1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18 #include "sched.h"
19 #include "pelt.h"
20
21 struct dl_bandwidth def_dl_bandwidth;
22
dl_task_of(struct sched_dl_entity * dl_se)23 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
24 {
25 return container_of(dl_se, struct task_struct, dl);
26 }
27
rq_of_dl_rq(struct dl_rq * dl_rq)28 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
29 {
30 return container_of(dl_rq, struct rq, dl);
31 }
32
dl_rq_of_se(struct sched_dl_entity * dl_se)33 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
34 {
35 struct task_struct *p = dl_task_of(dl_se);
36 struct rq *rq = task_rq(p);
37
38 return &rq->dl;
39 }
40
on_dl_rq(struct sched_dl_entity * dl_se)41 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
42 {
43 return !RB_EMPTY_NODE(&dl_se->rb_node);
44 }
45
46 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)47 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
48 {
49 return dl_se->pi_se;
50 }
51
is_dl_boosted(struct sched_dl_entity * dl_se)52 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
53 {
54 return pi_of(dl_se) != dl_se;
55 }
56 #else
pi_of(struct sched_dl_entity * dl_se)57 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
58 {
59 return dl_se;
60 }
61
is_dl_boosted(struct sched_dl_entity * dl_se)62 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
63 {
64 return false;
65 }
66 #endif
67
68 #ifdef CONFIG_SMP
dl_bw_of(int i)69 static inline struct dl_bw *dl_bw_of(int i)
70 {
71 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
72 "sched RCU must be held");
73 return &cpu_rq(i)->rd->dl_bw;
74 }
75
dl_bw_cpus(int i)76 static inline int dl_bw_cpus(int i)
77 {
78 struct root_domain *rd = cpu_rq(i)->rd;
79 int cpus;
80
81 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
82 "sched RCU must be held");
83
84 if (cpumask_subset(rd->span, cpu_active_mask))
85 return cpumask_weight(rd->span);
86
87 cpus = 0;
88
89 for_each_cpu_and(i, rd->span, cpu_active_mask)
90 cpus++;
91
92 return cpus;
93 }
94
__dl_bw_capacity(int i)95 static inline unsigned long __dl_bw_capacity(int i)
96 {
97 struct root_domain *rd = cpu_rq(i)->rd;
98 unsigned long cap = 0;
99
100 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
101 "sched RCU must be held");
102
103 for_each_cpu_and(i, rd->span, cpu_active_mask)
104 cap += capacity_orig_of(i);
105
106 return cap;
107 }
108
109 /*
110 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
111 * of the CPU the task is running on rather rd's \Sum CPU capacity.
112 */
dl_bw_capacity(int i)113 static inline unsigned long dl_bw_capacity(int i)
114 {
115 if (!static_branch_unlikely(&sched_asym_cpucapacity) &&
116 capacity_orig_of(i) == SCHED_CAPACITY_SCALE) {
117 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
118 } else {
119 return __dl_bw_capacity(i);
120 }
121 }
122
dl_bw_visited(int cpu,u64 gen)123 static inline bool dl_bw_visited(int cpu, u64 gen)
124 {
125 struct root_domain *rd = cpu_rq(cpu)->rd;
126
127 if (rd->visit_gen == gen)
128 return true;
129
130 rd->visit_gen = gen;
131 return false;
132 }
133 #else
dl_bw_of(int i)134 static inline struct dl_bw *dl_bw_of(int i)
135 {
136 return &cpu_rq(i)->dl.dl_bw;
137 }
138
dl_bw_cpus(int i)139 static inline int dl_bw_cpus(int i)
140 {
141 return 1;
142 }
143
dl_bw_capacity(int i)144 static inline unsigned long dl_bw_capacity(int i)
145 {
146 return SCHED_CAPACITY_SCALE;
147 }
148
dl_bw_visited(int cpu,u64 gen)149 static inline bool dl_bw_visited(int cpu, u64 gen)
150 {
151 return false;
152 }
153 #endif
154
155 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)156 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
157 {
158 u64 old = dl_rq->running_bw;
159
160 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
161 dl_rq->running_bw += dl_bw;
162 SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
163 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
164 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
165 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
166 }
167
168 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)169 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
170 {
171 u64 old = dl_rq->running_bw;
172
173 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
174 dl_rq->running_bw -= dl_bw;
175 SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
176 if (dl_rq->running_bw > old)
177 dl_rq->running_bw = 0;
178 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
179 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
180 }
181
182 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)183 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
184 {
185 u64 old = dl_rq->this_bw;
186
187 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
188 dl_rq->this_bw += dl_bw;
189 SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
190 }
191
192 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)193 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
194 {
195 u64 old = dl_rq->this_bw;
196
197 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
198 dl_rq->this_bw -= dl_bw;
199 SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
200 if (dl_rq->this_bw > old)
201 dl_rq->this_bw = 0;
202 SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
203 }
204
205 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)206 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
207 {
208 if (!dl_entity_is_special(dl_se))
209 __add_rq_bw(dl_se->dl_bw, dl_rq);
210 }
211
212 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)213 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
214 {
215 if (!dl_entity_is_special(dl_se))
216 __sub_rq_bw(dl_se->dl_bw, dl_rq);
217 }
218
219 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)220 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
221 {
222 if (!dl_entity_is_special(dl_se))
223 __add_running_bw(dl_se->dl_bw, dl_rq);
224 }
225
226 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)227 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
228 {
229 if (!dl_entity_is_special(dl_se))
230 __sub_running_bw(dl_se->dl_bw, dl_rq);
231 }
232
dl_change_utilization(struct task_struct * p,u64 new_bw)233 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
234 {
235 struct rq *rq;
236
237 BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
238
239 if (task_on_rq_queued(p))
240 return;
241
242 rq = task_rq(p);
243 if (p->dl.dl_non_contending) {
244 sub_running_bw(&p->dl, &rq->dl);
245 p->dl.dl_non_contending = 0;
246 /*
247 * If the timer handler is currently running and the
248 * timer cannot be canceled, inactive_task_timer()
249 * will see that dl_not_contending is not set, and
250 * will not touch the rq's active utilization,
251 * so we are still safe.
252 */
253 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
254 put_task_struct(p);
255 }
256 __sub_rq_bw(p->dl.dl_bw, &rq->dl);
257 __add_rq_bw(new_bw, &rq->dl);
258 }
259
260 /*
261 * The utilization of a task cannot be immediately removed from
262 * the rq active utilization (running_bw) when the task blocks.
263 * Instead, we have to wait for the so called "0-lag time".
264 *
265 * If a task blocks before the "0-lag time", a timer (the inactive
266 * timer) is armed, and running_bw is decreased when the timer
267 * fires.
268 *
269 * If the task wakes up again before the inactive timer fires,
270 * the timer is canceled, whereas if the task wakes up after the
271 * inactive timer fired (and running_bw has been decreased) the
272 * task's utilization has to be added to running_bw again.
273 * A flag in the deadline scheduling entity (dl_non_contending)
274 * is used to avoid race conditions between the inactive timer handler
275 * and task wakeups.
276 *
277 * The following diagram shows how running_bw is updated. A task is
278 * "ACTIVE" when its utilization contributes to running_bw; an
279 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
280 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
281 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
282 * time already passed, which does not contribute to running_bw anymore.
283 * +------------------+
284 * wakeup | ACTIVE |
285 * +------------------>+ contending |
286 * | add_running_bw | |
287 * | +----+------+------+
288 * | | ^
289 * | dequeue | |
290 * +--------+-------+ | |
291 * | | t >= 0-lag | | wakeup
292 * | INACTIVE |<---------------+ |
293 * | | sub_running_bw | |
294 * +--------+-------+ | |
295 * ^ | |
296 * | t < 0-lag | |
297 * | | |
298 * | V |
299 * | +----+------+------+
300 * | sub_running_bw | ACTIVE |
301 * +-------------------+ |
302 * inactive timer | non contending |
303 * fired +------------------+
304 *
305 * The task_non_contending() function is invoked when a task
306 * blocks, and checks if the 0-lag time already passed or
307 * not (in the first case, it directly updates running_bw;
308 * in the second case, it arms the inactive timer).
309 *
310 * The task_contending() function is invoked when a task wakes
311 * up, and checks if the task is still in the "ACTIVE non contending"
312 * state or not (in the second case, it updates running_bw).
