1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * KCSAN reporting.
4 *
5 * Copyright (C) 2019, Google LLC.
6 */
7
8 #include <linux/debug_locks.h>
9 #include <linux/delay.h>
10 #include <linux/jiffies.h>
11 #include <linux/kallsyms.h>
12 #include <linux/kernel.h>
13 #include <linux/lockdep.h>
14 #include <linux/preempt.h>
15 #include <linux/printk.h>
16 #include <linux/sched.h>
17 #include <linux/spinlock.h>
18 #include <linux/stacktrace.h>
19
20 #include "kcsan.h"
21 #include "encoding.h"
22
23 /*
24 * Max. number of stack entries to show in the report.
25 */
26 #define NUM_STACK_ENTRIES 64
27
28 /* Common access info. */
29 struct access_info {
30 const volatile void *ptr;
31 size_t size;
32 int access_type;
33 int task_pid;
34 int cpu_id;
35 unsigned long ip;
36 };
37
38 /*
39 * Other thread info: communicated from other racing thread to thread that set
40 * up the watchpoint, which then prints the complete report atomically.
41 */
42 struct other_info {
43 struct access_info ai;
44 unsigned long stack_entries[NUM_STACK_ENTRIES];
45 int num_stack_entries;
46
47 /*
48 * Optionally pass @current. Typically we do not need to pass @current
49 * via @other_info since just @task_pid is sufficient. Passing @current
50 * has additional overhead.
51 *
52 * To safely pass @current, we must either use get_task_struct/
53 * put_task_struct, or stall the thread that populated @other_info.
54 *
55 * We cannot rely on get_task_struct/put_task_struct in case
56 * release_report() races with a task being released, and would have to
57 * free it in release_report(). This may result in deadlock if we want
58 * to use KCSAN on the allocators.
59 *
60 * Since we also want to reliably print held locks for
61 * CONFIG_KCSAN_VERBOSE, the current implementation stalls the thread
62 * that populated @other_info until it has been consumed.
63 */
64 struct task_struct *task;
65 };
66
67 /*
68 * To never block any producers of struct other_info, we need as many elements
69 * as we have watchpoints (upper bound on concurrent races to report).
70 */
71 static struct other_info other_infos[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
72
73 /*
74 * Information about reported races; used to rate limit reporting.
75 */
76 struct report_time {
77 /*
78 * The last time the race was reported.
79 */
80 unsigned long time;
81
82 /*
83 * The frames of the 2 threads; if only 1 thread is known, one frame
84 * will be 0.
85 */
86 unsigned long frame1;
87 unsigned long frame2;
88 };
89
90 /*
91 * Since we also want to be able to debug allocators with KCSAN, to avoid
92 * deadlock, report_times cannot be dynamically resized with krealloc in
93 * rate_limit_report.
94 *
95 * Therefore, we use a fixed-size array, which at most will occupy a page. This
96 * still adequately rate limits reports, assuming that a) number of unique data
97 * races is not excessive, and b) occurrence of unique races within the
98 * same time window is limited.
99 */
100 #define REPORT_TIMES_MAX (PAGE_SIZE / sizeof(struct report_time))
101 #define REPORT_TIMES_SIZE \
102 (CONFIG_KCSAN_REPORT_ONCE_IN_MS > REPORT_TIMES_MAX ? \
103 REPORT_TIMES_MAX : \
104 CONFIG_KCSAN_REPORT_ONCE_IN_MS)
105 static struct report_time report_times[REPORT_TIMES_SIZE];
106
107 /*
108 * Spinlock serializing report generation, and access to @other_infos. Although
109 * it could make sense to have a finer-grained locking story for @other_infos,
110 * report generation needs to be serialized either way, so not much is gained.
111 */
112 static DEFINE_RAW_SPINLOCK(report_lock);
113
114 /*
115 * Checks if the race identified by thread frames frame1 and frame2 has
116 * been reported since (now - KCSAN_REPORT_ONCE_IN_MS).
