup on
6535 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6536 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6537 */
cgroup_get_from_path(const char * path)6538 struct cgroup *cgroup_get_from_path(const char *path)
6539 {
6540 struct kernfs_node *kn;
6541 struct cgroup *cgrp = ERR_PTR(-ENOENT);
6542
6543 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6544 if (!kn)
6545 goto out;
6546
6547 if (kernfs_type(kn) != KERNFS_DIR) {
6548 cgrp = ERR_PTR(-ENOTDIR);
6549 goto out_kernfs;
6550 }
6551
6552 rcu_read_lock();
6553
6554 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6555 if (!cgrp || !cgroup_tryget(cgrp))
6556 cgrp = ERR_PTR(-ENOENT);
6557
6558 rcu_read_unlock();
6559
6560 out_kernfs:
6561 kernfs_put(kn);
6562 out:
6563 return cgrp;
6564 }
6565 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6566
6567 /**
6568 * cgroup_get_from_fd - get a cgroup pointer from a fd
6569 * @fd: fd obtained by open(cgroup2_dir)
6570 *
6571 * Find the cgroup from a fd which should be obtained
6572 * by opening a cgroup directory. Returns a pointer to the
6573 * cgroup on success. ERR_PTR is returned if the cgroup
6574 * cannot be found.
6575 */
cgroup_get_from_fd(int fd)6576 struct cgroup *cgroup_get_from_fd(int fd)
6577 {
6578 struct cgroup *cgrp;
6579 struct file *f;
6580
6581 f = fget_raw(fd);
6582 if (!f)
6583 return ERR_PTR(-EBADF);
6584
6585 cgrp = cgroup_get_from_file(f);
6586 fput(f);
6587 return cgrp;
6588 }
6589 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6590
power_of_ten(int power)6591 static u64 power_of_ten(int power)
6592 {
6593 u64 v = 1;
6594 while (power--)
6595 v *= 10;
6596 return v;
6597 }
6598
6599 /**
6600 * cgroup_parse_float - parse a floating number
6601 * @input: input string
6602 * @dec_shift: number of decimal digits to shift
6603 * @v: output
6604 *
6605 * Parse a decimal floating point number in @input and store the result in
6606 * @v with decimal point right shifted @dec_shift times. For example, if
6607 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6608 * Returns 0 on success, -errno otherwise.
6609 *
6610 * There's nothing cgroup specific about this function except that it's
6611 * currently the only user.
6612 */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6613 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6614 {
6615 s64 whole, frac = 0;
6616 int fstart = 0, fend = 0, flen;
6617
6618 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6619 return -EINVAL;
6620 if (frac < 0)
6621 return -EINVAL;
6622
6623 flen = fend > fstart ? fend - fstart : 0;
6624 if (flen < dec_shift)
6625 frac *= power_of_ten(dec_shift - flen);
6626 else
6627 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6628
6629 *v = whole * power_of_ten(dec_shift) + frac;
6630 return 0;
6631 }
6632
6633 /*
6634 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6635 * definition in cgroup-defs.h.
6636 */
6637 #ifdef CONFIG_SOCK_CGROUP_DATA
6638
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6639 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6640 {
6641 struct cgroup *cgroup;
6642
6643 rcu_read_lock();
6644 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6645 if (in_interrupt()) {
6646 cgroup = &cgrp_dfl_root.cgrp;
6647 cgroup_get(cgroup);
6648 goto out;
6649 }
6650
6651 while (true) {
6652 struct css_set *cset;
6653
6654 cset = task_css_set(current);
6655 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6656 cgroup = cset->dfl_cgrp;
6657 break;
6658 }
6659 cpu_relax();
6660 }
6661 out:
6662 skcd->cgroup = cgroup;
6663 cgroup_bpf_get(cgroup);
6664 rcu_read_unlock();
6665 }
6666
cgroup_sk_clone(struct sock_cgroup_data * skcd)6667 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6668 {
6669 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6670
6671 /*
6672 * We might be cloning a socket which is left in an empty
6673 * cgroup and the cgroup might have already been rmdir'd.
6674 * Don't use cgroup_get_live().
6675 */
6676 cgroup_get(cgrp);
6677 cgroup_bpf_get(cgrp);
6678 }
6679
cgroup_sk_free(struct sock_cgroup_data * skcd)6680 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6681 {
6682 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6683
6684 cgroup_bpf_put(cgrp);
6685 cgroup_put(cgrp);
6686 }
6687
6688 #endif /* CONFIG_SOCK_CGROUP_DATA */
6689
6690 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)6691 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6692 ssize_t size, const char *prefix)
6693 {
6694 struct cftype *cft;
6695 ssize_t ret = 0;
6696
6697 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6698 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6699 continue;
6700
6701 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6702 continue;
6703
6704 if (prefix)
6705 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6706
6707 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6708
6709 if (WARN_ON(ret >= size))
6710 break;
6711 }
6712
6713 return ret;
6714 }
6715
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6716 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6717 char *buf)
6718 {
6719 struct cgroup_subsys *ss;
6720 int ssid;
6721 ssize_t ret = 0;
6722
6723 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6724 NULL);
6725
6726 for_each_subsys(ss, ssid)
6727 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6728 PAGE_SIZE - ret,
6729 cgroup_subsys_name[ssid]);
6730
6731 return ret;
6732 }
6733 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6734
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)6735 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6736 char *buf)
6737 {
6738 return snprintf(buf, PAGE_SIZE,
6739 "nsdelegate\n"
6740 "memory_localevents\n"
6741 "memory_recursiveprot\n");
6742 }
6743 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6744
6745 static struct attribute *cgroup_sysfs_attrs[] = {
6746 &cgroup_delegate_attr.attr,
6747 &cgroup_features_attr.attr,
6748 NULL,
6749 };
6750
6751 static const struct attribute_group cgroup_sysfs_attr_group = {
6752 .attrs = cgroup_sysfs_attrs,
6753 .name = "cgroup",
6754 };
6755
cgroup_sysfs_init(void)6756 static int __init cgroup_sysfs_init(void)
6757 {
6758 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6759 }
6760 subsys_initcall(cgroup_sysfs_init);
6761
6762 #endif /* CONFIG_SYSFS */
6763