313 */
task_non_contending(struct task_struct * p)314 static void task_non_contending(struct task_struct *p)
315 {
316 struct sched_dl_entity *dl_se = &p->dl;
317 struct hrtimer *timer = &dl_se->inactive_timer;
318 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
319 struct rq *rq = rq_of_dl_rq(dl_rq);
320 s64 zerolag_time;
321
322 /*
323 * If this is a non-deadline task that has been boosted,
324 * do nothing
325 */
326 if (dl_se->dl_runtime == 0)
327 return;
328
329 if (dl_entity_is_special(dl_se))
330 return;
331
332 WARN_ON(dl_se->dl_non_contending);
333
334 zerolag_time = dl_se->deadline -
335 div64_long((dl_se->runtime * dl_se->dl_period),
336 dl_se->dl_runtime);
337
338 /*
339 * Using relative times instead of the absolute "0-lag time"
340 * allows to simplify the code
341 */
342 zerolag_time -= rq_clock(rq);
343
344 /*
345 * If the "0-lag time" already passed, decrease the active
346 * utilization now, instead of starting a timer
347 */
348 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
349 if (dl_task(p))
350 sub_running_bw(dl_se, dl_rq);
351 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
352 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
353
354 if (READ_ONCE(p->__state) == TASK_DEAD)
355 sub_rq_bw(&p->dl, &rq->dl);
356 raw_spin_lock(&dl_b->lock);
357 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
358 __dl_clear_params(p);
359 raw_spin_unlock(&dl_b->lock);
360 }
361
362 return;
363 }
364
365 dl_se->dl_non_contending = 1;
366 get_task_struct(p);
367 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
368 }
369
task_contending(struct sched_dl_entity * dl_se,int flags)370 static void task_contending(struct sched_dl_entity *dl_se, int flags)
371 {
372 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
373
374 /*
375 * If this is a non-deadline task that has been boosted,
376 * do nothing
377 */
378 if (dl_se->dl_runtime == 0)
379 return;
380
381 if (flags & ENQUEUE_MIGRATED)
382 add_rq_bw(dl_se, dl_rq);
383
384 if (dl_se->dl_non_contending) {
385 dl_se->dl_non_contending = 0;
386 /*
387 * If the timer handler is currently running and the
388 * timer cannot be canceled, inactive_task_timer()
389 * will see that dl_not_contending is not set, and
390 * will not touch the rq's active utilization,
391 * so we are still safe.
392 */
393 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
394 put_task_struct(dl_task_of(dl_se));
395 } else {
396 /*
397 * Since "dl_non_contending" is not set, the
398 * task's utilization has already been removed from
399 * active utilization (either when the task blocked,
400 * when the "inactive timer" fired).
401 * So, add it back.
402 */
403 add_running_bw(dl_se, dl_rq);
404 }
405 }
406
is_leftmost(struct task_struct * p,struct dl_rq * dl_rq)407 static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
408 {
409 struct sched_dl_entity *dl_se = &p->dl;
410
411 return dl_rq->root.rb_leftmost == &dl_se->rb_node;
412 }
413
414 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
415
init_dl_bandwidth(struct dl_bandwidth * dl_b,u64 period,u64 runtime)416 void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
417 {
418 raw_spin_lock_init(&dl_b->dl_runtime_lock);
419 dl_b->dl_period = period;
420 dl_b->dl_runtime = runtime;
421 }
422
init_dl_bw(struct dl_bw * dl_b)423 void init_dl_bw(struct dl_bw *dl_b)
424 {
425 raw_spin_lock_init(&dl_b->lock);
426 raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
427 if (global_rt_runtime() == RUNTIME_INF)
428 dl_b->bw = -1;
429 else
430 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
431 raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
432 dl_b->total_bw = 0;
433 }
434
init_dl_rq(struct dl_rq * dl_rq)435 void init_dl_rq(struct dl_rq *dl_rq)
436 {
437 dl_rq->root = RB_ROOT_CACHED;
438
439 #ifdef CONFIG_SMP
440 /* zero means no -deadline tasks */
441 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
442
443 dl_rq->dl_nr_migratory = 0;
444 dl_rq->overloaded = 0;
445 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
446 #else
447 init_dl_bw(&dl_rq->dl_bw);
448 #endif
449
450 dl_rq->running_bw = 0;
451 dl_rq->this_bw = 0;
452 init_dl_rq_bw_ratio(dl_rq);
453 }
454
455 #ifdef CONFIG_SMP
456
dl_overloaded(struct rq * rq)457 static inline int dl_overloaded(struct rq *rq)
458 {
459 return atomic_read(&rq->rd->dlo_count);
460 }
461
dl_set_overload(struct rq * rq)462 static inline void dl_set_overload(struct rq *rq)
463 {
464 if (!rq->online)
465 return;
466
467 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
468 /*
469 * Must be visible before the overload count is
470 * set (as in sched_rt.c).
471 *
472 * Matched by the barrier in pull_dl_task().
473 */
474 smp_wmb();
475 atomic_inc(&rq->rd->dlo_count);
476 }
477
dl_clear_overload(struct rq * rq)478 static inline void dl_clear_overload(struct rq *rq)
479 {
480 if (!rq->online)
481 return;
482
483 atomic_dec(&rq->rd->dlo_count);
484 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
485 }
486
update_dl_migration(struct dl_rq * dl_rq)487 static void update_dl_migration(struct dl_rq *dl_rq)
488 {
489 if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
490 if (!dl_rq->overloaded) {
491 dl_set_overload(rq_of_dl_rq(dl_rq));
492 dl_rq->overloaded = 1;
493 }
494 } else if (dl_rq->overloaded) {
495 dl_clear_overload(rq_of_dl_rq(dl_rq));
496 dl_rq->overloaded = 0;
497 }
498 }
499
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)500 static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
501 {
502 struct task_struct *p = dl_task_of(dl_se);
503
504 if (p->nr_cpus_allowed > 1)
505 dl_rq->dl_nr_migratory++;
506
507 update_dl_migration(dl_rq);
508 }
509
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)510 static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
511 {
512 struct task_struct *p = dl_task_of(dl_se);
513
514 if (p->nr_cpus_allowed > 1)
515 dl_rq->dl_nr_migratory--;
516
517 update_dl_migration(dl_rq);
518 }
519
520 #define __node_2_pdl(node) \
521 rb_entry((node), struct task_struct, pushable_dl_tasks)
522
__pushable_less(struct rb_node * a,const struct rb_node * b)523 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
524 {
525 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
526 }
527
528 /*
529 * The list of pushable -deadline task is not a plist, like in
530 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
531 */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)532 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
533 {
534 struct rb_node *leftmost;
535
536 BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
537
538 leftmost = rb_add_cached(&p->pushable_dl_tasks,
539 &rq->dl.pushable_dl_tasks_root,
540 __pushable_less);
541 if (leftmost)
542 rq->dl.earliest_dl.next = p->dl.deadline;
543 }
544
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)545 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
546 {
547 struct dl_rq *dl_rq = &rq->dl;
548 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
549 struct rb_node *leftmost;
550
551 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
552 return;
553
554 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
555 if (leftmost)
556 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
557
558 RB_CLEAR_NODE(&p->pushable_dl_tasks);
559 }
560
has_pushable_dl_tasks(struct rq * rq)561 static inline int has_pushable_dl_tasks(struct rq *rq)
562 {
563 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
564 }
565
566 static int push_dl_task(struct rq *rq);
567
need_pull_dl_task(struct rq * rq,struct task_struct * prev)568 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
569 {
570 return rq->online && dl_task(prev);
571 }
572
573 static DEFINE_PER_CPU(struct callback_head, dl_push_head);
574 static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
575
576 static void push_dl_tasks(struct rq *);
577 static void pull_dl_task(struct rq *);
578
deadline_queue_push_tasks(struct rq * rq)579 static inline void deadline_queue_push_tasks(struct rq *rq)
580 {
581 if (!has_pushable_dl_tasks(rq))
582 return;
583
584 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
585 }
586
deadline_queue_pull_task(struct rq * rq)587 static inline void deadline_queue_pull_task(struct rq *rq)
588 {
589 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
590 }
591
592 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
593
dl_task_offline_migration(struct rq * rq,struct task_struct * p)594 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
595 {
596 struct rq *later_rq = NULL;
597 struct dl_bw *dl_b;
598
599 later_rq = find_lock_later_rq(p, rq);
600 if (!later_rq) {
601 int cpu;
602
603 /*
604 * If we cannot preempt any rq, fall back to pick any
605 * online CPU:
606 */
607 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
608 if (cpu >= nr_cpu_ids) {
609 /*
610 * Failed to find any suitable CPU.