117 */
rate_limit_report(unsigned long frame1,unsigned long frame2)118 static bool rate_limit_report(unsigned long frame1, unsigned long frame2)
119 {
120 struct report_time *use_entry = &report_times[0];
121 unsigned long invalid_before;
122 int i;
123
124 BUILD_BUG_ON(CONFIG_KCSAN_REPORT_ONCE_IN_MS != 0 && REPORT_TIMES_SIZE == 0);
125
126 if (CONFIG_KCSAN_REPORT_ONCE_IN_MS == 0)
127 return false;
128
129 invalid_before = jiffies - msecs_to_jiffies(CONFIG_KCSAN_REPORT_ONCE_IN_MS);
130
131 /* Check if a matching race report exists. */
132 for (i = 0; i < REPORT_TIMES_SIZE; ++i) {
133 struct report_time *rt = &report_times[i];
134
135 /*
136 * Must always select an entry for use to store info as we
137 * cannot resize report_times; at the end of the scan, use_entry
138 * will be the oldest entry, which ideally also happened before
139 * KCSAN_REPORT_ONCE_IN_MS ago.
140 */
141 if (time_before(rt->time, use_entry->time))
142 use_entry = rt;
143
144 /*
145 * Initially, no need to check any further as this entry as well
146 * as following entries have never been used.
147 */
148 if (rt->time == 0)
149 break;
150
151 /* Check if entry expired. */
152 if (time_before(rt->time, invalid_before))
153 continue; /* before KCSAN_REPORT_ONCE_IN_MS ago */
154
155 /* Reported recently, check if race matches. */
156 if ((rt->frame1 == frame1 && rt->frame2 == frame2) ||
157 (rt->frame1 == frame2 && rt->frame2 == frame1))
158 return true;
159 }
160
161 use_entry->time = jiffies;
162 use_entry->frame1 = frame1;
163 use_entry->frame2 = frame2;
164 return false;
165 }
166
167 /*
168 * Special rules to skip reporting.
169 */
170 static bool
skip_report(enum kcsan_value_change value_change,unsigned long top_frame)171 skip_report(enum kcsan_value_change value_change, unsigned long top_frame)
172 {
173 /* Should never get here if value_change==FALSE. */
174 WARN_ON_ONCE(value_change == KCSAN_VALUE_CHANGE_FALSE);
175
176 /*
177 * The first call to skip_report always has value_change==TRUE, since we
178 * cannot know the value written of an instrumented access. For the 2nd
179 * call there are 6 cases with CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY:
180 *
181 * 1. read watchpoint, conflicting write (value_change==TRUE): report;
182 * 2. read watchpoint, conflicting write (value_change==MAYBE): skip;
183 * 3. write watchpoint, conflicting write (value_change==TRUE): report;
184 * 4. write watchpoint, conflicting write (value_change==MAYBE): skip;
185 * 5. write watchpoint, conflicting read (value_change==MAYBE): skip;
186 * 6. write watchpoint, conflicting read (value_change==TRUE): report;
187 *
188 * Cases 1-4 are intuitive and expected; case 5 ensures we do not report
189 * data races where the write may have rewritten the same value; case 6
190 * is possible either if the size is larger than what we check value
191 * changes for or the access type is KCSAN_ACCESS_ASSERT.
192 */
193 if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) &&
194 value_change == KCSAN_VALUE_CHANGE_MAYBE) {
195 /*
196 * The access is a write, but the data value did not change.
197 *
198 * We opt-out of this filter for certain functions at request of
199 * maintainers.
200 */
201 char buf[64];
202 int len = scnprintf(buf, sizeof(buf), "%ps", (void *)top_frame);
203
204 if (!strnstr(buf, "rcu_", len) &&
205 !strnstr(buf, "_rcu", len) &&
206 !strnstr(buf, "_srcu", len))
207 return true;
208 }
209
210 return kcsan_skip_report_debugfs(top_frame);
211 }
212
get_access_type(int type)213 static const char *get_access_type(int type)
214 {
215 if (type & KCSAN_ACCESS_ASSERT) {
216 if (type & KCSAN_ACCESS_SCOPED) {
217 if (type & KCSAN_ACCESS_WRITE)
218 return "assert no accesses (scoped)";
219 else
220 return "assert no writes (scoped)";
221 } else {
222 if (type & KCSAN_ACCESS_WRITE)
223 return "assert no accesses";
224 else
225 return "assert no writes";
226 }
227 }
228
229 switch (type) {
230 case 0:
231 return "read";
232 case KCSAN_ACCESS_ATOMIC:
233 return "read (marked)";
234 case KCSAN_ACCESS_WRITE:
235 return "write";
236 case KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
237 return "write (marked)";
238 case KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE:
239 return "read-write";
240 case KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
241 return "read-write (marked)";
242 case KCSAN_ACCESS_SCOPED:
243 return "read (scoped)";
244 case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_ATOMIC:
245 return "read (marked, scoped)";
246 case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE:
247 return "write (scoped)";