611 * The task will never come back!
612 */
613 BUG_ON(dl_bandwidth_enabled());
614
615 /*
616 * If admission control is disabled we
617 * try a little harder to let the task
618 * run.
619 */
620 cpu = cpumask_any(cpu_active_mask);
621 }
622 later_rq = cpu_rq(cpu);
623 double_lock_balance(rq, later_rq);
624 }
625
626 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
627 /*
628 * Inactive timer is armed (or callback is running, but
629 * waiting for us to release rq locks). In any case, when it
630 * will fire (or continue), it will see running_bw of this
631 * task migrated to later_rq (and correctly handle it).
632 */
633 sub_running_bw(&p->dl, &rq->dl);
634 sub_rq_bw(&p->dl, &rq->dl);
635
636 add_rq_bw(&p->dl, &later_rq->dl);
637 add_running_bw(&p->dl, &later_rq->dl);
638 } else {
639 sub_rq_bw(&p->dl, &rq->dl);
640 add_rq_bw(&p->dl, &later_rq->dl);
641 }
642
643 /*
644 * And we finally need to fixup root_domain(s) bandwidth accounting,
645 * since p is still hanging out in the old (now moved to default) root
646 * domain.
647 */
648 dl_b = &rq->rd->dl_bw;
649 raw_spin_lock(&dl_b->lock);
650 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
651 raw_spin_unlock(&dl_b->lock);
652
653 dl_b = &later_rq->rd->dl_bw;
654 raw_spin_lock(&dl_b->lock);
655 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
656 raw_spin_unlock(&dl_b->lock);
657
658 set_task_cpu(p, later_rq->cpu);
659 double_unlock_balance(later_rq, rq);
660
661 return later_rq;
662 }
663
664 #else
665
666 static inline
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)667 void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
668 {
669 }
670
671 static inline
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)672 void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
673 {
674 }
675
676 static inline
inc_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)677 void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
678 {
679 }
680
681 static inline
dec_dl_migration(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)682 void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
683 {
684 }
685
need_pull_dl_task(struct rq * rq,struct task_struct * prev)686 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
687 {
688 return false;
689 }
690
pull_dl_task(struct rq * rq)691 static inline void pull_dl_task(struct rq *rq)
692 {
693 }
694
deadline_queue_push_tasks(struct rq * rq)695 static inline void deadline_queue_push_tasks(struct rq *rq)
696 {
697 }
698
deadline_queue_pull_task(struct rq * rq)699 static inline void deadline_queue_pull_task(struct rq *rq)
700 {
701 }
702 #endif /* CONFIG_SMP */
703
704 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
705 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
706 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
707
708 /*
709 * We are being explicitly informed that a new instance is starting,
710 * and this means that:
711 * - the absolute deadline of the entity has to be placed at
712 * current time + relative deadline;
713 * - the runtime of the entity has to be set to the maximum value.
714 *
715 * The capability of specifying such event is useful whenever a -deadline
716 * entity wants to (try to!) synchronize its behaviour with the scheduler's
717 * one, and to (try to!) reconcile itself with its own scheduling
718 * parameters.
719 */
setup_new_dl_entity(struct sched_dl_entity * dl_se)720 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
721 {
722 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
723 struct rq *rq = rq_of_dl_rq(dl_rq);
724
725 WARN_ON(is_dl_boosted(dl_se));
726 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
727
728 /*
729 * We are racing with the deadline timer. So, do nothing because
730 * the deadline timer handler will take care of properly recharging
731 * the runtime and postponing the deadline
732 */
733 if (dl_se->dl_throttled)
734 return;
735
736 /*
737 * We use the regular wall clock time to set deadlines in the
738 * future; in fact, we must consider execution overheads (time
739 * spent on hardirq context, etc.).
740 */
741 dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
742 dl_se->runtime = dl_se->dl_runtime;
743 }
744
745 /*
746 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
747 * possibility of a entity lasting more than what it declared, and thus
748 * exhausting its runtime.
749 *
750 * Here we are interested in making runtime overrun possible, but we do
751 * not want a entity which is misbehaving to affect the scheduling of all
752 * other entities.
753 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
754 * is used, in order to confine each entity within its own bandwidth.
755 *
756 * This function deals exactly with that, and ensures that when the runtime
757 * of a entity is replenished, its deadline is also postponed. That ensures
758 * the overrunning entity can't interfere with other entity in the system and
759 * can't make them miss their deadlines. Reasons why this kind of overruns
760 * could happen are, typically, a entity voluntarily trying to overcome its
761 * runtime, or it just underestimated it during sched_setattr().
762 */
replenish_dl_entity(struct sched_dl_entity * dl_se)763 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
764 {
765 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
766 struct rq *rq = rq_of_dl_rq(dl_rq);
767
768 BUG_ON(pi_of(dl_se)->dl_runtime <= 0);
769
770 /*
771 * This could be the case for a !-dl task that is boosted.
772 * Just go with full inherited parameters.
773 */
774 if (dl_se->dl_deadline == 0) {
775 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
776 dl_se->runtime = pi_of(dl_se)->dl_runtime;
777 }
778
779 if (dl_se->dl_yielded && dl_se->runtime > 0)
780 dl_se->runtime = 0;
781
782 /*
783 * We keep moving the deadline away until we get some
784 * available runtime for the entity. This ensures correct
785 * handling of situations where the runtime overrun is
786 * arbitrary large.
787 */
788 while (dl_se->runtime <= 0) {
789 dl_se->deadline += pi_of(dl_se)->dl_period;
790 dl_se->runtime += pi_of(dl_se)->dl_runtime;
791 }
792
793 /*
794 * At this point, the deadline really should be "in
795 * the future" with respect to rq->clock. If it's
796 * not, we are, for some reason, lagging too much!
797 * Anyway, after having warn userspace abut that,
798 * we still try to keep the things running by
799 * resetting the deadline and the budget of the
800 * entity.
801 */
802 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
803 printk_deferred_once("sched: DL replenish lagged too much\n");
804 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
805 dl_se->runtime = pi_of(dl_se)->dl_runtime;
806 }
807
808 if (dl_se->dl_yielded)
809 dl_se->dl_yielded = 0;
810 if (dl_se->dl_throttled)
811 dl_se->dl_throttled = 0;
812 }
813
814 /*
815 * Here we check if --at time t-- an entity (which is probably being
816 * [re]activated or, in general, enqueued) can use its remaining runtime
817 * and its current deadline _without_ exceeding the bandwidth it is
818 * assigned (function returns true if it can't). We are in fact applying
819 * one of the CBS rules: when a task wakes up, if the residual runtime
820 * over residual deadline fits within the allocated bandwidth, then we
821 * can keep the current (absolute) deadline and residual budget without
822 * disrupting the schedulability of the system. Otherwise, we should
823 * refill the runtime and set the deadline a period in the future,
824 * because keeping the current (absolute) deadline of the task would
825 * result in breaking guarantees promised to other tasks (refer to
826 * Documentation/scheduler/sched-deadline.rst for more information).
827 *
828 * This function returns true if:
829 *
830 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
831 *
832 * IOW we can't recycle current parameters.
833 *
834 * Notice that the bandwidth check is done against the deadline. For
835 * task with deadline equal to period this is the same of using
836 * dl_period instead of dl_deadline in the equation above.
837 */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)838 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
839 {
840 u64 left, right;
841
842 /*
843 * left and right are the two sides of the equation above,
844 * after a bit of shuffling to use multiplications instead
845 * of divisions.
846 *
847 * Note that none of the time values involved in the two
848 * multiplications are absolute: dl_deadline and dl_runtime
849 * are the relative deadline and the maximum runtime of each
850 * instance, runtime is the runtime left for the last instance
851 * and (deadline - t), since t is rq->clock, is the time left
852 * to the (absolute) deadline. Even if overflowing the u64 type
853 * is very unlikely to occur in both cases, here we scale down
854 * as we want to avoid that risk at all. Scaling down by 10
855 * means that we reduce granularity to 1us. We are fine with it,
856 * since this is only a true/false check and, anyway, thinking
857 * of anything below microseconds resolution is actually fiction
858 * (but still we want to give the user that illusion >;).
859 */
860 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
861 right = ((dl_se->deadline - t) >> DL_SCALE) *
862 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
863
864 return dl_time_before(right, left);
865 }
866
867 /*
868 * Revised wakeup rule [1]: For self-suspending tasks, rather then
869 * re-initializing task's runtime and deadline, the revised wakeup
870 * rule adjusts the task's runtime to avoid the task to overrun its
871 * density.
872 *
873 * Reasoning: a task may overrun the density if:
874 * runtime / (deadline - t) > dl_runtime / dl_deadline
875 *
876 * Therefore, runtime can be adjusted to:
877 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
878 *
879 * In such way that runtime will be equal to the maximum density
880 * the task can use without breaking any rule.
881 *
882 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
883 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
884 */
885 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)886 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
887 {
888 u64 laxity = dl_se->deadline - rq_clock(rq);
889
890 /*
891 * If the task has deadline < period, and the deadline is in the past,
892 * it should already be throttled before this check.
893 *
894 * See update_dl_entity() comments for further details.
895 */
896 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
897
898 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
899 }
900
901 /*
902 * Regarding the deadline, a task with implicit deadline has a relative
903 * deadline == relative period. A task with constrained deadline has a
904 * relative deadline <= relative period.
905 *
906 * We support constrained deadline tasks. However, there are some restrictions
907 * applied only for tasks which do not have an implicit deadline. See
908 * update_dl_entity() to know more about such restrictions.
909 *
910 * The dl_is_implicit() returns true if the task has an implicit deadline.
911 */
dl_is_implicit(struct sched_dl_entity * dl_se)912 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
913 {
914 return dl_se->dl_deadline == dl_se->dl_period;
915 }
916
917 /*
918 * When a deadline entity is placed in the runqueue, its runtime and deadline
919 * might need to be updated. This is done by a CBS wake up rule. There are two
920 * different rules: 1) the original CBS; and 2) the Revisited CBS.
921 *
922 * When the task is starting a new period, the Original CBS is used. In this
923 * case, the runtime is replenished and a new absolute deadline is set.
924 *
925 * When a task is queued before the begin of the next period, using the
926 * remaining runtime and deadline could make the entity to overflow, see
927 * dl_entity_overflow() to find more about runtime overflow. When such case
928 * is detected, the runtime and deadline need to be updated.
929 *
930 * If the task has an implicit deadline, i.e., deadline == period, the Original
931 * CBS is applied. the runtime is replenished and a new absolute deadline is
932 * set, as in the previous cases.
933 *
934 * However, the Original CBS does not work properly for tasks with
935 * deadline < period, which are said to have a constrained deadline. By
936 * applying the Original CBS, a constrained deadline task would be able to run
937 * runtime/deadline in a period. With deadline < period, the task would
938 * overrun the runtime/period allowed bandwidth, breaking the admission test.
939 *
940 * In order to prevent this misbehave, the Revisited CBS is used for
941 * constrained deadline tasks when a runtime overflow is detected. In the
942 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
943 * the remaining runtime of the task is reduced to avoid runtime overflow.
944 * Please refer to the comments update_dl_revised_wakeup() function to find
945 * more about the Revised CBS rule.
946 */
update_dl_entity(struct sched_dl_entity * dl_se)947 static void update_dl_entity(struct sched_dl_entity *dl_se)
948 {
949 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
950 struct rq *rq = rq_of_dl_rq(dl_rq);
951
952 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
953 dl_entity_overflow(dl_se, rq_clock(rq))) {
954
955 if (unlikely(!dl_is_implicit(dl_se) &&
956 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
957 !is_dl_boosted(dl_se))) {
958 update_dl_revised_wakeup(dl_se, rq);
959 return;
960 }
961
962 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
963 dl_se->runtime = pi_of(dl_se)->dl_runtime;
964 }
965 }
966
dl_next_period(struct sched_dl_entity * dl_se)967 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
968 {
969 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
970 }
971
972 /*
973 * If the entity depleted all its runtime, and if we want it to sleep
974 * while waiting for some new execution time to become available, we
975 * set the bandwidth replenishment timer to the replenishment instant
976 * and try to activate it.
977 *
978 * Notice that it is important for the caller to know if the timer
979 * actually started or not (i.e., the replenishment instant is in
980 * the future or in the past).
981 */
start_dl_timer(struct task_struct * p)982 static int start_dl_timer(struct task_struct *p)
983 {
984 struct sched_dl_entity *dl_se = &p->dl;
985 struct hrtimer *timer = &dl_se->dl_timer;
986 struct rq *rq = task_rq(p);
987 ktime_t now, act;
988 s64 delta;
989
990 lockdep_assert_rq_held(rq);
991
992 /*
993 * We want the timer to fire at the deadline, but considering
994 * that it is actually coming from rq->clock and not from
995 * hrtimer's time base reading.
996 */
997 act = ns_to_ktime(dl_next_period(dl_se));
998 now = hrtimer_cb_get_time(timer);
999 delta = ktime_to_ns(now) - rq_clock(rq);
1000 act = ktime_add_ns(act, delta);
1001
1002 /*
1003 * If the expiry time already passed, e.g., because the value
1004 * chosen as the deadline is too small, don't even try to
1005 * start the timer in the past!
1006 */
1007 if (ktime_us_delta(act, now) < 0)
1008 return 0;
1009
1010 /*
1011 * !enqueued will guarantee another callback; even if one is already in
1012 * progress. This ensures a balanced {get,put}_task_struct().
1013 *
1014 * The race against __run_timer() clearing the enqueued state is
1015 * harmless because we're holding task_rq()->lock, therefore the timer
1016 * expiring after we've done the check will wait on its task_rq_lock()
1017 * and observe our state.
1018 */
1019 if (!hrtimer_is_queued(timer)) {
1020 get_task_struct(p);
1021 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1022 }
1023
1024 return 1;
1025 }
1026
1027 /*
1028 * This is the bandwidth enforcement timer callback. If here, we know
1029 * a task is not on its dl_rq, since the fact that the timer was running
1030 * means the task is throttled and needs a runtime replenishment.
1031 *
1032 * However, what we actually do depends on the fact the task is active,
1033 * (it is on its rq) or has been removed from there by a call to
1034 * dequeue_task_dl(). In the former case we must issue the runtime
1035 * replenishment and add the task back to the dl_rq; in the latter, we just
1036 * do nothing but clearing dl_throttled, so that runtime and deadline
1037 * updating (and the queueing back to dl_rq) will be done by the
1038 * next call to enqueue_task_dl().
1039 */
dl_task_timer(struct hrtimer * timer)1040 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1041 {
1042 struct sched_dl_entity *dl_se = container_of(timer,
1043 struct sched_dl_entity,
1044 dl_timer);
1045 struct task_struct *p = dl_task_of(dl_se);
1046 struct rq_flags rf;
1047 struct rq *rq;
1048
1049 rq = task_rq_lock(p, &rf);
1050
1051 /*
1052 * The task might have changed its scheduling policy to something
1053 * different than SCHED_DEADLINE (through switched_from_dl()).
1054 */
1055 if (!dl_task(p))
1056 goto unlock;
1057
1058 /*
1059 * The task might have been boosted by someone else and might be in the
1060 * boosting/deboosting path, its not throttled.
1061 */
1062 if (is_dl_boosted(dl_se))
1063 goto unlock;
1064
1065 /*
1066 * Spurious timer due to start_dl_timer() race; or we already received
1067 * a replenishment from rt_mutex_setprio().
1068 */
1069 if (!dl_se->dl_throttled)
1070 goto unlock;
1071
1072 sched_clock_tick();
1073 update_rq_clock(rq);
1074
1075 /*
1076 * If the throttle happened during sched-out; like:
1077 *
1078 * schedule()
1079 * deactivate_task()
1080 * dequeue_task_dl()
1081 * update_curr_dl()
1082 * start_dl_timer()
1083 * __dequeue_task_dl()
1084 * prev->on_rq = 0;
1085 *
1086 * We can be both throttled and !queued. Replenish the counter
1087 * but do not enqueue -- wait for our wakeup to do that.