248 case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
249 return "write (marked, scoped)";
250 case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE:
251 return "read-write (scoped)";
252 case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
253 return "read-write (marked, scoped)";
254 default:
255 BUG();
256 }
257 }
258
get_bug_type(int type)259 static const char *get_bug_type(int type)
260 {
261 return (type & KCSAN_ACCESS_ASSERT) != 0 ? "assert: race" : "data-race";
262 }
263
264 /* Return thread description: in task or interrupt. */
get_thread_desc(int task_id)265 static const char *get_thread_desc(int task_id)
266 {
267 if (task_id != -1) {
268 static char buf[32]; /* safe: protected by report_lock */
269
270 snprintf(buf, sizeof(buf), "task %i", task_id);
271 return buf;
272 }
273 return "interrupt";
274 }
275
276 /* Helper to skip KCSAN-related functions in stack-trace. */
get_stack_skipnr(const unsigned long stack_entries[],int num_entries)277 static int get_stack_skipnr(const unsigned long stack_entries[], int num_entries)
278 {
279 char buf[64];
280 char *cur;
281 int len, skip;
282
283 for (skip = 0; skip < num_entries; ++skip) {
284 len = scnprintf(buf, sizeof(buf), "%ps", (void *)stack_entries[skip]);
285
286 /* Never show tsan_* or {read,write}_once_size. */
287 if (strnstr(buf, "tsan_", len) ||
288 strnstr(buf, "_once_size", len))
289 continue;
290
291 cur = strnstr(buf, "kcsan_", len);
292 if (cur) {
293 cur += strlen("kcsan_");
294 if (!str_has_prefix(cur, "test"))
295 continue; /* KCSAN runtime function. */
296 /* KCSAN related test. */
297 }
298
299 /*
300 * No match for runtime functions -- @skip entries to skip to
301 * get to first frame of interest.
302 */
303 break;
304 }
305
306 return skip;
307 }
308
309 /*
310 * Skips to the first entry that matches the function of @ip, and then replaces
311 * that entry with @ip, returning the entries to skip.
312 */
313 static int
replace_stack_entry(unsigned long stack_entries[],int num_entries,unsigned long ip)314 replace_stack_entry(unsigned long stack_entries[], int num_entries, unsigned long ip)
315 {
316 unsigned long symbolsize, offset;
317 unsigned long target_func;
318 int skip;
319
320 if (kallsyms_lookup_size_offset(ip, &symbolsize, &offset))
321 target_func = ip - offset;
322 else
323 goto fallback;
324
325 for (skip = 0; skip < num_entries; ++skip) {
326 unsigned long func = stack_entries[skip];
327
328 if (!kallsyms_lookup_size_offset(func, &symbolsize, &offset))
329 goto fallback;
330 func -= offset;
331
332 if (func == target_func) {
333 stack_entries[skip] = ip;
334 return skip;
335 }
336 }
337
338 fallback:
339 /* Should not happen; the resulting stack trace is likely misleading. */
340 WARN_ONCE(1, "Cannot find frame for %pS in stack trace", (void *)ip);
341 return get_stack_skipnr(stack_entries, num_entries);
342 }
343
344 static int
sanitize_stack_entries(unsigned long stack_entries[],int num_entries,unsigned long ip)345 sanitize_stack_entries(unsigned long stack_entries[], int num_entries, unsigned long ip)
346 {
347 return ip ? replace_stack_entry(stack_entries, num_entries, ip) :
348 get_stack_skipnr(stack_entries, num_entries);
349 }
350
351 /* Compares symbolized strings of addr1 and addr2. */
sym_strcmp(void * addr1,void * addr2)352 static int sym_strcmp(void *addr1, void *addr2)
353 {
354 char buf1[64];
355 char buf2[64];
356
357 snprintf(buf1, sizeof(buf1), "%pS", addr1);
358 snprintf(buf2, sizeof(buf2), "%pS", addr2);
359
360 return strncmp(buf1, buf2, sizeof(buf1));
361 }
362
print_verbose_info(struct task_struct * task)363 static void print_verbose_info(struct task_struct *task)
364 {
365 if (!task)
366 return;
367
368 /* Restore IRQ state trace for printing. */
369 kcsan_restore_irqtrace(task);
370
371 pr_err("\n");
372 debug_show_held_locks(task);
373 print_irqtrace_events(task);
374 }
375
print_report(enum kcsan_value_change value_change,const struct access_info * ai,struct other_info * other_info,u64 old,u64 new,u64 mask)376 static void print_report(enum kcsan_value_change value_change,
377 const struct access_info *ai,
378 struct other_info *other_info,
379 u64 old, u64 new, u64 mask)
380 {
381 unsigned long stack_entries[NUM_STACK_ENTRIES] = { 0 };
382 int num_stack_entries = stack_trace_save(stack_entries, NUM_STACK_ENTRIES, 1);
383 int skipnr = sanitize_stack_entries(stack_entries, num_stack_entries, ai->ip);
384 unsigned long this_frame = stack_entries[skipnr];
385 unsigned long other_frame = 0;
386 int other_skipnr = 0; /* silence uninit warnings */
387
388 /*
389 * Must check report filter rules before starting to print.