1088 */
1089 if (!task_on_rq_queued(p)) {
1090 replenish_dl_entity(dl_se);
1091 goto unlock;
1092 }
1093
1094 #ifdef CONFIG_SMP
1095 if (unlikely(!rq->online)) {
1096 /*
1097 * If the runqueue is no longer available, migrate the
1098 * task elsewhere. This necessarily changes rq.
1099 */
1100 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1101 rq = dl_task_offline_migration(rq, p);
1102 rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1103 update_rq_clock(rq);
1104
1105 /*
1106 * Now that the task has been migrated to the new RQ and we
1107 * have that locked, proceed as normal and enqueue the task
1108 * there.
1109 */
1110 }
1111 #endif
1112
1113 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1114 if (dl_task(rq->curr))
1115 check_preempt_curr_dl(rq, p, 0);
1116 else
1117 resched_curr(rq);
1118
1119 #ifdef CONFIG_SMP
1120 /*
1121 * Queueing this task back might have overloaded rq, check if we need
1122 * to kick someone away.
1123 */
1124 if (has_pushable_dl_tasks(rq)) {
1125 /*
1126 * Nothing relies on rq->lock after this, so its safe to drop
1127 * rq->lock.
1128 */
1129 rq_unpin_lock(rq, &rf);
1130 push_dl_task(rq);
1131 rq_repin_lock(rq, &rf);
1132 }
1133 #endif
1134
1135 unlock:
1136 task_rq_unlock(rq, p, &rf);
1137
1138 /*
1139 * This can free the task_struct, including this hrtimer, do not touch
1140 * anything related to that after this.
1141 */
1142 put_task_struct(p);
1143
1144 return HRTIMER_NORESTART;
1145 }
1146
init_dl_task_timer(struct sched_dl_entity * dl_se)1147 void init_dl_task_timer(struct sched_dl_entity *dl_se)
1148 {
1149 struct hrtimer *timer = &dl_se->dl_timer;
1150
1151 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1152 timer->function = dl_task_timer;
1153 }
1154
1155 /*
1156 * During the activation, CBS checks if it can reuse the current task's
1157 * runtime and period. If the deadline of the task is in the past, CBS
1158 * cannot use the runtime, and so it replenishes the task. This rule
1159 * works fine for implicit deadline tasks (deadline == period), and the
1160 * CBS was designed for implicit deadline tasks. However, a task with
1161 * constrained deadline (deadline < period) might be awakened after the
1162 * deadline, but before the next period. In this case, replenishing the
1163 * task would allow it to run for runtime / deadline. As in this case
1164 * deadline < period, CBS enables a task to run for more than the
1165 * runtime / period. In a very loaded system, this can cause a domino
1166 * effect, making other tasks miss their deadlines.
1167 *
1168 * To avoid this problem, in the activation of a constrained deadline
1169 * task after the deadline but before the next period, throttle the
1170 * task and set the replenishing timer to the begin of the next period,
1171 * unless it is boosted.
1172 */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1173 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1174 {
1175 struct task_struct *p = dl_task_of(dl_se);
1176 struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1177
1178 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1179 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1180 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(p)))
1181 return;
1182 dl_se->dl_throttled = 1;
1183 if (dl_se->runtime > 0)
1184 dl_se->runtime = 0;
1185 }
1186 }
1187
1188 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1189 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1190 {
1191 return (dl_se->runtime <= 0);
1192 }
1193
1194 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1195
1196 /*
1197 * This function implements the GRUB accounting rule:
1198 * according to the GRUB reclaiming algorithm, the runtime is
1199 * not decreased as "dq = -dt", but as
1200 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1201 * where u is the utilization of the task, Umax is the maximum reclaimable
1202 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1203 * as the difference between the "total runqueue utilization" and the
1204 * runqueue active utilization, and Uextra is the (per runqueue) extra
1205 * reclaimable utilization.
1206 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1207 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1208 * BW_SHIFT.
1209 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT,
1210 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1211 * Since delta is a 64 bit variable, to have an overflow its value
1212 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1213 * So, overflow is not an issue here.
1214 */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1215 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1216 {
1217 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1218 u64 u_act;
1219 u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1220
1221 /*
1222 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1223 * we compare u_inact + rq->dl.extra_bw with
1224 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1225 * u_inact + rq->dl.extra_bw can be larger than
1226 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1227 * leading to wrong results)
1228 */
1229 if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1230 u_act = u_act_min;
1231 else
1232 u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1233
1234 return (delta * u_act) >> BW_SHIFT;
1235 }
1236
1237 /*
1238 * Update the current task's runtime statistics (provided it is still
1239 * a -deadline task and has not been removed from the dl_rq).
1240 */
update_curr_dl(struct rq * rq)1241 static void update_curr_dl(struct rq *rq)
1242 {
1243 struct task_struct *curr = rq->curr;
1244 struct sched_dl_entity *dl_se = &curr->dl;
1245 u64 delta_exec, scaled_delta_exec;
1246 int cpu = cpu_of(rq);
1247 u64 now;
1248
1249 if (!dl_task(curr) || !on_dl_rq(dl_se))
1250 return;
1251
1252 /*
1253 * Consumed budget is computed considering the time as
1254 * observed by schedulable tasks (excluding time spent
1255 * in hardirq context, etc.). Deadlines are instead
1256 * computed using hard walltime. This seems to be the more
1257 * natural solution, but the full ramifications of this
1258 * approach need further study.
1259 */
1260 now = rq_clock_task(rq);
1261 delta_exec = now - curr->se.exec_start;
1262 if (unlikely((s64)delta_exec <= 0)) {
1263 if (unlikely(dl_se->dl_yielded))
1264 goto throttle;
1265 return;
1266 }
1267
1268 schedstat_set(curr->stats.exec_max,
1269 max(curr->stats.exec_max, delta_exec));
1270
1271 trace_sched_stat_runtime(curr, delta_exec, 0);
1272
1273 curr->se.sum_exec_runtime += delta_exec;
1274 account_group_exec_runtime(curr, delta_exec);
1275
1276 curr->se.exec_start = now;
1277 cgroup_account_cputime(curr, delta_exec);
1278
1279 if (dl_entity_is_special(dl_se))
1280 return;
1281
1282 /*
1283 * For tasks that participate in GRUB, we implement GRUB-PA: the
1284 * spare reclaimed bandwidth is used to clock down frequency.
1285 *
1286 * For the others, we still need to scale reservation parameters
1287 * according to current frequency and CPU maximum capacity.
1288 */
1289 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1290 scaled_delta_exec = grub_reclaim(delta_exec,
1291 rq,
1292 &curr->dl);
1293 } else {
1294 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1295 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1296
1297 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1298 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1299 }
1300
1301 dl_se->runtime -= scaled_delta_exec;
1302
1303 throttle:
1304 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1305 dl_se->dl_throttled = 1;
1306
1307 /* If requested, inform the user about runtime overruns. */
1308 if (dl_runtime_exceeded(dl_se) &&
1309 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1310 dl_se->dl_overrun = 1;
1311
1312 __dequeue_task_dl(rq, curr, 0);
1313 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(curr)))
1314 enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1315
1316 if (!is_leftmost(curr, &rq->dl))
1317 resched_curr(rq);
1318 }
1319
1320 /*
1321 * Because -- for now -- we share the rt bandwidth, we need to
1322 * account our runtime there too, otherwise actual rt tasks
1323 * would be able to exceed the shared quota.
1324 *
1325 * Account to the root rt group for now.
1326 *
1327 * The solution we're working towards is having the RT groups scheduled
1328 * using deadline servers -- however there's a few nasties to figure
1329 * out before that can happen.
1330 */
1331 if (rt_bandwidth_enabled()) {
1332 struct rt_rq *rt_rq = &rq->rt;
1333
1334 raw_spin_lock(&rt_rq->rt_runtime_lock);
1335 /*
1336 * We'll let actual RT tasks worry about the overflow here, we
1337 * have our own CBS to keep us inline; only account when RT
1338 * bandwidth is relevant.
1339 */
1340 if (sched_rt_bandwidth_account(rt_rq))
1341 rt_rq->rt_time += delta_exec;
1342 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1343 }
1344 }
1345
inactive_task_timer(struct hrtimer * timer)1346 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1347 {
1348 struct sched_dl_entity *dl_se = container_of(timer,
1349 struct sched_dl_entity,
1350 inactive_timer);
1351 struct task_struct *p = dl_task_of(dl_se);
1352 struct rq_flags rf;
1353 struct rq *rq;
1354
1355 rq = task_rq_lock(p, &rf);
1356
1357 sched_clock_tick();
1358 update_rq_clock(rq);
1359
1360 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1361 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1362
1363 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1364 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1365 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1366 dl_se->dl_non_contending = 0;
1367 }
1368
1369 raw_spin_lock(&dl_b->lock);
1370 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1371 raw_spin_unlock(&dl_b->lock);
1372 __dl_clear_params(p);
1373
1374 goto unlock;
1375 }
1376 if (dl_se->dl_non_contending == 0)
1377 goto unlock;
1378
1379 sub_running_bw(dl_se, &rq->dl);
1380 dl_se->dl_non_contending = 0;
1381 unlock:
1382 task_rq_unlock(rq, p, &rf);
1383 put_task_struct(p);
1384
1385 return HRTIMER_NORESTART;
1386 }
1387
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1388 void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1389 {
1390 struct hrtimer *timer = &dl_se->inactive_timer;
1391
1392 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1393 timer->function = inactive_task_timer;
1394 }
1395
1396 #ifdef CONFIG_SMP
1397
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1398 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1399 {
1400 struct rq *rq = rq_of_dl_rq(dl_rq);
1401
1402 if (dl_rq->earliest_dl.curr == 0 ||
1403 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1404 if (dl_rq->earliest_dl.curr == 0)
1405 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1406 dl_rq->earliest_dl.curr = deadline;
1407 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1408 }
1409 }
1410
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1411 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1412 {
1413 struct rq *rq = rq_of_dl_rq(dl_rq);
1414
1415 /*
1416 * Since we may have removed our earliest (and/or next earliest)
1417 * task we must recompute them.
1418 */
1419 if (!dl_rq->dl_nr_running) {
1420 dl_rq->earliest_dl.curr = 0;
1421 dl_rq->earliest_dl.next = 0;
1422 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1423 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1424 } else {
1425 struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1426 struct sched_dl_entity *entry;
1427
1428 entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1429 dl_rq->earliest_dl.curr = entry->deadline;
1430 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1431 }
1432 }
1433
1434 #else
1435
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1436 static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1437 static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1438
1439 #endif /* CONFIG_SMP */
1440
1441 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1442 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1443 {
1444 int prio = dl_task_of(dl_se)->prio;
1445 u64 deadline = dl_se->deadline;
1446
1447 WARN_ON(!dl_prio(prio));
1448 dl_rq->dl_nr_running++;
1449 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1450
1451 inc_dl_deadline(dl_rq, deadline);
1452 inc_dl_migration(dl_se, dl_rq);
1453 }
1454
1455 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1456 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1457 {
1458 int prio = dl_task_of(dl_se)->prio;
1459
1460 WARN_ON(!dl_prio(prio));
1461 WARN_ON(!dl_rq->dl_nr_running);
1462 dl_rq->dl_nr_running--;
1463 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1464
1465 dec_dl_deadline(dl_rq, dl_se->deadline);
1466 dec_dl_migration(dl_se, dl_rq);
1467 }
1468
1469 #define __node_2_dle(node) \
1470 rb_entry((node), struct sched_dl_entity, rb_node)
1471
__dl_less(struct rb_node * a,const struct rb_node * b)1472 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1473 {
1474 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1475 }
1476
1477 static inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)1478 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1479 {
1480 return &dl_task_of(dl_se)->stats;
1481 }
1482
1483 static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1484 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1485 {
1486 struct sched_statistics *stats;
1487
1488 if (!schedstat_enabled())
1489 return;
1490
1491 stats = __schedstats_from_dl_se(dl_se);
1492 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1493 }
1494
1495 static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1496 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1497 {
1498 struct sched_statistics *stats;
1499
1500 if (!schedstat_enabled())
1501 return;
1502
1503 stats = __schedstats_from_dl_se(dl_se);
1504 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1505 }
1506
1507 static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1508 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1509 {
1510 struct sched_statistics *stats;
1511
1512 if (!schedstat_enabled())
1513 return;
1514
1515 stats = __schedstats_from_dl_se(dl_se);
1516 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1517 }
1518
1519 static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1520 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1521 int flags)
1522 {
1523 if (!schedstat_enabled())
1524 return;
1525
1526 if (flags & ENQUEUE_WAKEUP)
1527 update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1528 }
1529
1530 static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1531 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1532 int flags)
1533 {
1534 struct task_struct *p = dl_task_of(dl_se);
1535
1536 if (!schedstat_enabled())
1537 return;
1538
1539 if ((flags & DEQUEUE_SLEEP)) {
1540 unsigned int state;
1541
1542 state = READ_ONCE(p->__state);
1543 if (state & TASK_INTERRUPTIBLE)
1544 __schedstat_set(p->stats.sleep_start,
1545 rq_clock(rq_of_dl_rq(dl_rq)));
1546
1547 if (state & TASK_UNINTERRUPTIBLE)
1548 __schedstat_set(p->stats.block_start,
1549 rq_clock(rq_of_dl_rq(dl_rq)));
1550 }
1551 }
1552
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1553 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1554 {
1555 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1556
1557 BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1558
1559 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1560
1561 inc_dl_tasks(dl_se, dl_rq);
1562 }
1563
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1564 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1565 {
1566 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1567
1568 if (RB_EMPTY_NODE(&dl_se->rb_node))
1569 return;
1570
1571 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1572
1573 RB_CLEAR_NODE(&dl_se->rb_node);
1574
1575 dec_dl_tasks(dl_se, dl_rq);
1576 }
1577
1578 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1579 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1580 {
1581 BUG_ON(on_dl_rq(dl_se));
1582
1583 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1584
1585 /*
1586 * If this is a wakeup or a new instance, the scheduling
1587 * parameters of the task might need updating. Otherwise,
1588 * we want a replenishment of its runtime.
1589 */
1590 if (flags & ENQUEUE_WAKEUP) {
1591 task_contending(dl_se, flags);
1592 update_dl_entity(dl_se);
1593 } else if (flags & ENQUEUE_REPLENISH) {
1594 replenish_dl_entity(dl_se);
1595 } else if ((flags & ENQUEUE_RESTORE) &&
1596 dl_time_before(dl_se->deadline,
1597 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1598 setup_new_dl_entity(dl_se);
1599 }
1600
1601 __enqueue_dl_entity(dl_se);
1602 }
1603
dequeue_dl_entity(struct sched_dl_entity * dl_se)1604 static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1605 {
1606 __dequeue_dl_entity(dl_se);
1607 }
1608
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)1609 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1610 {
1611 if (is_dl_boosted(&p->dl)) {
1612 /*
1613 * Because of delays in the detection of the overrun of a
1614 * thread's runtime, it might be the case that a thread
1615 * goes to sleep in a rt mutex with negative runtime. As
1616 * a consequence, the thread will be throttled.
1617 *
1618 * While waiting for the mutex, this thread can also be
1619 * boosted via PI, resulting in a thread that is throttled
1620 * and boosted at the same time.
1621 *
1622 * In this case, the boost overrides the throttle.
1623 */
1624 if (p->dl.dl_throttled) {
1625 /*
1626 * The replenish timer needs to be canceled. No
1627 * problem if it fires concurrently: boosted threads
1628 * are ignored in dl_task_timer().
1629 */
1630 hrtimer_try_to_cancel(&p->dl.dl_timer);
1631 p->dl.dl_throttled = 0;
1632 }
1633 } else if (!dl_prio(p->normal_prio)) {
1634 /*
1635 * Special case in which we have a !SCHED_DEADLINE task that is going
1636 * to be deboosted, but exceeds its runtime while doing so. No point in
1637 * replenishing it, as it's going to return back to its original
1638 * scheduling class after this. If it has been throttled, we need to
1639 * clear the flag, otherwise the task may wake up as throttled after
1640 * being boosted again with no means to replenish the runtime and clear
1641 * the throttle.
1642 */
1643 p->dl.dl_throttled = 0;
1644 BUG_ON(!is_dl_boosted(&p->dl) || flags != ENQUEUE_REPLENISH);
1645 return;
1646 }
1647
1648 /*
1649 * Check if a constrained deadline task was activated
1650 * after the deadline but before the next period.
1651 * If that is the case, the task will be throttled and
1652 * the replenishment timer will be set to the next period.