390 */
391 if (skip_report(KCSAN_VALUE_CHANGE_TRUE, stack_entries[skipnr]))
392 return;
393
394 if (other_info) {
395 other_skipnr = sanitize_stack_entries(other_info->stack_entries,
396 other_info->num_stack_entries,
397 other_info->ai.ip);
398 other_frame = other_info->stack_entries[other_skipnr];
399
400 /* @value_change is only known for the other thread */
401 if (skip_report(value_change, other_frame))
402 return;
403 }
404
405 if (rate_limit_report(this_frame, other_frame))
406 return;
407
408 /* Print report header. */
409 pr_err("==================================================================\n");
410 if (other_info) {
411 int cmp;
412
413 /*
414 * Order functions lexographically for consistent bug titles.
415 * Do not print offset of functions to keep title short.
416 */
417 cmp = sym_strcmp((void *)other_frame, (void *)this_frame);
418 pr_err("BUG: KCSAN: %s in %ps / %ps\n",
419 get_bug_type(ai->access_type | other_info->ai.access_type),
420 (void *)(cmp < 0 ? other_frame : this_frame),
421 (void *)(cmp < 0 ? this_frame : other_frame));
422 } else {
423 pr_err("BUG: KCSAN: %s in %pS\n", get_bug_type(ai->access_type),
424 (void *)this_frame);
425 }
426
427 pr_err("\n");
428
429 /* Print information about the racing accesses. */
430 if (other_info) {
431 pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
432 get_access_type(other_info->ai.access_type), other_info->ai.ptr,
433 other_info->ai.size, get_thread_desc(other_info->ai.task_pid),
434 other_info->ai.cpu_id);
435
436 /* Print the other thread's stack trace. */
437 stack_trace_print(other_info->stack_entries + other_skipnr,
438 other_info->num_stack_entries - other_skipnr,
439 0);
440
441 if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
442 print_verbose_info(other_info->task);
443
444 pr_err("\n");
445 pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
446 get_access_type(ai->access_type), ai->ptr, ai->size,
447 get_thread_desc(ai->task_pid), ai->cpu_id);
448 } else {
449 pr_err("race at unknown origin, with %s to 0x%px of %zu bytes by %s on cpu %i:\n",
450 get_access_type(ai->access_type), ai->ptr, ai->size,
451 get_thread_desc(ai->task_pid), ai->cpu_id);
452 }
453 /* Print stack trace of this thread. */
454 stack_trace_print(stack_entries + skipnr, num_stack_entries - skipnr,
455 0);
456
457 if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
458 print_verbose_info(current);
459
460 /* Print observed value change. */
461 if (ai->size <= 8) {
462 int hex_len = ai->size * 2;
463 u64 diff = old ^ new;
464
465 if (mask)
466 diff &= mask;
467 if (diff) {
468 pr_err("\n");
469 pr_err("value changed: 0x%0*llx -> 0x%0*llx\n",
470 hex_len, old, hex_len, new);
471 if (mask) {
472 pr_err(" bits changed: 0x%0*llx with mask 0x%0*llx\n",
473 hex_len, diff, hex_len, mask);
474 }
475 }
476 }
477
478 /* Print report footer. */
479 pr_err("\n");
480 pr_err("Reported by Kernel Concurrency Sanitizer on:\n");
481 dump_stack_print_info(KERN_DEFAULT);
482 pr_err("==================================================================\n");
483
484 if (panic_on_warn)
485 panic("panic_on_warn set ...\n");
486 }
487
release_report(unsigned long * flags,struct other_info * other_info)488 static void release_report(unsigned long *flags, struct other_info *other_info)
489 {
490 /*
491 * Use size to denote valid/invalid, since KCSAN entirely ignores
492 * 0-sized accesses.