1653 */
1654 if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1655 dl_check_constrained_dl(&p->dl);
1656
1657 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1658 add_rq_bw(&p->dl, &rq->dl);
1659 add_running_bw(&p->dl, &rq->dl);
1660 }
1661
1662 /*
1663 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1664 * its budget it needs a replenishment and, since it now is on
1665 * its rq, the bandwidth timer callback (which clearly has not
1666 * run yet) will take care of this.
1667 * However, the active utilization does not depend on the fact
1668 * that the task is on the runqueue or not (but depends on the
1669 * task's state - in GRUB parlance, "inactive" vs "active contending").
1670 * In other words, even if a task is throttled its utilization must
1671 * be counted in the active utilization; hence, we need to call
1672 * add_running_bw().
1673 */
1674 if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1675 if (flags & ENQUEUE_WAKEUP)
1676 task_contending(&p->dl, flags);
1677
1678 return;
1679 }
1680
1681 check_schedstat_required();
1682 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
1683
1684 enqueue_dl_entity(&p->dl, flags);
1685
1686 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1687 enqueue_pushable_dl_task(rq, p);
1688 }
1689
__dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1690 static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1691 {
1692 update_stats_dequeue_dl(&rq->dl, &p->dl, flags);
1693 dequeue_dl_entity(&p->dl);
1694 dequeue_pushable_dl_task(rq, p);
1695 }
1696
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)1697 static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1698 {
1699 update_curr_dl(rq);
1700 __dequeue_task_dl(rq, p, flags);
1701
1702 if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1703 sub_running_bw(&p->dl, &rq->dl);
1704 sub_rq_bw(&p->dl, &rq->dl);
1705 }
1706
1707 /*
1708 * This check allows to start the inactive timer (or to immediately
1709 * decrease the active utilization, if needed) in two cases:
1710 * when the task blocks and when it is terminating
1711 * (p->state == TASK_DEAD). We can handle the two cases in the same
1712 * way, because from GRUB's point of view the same thing is happening
1713 * (the task moves from "active contending" to "active non contending"
1714 * or "inactive")
1715 */
1716 if (flags & DEQUEUE_SLEEP)
1717 task_non_contending(p);
1718 }
1719
1720 /*
1721 * Yield task semantic for -deadline tasks is:
1722 *
1723 * get off from the CPU until our next instance, with
1724 * a new runtime. This is of little use now, since we
1725 * don't have a bandwidth reclaiming mechanism. Anyway,
1726 * bandwidth reclaiming is planned for the future, and
1727 * yield_task_dl will indicate that some spare budget
1728 * is available for other task instances to use it.
1729 */
yield_task_dl(struct rq * rq)1730 static void yield_task_dl(struct rq *rq)
1731 {
1732 /*
1733 * We make the task go to sleep until its current deadline by
1734 * forcing its runtime to zero. This way, update_curr_dl() stops
1735 * it and the bandwidth timer will wake it up and will give it
1736 * new scheduling parameters (thanks to dl_yielded=1).
1737 */
1738 rq->curr->dl.dl_yielded = 1;
1739
1740 update_rq_clock(rq);
1741 update_curr_dl(rq);
1742 /*
1743 * Tell update_rq_clock() that we've just updated,
1744 * so we don't do microscopic update in schedule()
1745 * and double the fastpath cost.
1746 */
1747 rq_clock_skip_update(rq);
1748 }
1749
1750 #ifdef CONFIG_SMP
1751
1752 static int find_later_rq(struct task_struct *task);
1753
1754 static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)1755 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
1756 {
1757 struct task_struct *curr;
1758 bool select_rq;
1759 struct rq *rq;
1760
1761 if (!(flags & WF_TTWU))
1762 goto out;
1763
1764 rq = cpu_rq(cpu);
1765
1766 rcu_read_lock();
1767 curr = READ_ONCE(rq->curr); /* unlocked access */
1768
1769 /*
1770 * If we are dealing with a -deadline task, we must
1771 * decide where to wake it up.
1772 * If it has a later deadline and the current task
1773 * on this rq can't move (provided the waking task
1774 * can!) we prefer to send it somewhere else. On the
1775 * other hand, if it has a shorter deadline, we
1776 * try to make it stay here, it might be important.
1777 */
1778 select_rq = unlikely(dl_task(curr)) &&
1779 (curr->nr_cpus_allowed < 2 ||
1780 !dl_entity_preempt(&p->dl, &curr->dl)) &&
1781 p->nr_cpus_allowed > 1;
1782
1783 /*
1784 * Take the capacity of the CPU into account to
1785 * ensure it fits the requirement of the task.
1786 */
1787 if (static_branch_unlikely(&sched_asym_cpucapacity))
1788 select_rq |= !dl_task_fits_capacity(p, cpu);
1789
1790 if (select_rq) {
1791 int target = find_later_rq(p);
1792
1793 if (target != -1 &&
1794 (dl_time_before(p->dl.deadline,
1795 cpu_rq(target)->dl.earliest_dl.curr) ||
1796 (cpu_rq(target)->dl.dl_nr_running == 0)))
1797 cpu = target;
1798 }
1799 rcu_read_unlock();
1800
1801 out:
1802 return cpu;
1803 }
1804
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)1805 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1806 {
1807 struct rq *rq;
1808
1809 if (READ_ONCE(p->__state) != TASK_WAKING)
1810 return;
1811
1812 rq = task_rq(p);
1813 /*
1814 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1815 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1816 * rq->lock is not... So, lock it
1817 */
1818 raw_spin_rq_lock(rq);
1819 if (p->dl.dl_non_contending) {
1820 update_rq_clock(rq);
1821 sub_running_bw(&p->dl, &rq->dl);
1822 p->dl.dl_non_contending = 0;
1823 /*
1824 * If the timer handler is currently running and the
1825 * timer cannot be canceled, inactive_task_timer()
1826 * will see that dl_not_contending is not set, and
1827 * will not touch the rq's active utilization,
1828 * so we are still safe.
1829 */
1830 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1831 put_task_struct(p);
1832 }
1833 sub_rq_bw(&p->dl, &rq->dl);
1834 raw_spin_rq_unlock(rq);
1835 }
1836
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)1837 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1838 {
1839 /*
1840 * Current can't be migrated, useless to reschedule,
1841 * let's hope p can move out.
1842 */
1843 if (rq->curr->nr_cpus_allowed == 1 ||
1844 !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1845 return;
1846
1847 /*
1848 * p is migratable, so let's not schedule it and
1849 * see if it is pushed or pulled somewhere else.
1850 */
1851 if (p->nr_cpus_allowed != 1 &&
1852 cpudl_find(&rq->rd->cpudl, p, NULL))
1853 return;
1854
1855 resched_curr(rq);
1856 }
1857
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1858 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1859 {
1860 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1861 /*
1862 * This is OK, because current is on_cpu, which avoids it being
1863 * picked for load-balance and preemption/IRQs are still
1864 * disabled avoiding further scheduler activity on it and we've
1865 * not yet started the picking loop.
1866 */
1867 rq_unpin_lock(rq, rf);
1868 pull_dl_task(rq);
1869 rq_repin_lock(rq, rf);
1870 }
1871
1872 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1873 }
1874 #endif /* CONFIG_SMP */
1875
1876 /*
1877 * Only called when both the current and waking task are -deadline
1878 * tasks.
1879 */
check_preempt_curr_dl(struct rq * rq,struct task_struct * p,int flags)1880 static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1881 int flags)
1882 {
1883 if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1884 resched_curr(rq);
1885 return;
1886 }
1887
1888 #ifdef CONFIG_SMP
1889 /*
1890 * In the unlikely case current and p have the same deadline
1891 * let us try to decide what's the best thing to do...