493 */
494 other_info->ai.size = 0;
495 raw_spin_unlock_irqrestore(&report_lock, *flags);
496 }
497
498 /*
499 * Sets @other_info->task and awaits consumption of @other_info.
500 *
501 * Precondition: report_lock is held.
502 * Postcondition: report_lock is held.
503 */
set_other_info_task_blocking(unsigned long * flags,const struct access_info * ai,struct other_info * other_info)504 static void set_other_info_task_blocking(unsigned long *flags,
505 const struct access_info *ai,
506 struct other_info *other_info)
507 {
508 /*
509 * We may be instrumenting a code-path where current->state is already
510 * something other than TASK_RUNNING.
511 */
512 const bool is_running = task_is_running(current);
513 /*
514 * To avoid deadlock in case we are in an interrupt here and this is a
515 * race with a task on the same CPU (KCSAN_INTERRUPT_WATCHER), provide a
516 * timeout to ensure this works in all contexts.
517 *
518 * Await approximately the worst case delay of the reporting thread (if
519 * we are not interrupted).
520 */
521 int timeout = max(kcsan_udelay_task, kcsan_udelay_interrupt);
522
523 other_info->task = current;
524 do {
525 if (is_running) {
526 /*
527 * Let lockdep know the real task is sleeping, to print
528 * the held locks (recall we turned lockdep off, so
529 * locking/unlocking @report_lock won't be recorded).
530 */
531 set_current_state(TASK_UNINTERRUPTIBLE);
532 }
533 raw_spin_unlock_irqrestore(&report_lock, *flags);
534 /*
535 * We cannot call schedule() since we also cannot reliably
536 * determine if sleeping here is permitted -- see in_atomic().
537 */
538
539 udelay(1);
540 raw_spin_lock_irqsave(&report_lock, *flags);
541 if (timeout-- < 0) {
542 /*
543 * Abort. Reset @other_info->task to NULL, since it
544 * appears the other thread is still going to consume
545 * it. It will result in no verbose info printed for
546 * this task.
547 */
548 other_info->task = NULL;
549 break;
550 }
551 /*
552 * If invalid, or @ptr nor @current matches, then @other_info
553 * has been consumed and we may continue. If not, retry.
554 */
555 } while (other_info->ai.size && other_info->ai.ptr == ai->ptr &&
556 other_info->task == current);
557 if (is_running)
558 set_current_state(TASK_RUNNING);
559 }
560
561 /* Populate @other_info; requires that the provided @other_info not in use. */
prepare_report_producer(unsigned long * flags,const struct access_info * ai,struct other_info * other_info)562 static void prepare_report_producer(unsigned long *flags,
563 const struct access_info *ai,
564 struct other_info *other_info)
565 {
566 raw_spin_lock_irqsave(&report_lock, *flags);
567
568 /*
569 * The same @other_infos entry cannot be used concurrently, because
570 * there is a one-to-one mapping to watchpoint slots (@watchpoints in
571 * core.c), and a watchpoint is only released for reuse after reporting
572 * is done by the consumer of @other_info. Therefore, it is impossible
573 * for another concurrent prepare_report_producer() to set the same
574 * @other_info, and are guaranteed exclusivity for the @other_infos
575 * entry pointed to by @other_info.
576 *
577 * To check this property holds, size should never be non-zero here,
578 * because every consumer of struct other_info resets size to 0 in
579 * release_report().
580 */
581 WARN_ON(other_info->ai.size);
582
583 other_info->ai = *ai;
584 other_info->num_stack_entries = stack_trace_save(other_info->stack_entries, NUM_STACK_ENTRIES, 2);
585
586 if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
587 set_other_info_task_blocking(flags, ai, other_info);
588
589 raw_spin_unlock_irqrestore(&report_lock, *flags);
590 }
591
592 /* Awaits producer to fill @other_info and then returns. */
prepare_report_consumer(unsigned long * flags,const struct access_info * ai,struct other_info * other_info)593 static bool prepare_report_consumer(unsigned long *flags,
594 const struct access_info *ai,
595 struct other_info *other_info)
596 {
597
598 raw_spin_lock_irqsave(&report_lock, *flags);
599 while (!other_info->ai.size) { /* Await valid @other_info. */
600 raw_spin_unlock_irqrestore(&report_lock, *flags);
601 cpu_relax();
602 raw_spin_lock_irqsave(&report_lock, *flags);
603 }
604
605 /* Should always have a matching access based on watchpoint encoding. */
606 if (WARN_ON(!matching_access((unsigned long)other_info->ai.ptr & WATCHPOINT_ADDR_MASK, other_info->ai.size,
607 (unsigned long)ai->ptr & WATCHPOINT_ADDR_MASK, ai->size)))
608 goto discard;
609
610 if (!matching_access((unsigned long)other_info->ai.ptr, other_info->ai.size,
611 (unsigned long)ai->ptr, ai->size)) {
612 /*
613 * If the actual accesses to not match, this was a false
614 * positive due to watchpoint encoding.
615 */
616 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ENCODING_FALSE_POSITIVES]);
617 goto discard;
618 }
619
620 return true;
621
622 discard:
623 release_report(flags, other_info);
624 return false;
625 }
626
prepare_access_info(const volatile void * ptr,size_t size,int access_type,unsigned long ip)627 static struct access_info prepare_access_info(const volatile void *ptr, size_t size,
628 int access_type, unsigned long ip)
629 {
630 return (struct access_info) {
631 .ptr = ptr,
632 .size = size,
633 .access_type = access_type,
634 .task_pid = in_task() ? task_pid_nr(current) : -1,
635 .cpu_id = raw_smp_processor_id(),
636 /* Only replace stack entry with @ip if scoped access. */
637 .ip = (access_type & KCSAN_ACCESS_SCOPED) ? ip : 0,
638 };
639 }
640
kcsan_report_set_info(const volatile void * ptr,size_t size,int access_type,unsigned long ip,int watchpoint_idx)641 void kcsan_report_set_info(const volatile void *ptr, size_t size, int access_type,
642 unsigned long ip, int watchpoint_idx)
643 {
644 const struct access_info ai = prepare_access_info(ptr, size, access_type, ip);
645 unsigned long flags;
646
647 kcsan_disable_current();
648 lockdep_off(); /* See kcsan_report_known_origin(). */
649
650 prepare_report_producer(&flags, &ai, &other_infos[watchpoint_idx]);
651
652 lockdep_on();
653 kcsan_enable_current();
654 }
655
kcsan_report_known_origin(const volatile void * ptr,size_t size,int access_type,unsigned long ip,enum kcsan_value_change value_change,int watchpoint_idx,u64 old,u64 new,u64 mask)656 void kcsan_report_known_origin(const volatile void *ptr, size_t size, int access_type,
657 unsigned long ip, enum kcsan_value_change value_change,
658 int watchpoint_idx, u64 old, u64 new, u64 mask)
659 {
660 const struct access_info ai = prepare_access_info(ptr, size, access_type, ip);
661 struct other_info *other_info = &other_infos[watchpoint_idx];
662 unsigned long flags = 0;
663
664 kcsan_disable_current();
665 /*
666 * Because we may generate reports when we're in scheduler code, the use
667 * of printk() could deadlock. Until such time that all printing code
668 * called in print_report() is scheduler-safe, accept the risk, and just
669 * get our message out. As such, also disable lockdep to hide the
670 * warning, and avoid disabling lockdep for the rest of the kernel.
671 */
672 lockdep_off();
673
674 if (!prepare_report_consumer(&flags, &ai, other_info))
675 goto out;
676 /*
677 * Never report if value_change is FALSE, only when it is
678 * either TRUE or MAYBE. In case of MAYBE, further filtering may
679 * be done once we know the full stack trace in print_report().
680 */
681 if (value_change != KCSAN_VALUE_CHANGE_FALSE)
682 print_report(value_change, &ai, other_info, old, new, mask);
683
684 release_report(&flags, other_info);
685 out:
686 lockdep_on();
687 kcsan_enable_current();
688 }
689
kcsan_report_unknown_origin(const volatile void * ptr,size_t size,int access_type,unsigned long ip,u64 old,u64 new,u64 mask)690 void kcsan_report_unknown_origin(const volatile void *ptr, size_t size, int access_type,
691 unsigned long ip, u64 old, u64 new, u64 mask)
692 {
693 const struct access_info ai = prepare_access_info(ptr, size, access_type, ip);
694 unsigned long flags;
695
696 kcsan_disable_current();
697 lockdep_off(); /* See kcsan_report_known_origin(). */
698
699 raw_spin_lock_irqsave(&report_lock, flags);
700 print_report(KCSAN_VALUE_CHANGE_TRUE, &ai, NULL, old, new, mask);
701 raw_spin_unlock_irqrestore(&report_lock, flags);
702
703 lockdep_on();
704 kcsan_enable_current();
705 }
706