1892 */
1893 if ((p->dl.deadline == rq->curr->dl.deadline) &&
1894 !test_tsk_need_resched(rq->curr))
1895 check_preempt_equal_dl(rq, p);
1896 #endif /* CONFIG_SMP */
1897 }
1898
1899 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct task_struct * p)1900 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1901 {
1902 hrtick_start(rq, p->dl.runtime);
1903 }
1904 #else /* !CONFIG_SCHED_HRTICK */
start_hrtick_dl(struct rq * rq,struct task_struct * p)1905 static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1906 {
1907 }
1908 #endif
1909
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)1910 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
1911 {
1912 struct sched_dl_entity *dl_se = &p->dl;
1913 struct dl_rq *dl_rq = &rq->dl;
1914
1915 p->se.exec_start = rq_clock_task(rq);
1916 if (on_dl_rq(&p->dl))
1917 update_stats_wait_end_dl(dl_rq, dl_se);
1918
1919 /* You can't push away the running task */
1920 dequeue_pushable_dl_task(rq, p);
1921
1922 if (!first)
1923 return;
1924
1925 if (hrtick_enabled_dl(rq))
1926 start_hrtick_dl(rq, p);
1927
1928 if (rq->curr->sched_class != &dl_sched_class)
1929 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1930
1931 deadline_queue_push_tasks(rq);
1932 }
1933
pick_next_dl_entity(struct rq * rq,struct dl_rq * dl_rq)1934 static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1935 struct dl_rq *dl_rq)
1936 {
1937 struct rb_node *left = rb_first_cached(&dl_rq->root);
1938
1939 if (!left)
1940 return NULL;
1941
1942 return rb_entry(left, struct sched_dl_entity, rb_node);
1943 }
1944
pick_task_dl(struct rq * rq)1945 static struct task_struct *pick_task_dl(struct rq *rq)
1946 {
1947 struct sched_dl_entity *dl_se;
1948 struct dl_rq *dl_rq = &rq->dl;
1949 struct task_struct *p;
1950
1951 if (!sched_dl_runnable(rq))
1952 return NULL;
1953
1954 dl_se = pick_next_dl_entity(rq, dl_rq);
1955 BUG_ON(!dl_se);
1956 p = dl_task_of(dl_se);
1957
1958 return p;
1959 }
1960
pick_next_task_dl(struct rq * rq)1961 static struct task_struct *pick_next_task_dl(struct rq *rq)
1962 {
1963 struct task_struct *p;
1964
1965 p = pick_task_dl(rq);
1966 if (p)
1967 set_next_task_dl(rq, p, true);
1968
1969 return p;
1970 }
1971
put_prev_task_dl(struct rq * rq,struct task_struct * p)1972 static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1973 {
1974 struct sched_dl_entity *dl_se = &p->dl;
1975 struct dl_rq *dl_rq = &rq->dl;
1976
1977 if (on_dl_rq(&p->dl))
1978 update_stats_wait_start_dl(dl_rq, dl_se);
1979
1980 update_curr_dl(rq);
1981
1982 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1983 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1984 enqueue_pushable_dl_task(rq, p);
1985 }
1986
1987 /*
1988 * scheduler tick hitting a task of our scheduling class.
1989 *
1990 * NOTE: This function can be called remotely by the tick offload that
1991 * goes along full dynticks. Therefore no local assumption can be made
1992 * and everything must be accessed through the @rq and @curr passed in
1993 * parameters.
1994 */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)1995 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1996 {
1997 update_curr_dl(rq);
1998
1999 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2000 /*
2001 * Even when we have runtime, update_curr_dl() might have resulted in us
2002 * not being the leftmost task anymore. In that case NEED_RESCHED will
2003 * be set and schedule() will start a new hrtick for the next task.
2004 */
2005 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2006 is_leftmost(p, &rq->dl))
2007 start_hrtick_dl(rq, p);
2008 }
2009
task_fork_dl(struct task_struct * p)2010 static void task_fork_dl(struct task_struct *p)
2011 {
2012 /*
2013 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2014 * sched_fork()
2015 */
2016 }
2017
2018 #ifdef CONFIG_SMP
2019
2020 /* Only try algorithms three times */
2021 #define DL_MAX_TRIES 3
2022
pick_dl_task(struct rq * rq,struct task_struct * p,int cpu)2023 static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
2024 {
2025 if (!task_running(rq, p) &&
2026 cpumask_test_cpu(cpu, &p->cpus_mask))
2027 return 1;
2028 return 0;
2029 }
2030
2031 /*
2032 * Return the earliest pushable rq's task, which is suitable to be executed
2033 * on the CPU, NULL otherwise:
2034 */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2035 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2036 {
2037 struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
2038 struct task_struct *p = NULL;
2039
2040 if (!has_pushable_dl_tasks(rq))
2041 return NULL;
2042
2043 next_node:
2044 if (next_node) {
2045 p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
2046
2047 if (pick_dl_task(rq, p, cpu))
2048 return p;
2049
2050 next_node = rb_next(next_node);
2051 goto next_node;
2052 }
2053
2054 return NULL;
2055 }
2056
2057 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2058
find_later_rq(struct task_struct * task)2059 static int find_later_rq(struct task_struct *task)
2060 {
2061 struct sched_domain *sd;
2062 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2063 int this_cpu = smp_processor_id();
2064 int cpu = task_cpu(task);
2065
2066 /* Make sure the mask is initialized first */
2067 if (unlikely(!later_mask))
2068 return -1;
2069
2070 if (task->nr_cpus_allowed == 1)
2071 return -1;
2072
2073 /*
2074 * We have to consider system topology and task affinity
2075 * first, then we can look for a suitable CPU.
2076 */
2077 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2078 return -1;
2079
2080 /*
2081 * If we are here, some targets have been found, including
2082 * the most suitable which is, among the runqueues where the
2083 * current tasks have later deadlines than the task's one, the
2084 * rq with the latest possible one.
2085 *
2086 * Now we check how well this matches with task's
2087 * affinity and system topology.
2088 *
2089 * The last CPU where the task run is our first
2090 * guess, since it is most likely cache-hot there.
2091 */
2092 if (cpumask_test_cpu(cpu, later_mask))
2093 return cpu;
2094 /*
2095 * Check if this_cpu is to be skipped (i.e., it is
2096 * not in the mask) or not.
2097 */
2098 if (!cpumask_test_cpu(this_cpu, later_mask))
2099 this_cpu = -1;
2100
2101 rcu_read_lock();
2102 for_each_domain(cpu, sd) {
2103 if (sd->flags & SD_WAKE_AFFINE) {
2104 int best_cpu;
2105
2106 /*
2107 * If possible, preempting this_cpu is
2108 * cheaper than migrating.
2109 */
2110 if (this_cpu != -1 &&
2111 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2112 rcu_read_unlock();
2113 return this_cpu;
2114 }
2115
2116 best_cpu = cpumask_any_and_distribute(later_mask,
2117 sched_domain_span(sd));
2118 /*
2119 * Last chance: if a CPU being in both later_mask
2120 * and current sd span is valid, that becomes our
2121 * choice. Of course, the latest possible CPU is
2122 * already under consideration through later_mask.
2123 */
2124 if (best_cpu < nr_cpu_ids) {
2125 rcu_read_unlock();
2126 return best_cpu;
2127 }
2128 }
2129 }
2130 rcu_read_unlock();
2131
2132 /*
2133 * At this point, all our guesses failed, we just return
2134 * 'something', and let the caller sort the things out.
2135 */
2136 if (this_cpu != -1)
2137 return this_cpu;
2138
2139 cpu = cpumask_any_distribute(later_mask);
2140 if (cpu < nr_cpu_ids)
2141 return cpu;
2142
2143 return -1;
2144 }
2145
2146 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2147 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2148 {
2149 struct rq *later_rq = NULL;
2150 int tries;
2151 int cpu;
2152
2153 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2154 cpu = find_later_rq(task);
2155
2156 if ((cpu == -1) || (cpu == rq->cpu))
2157 break;
2158
2159 later_rq = cpu_rq(cpu);
2160
2161 if (later_rq->dl.dl_nr_running &&
2162 !dl_time_before(task->dl.deadline,
2163 later_rq->dl.earliest_dl.curr)) {
2164 /*
2165 * Target rq has tasks of equal or earlier deadline,
2166 * retrying does not release any lock and is unlikely
2167 * to yield a different result.
2168 */
2169 later_rq = NULL;
2170 break;
2171 }
2172
2173 /* Retry if something changed. */
2174 if (double_lock_balance(rq, later_rq)) {
2175 if (unlikely(task_rq(task) != rq ||
2176 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2177 task_running(rq, task) ||
2178 !dl_task(task) ||
2179 !task_on_rq_queued(task))) {
2180 double_unlock_balance(rq, later_rq);
2181 later_rq = NULL;
2182 break;
2183 }
2184 }
2185
2186 /*
2187 * If the rq we found has no -deadline task, or
2188 * its earliest one has a later deadline than our
2189 * task, the rq is a good one.
2190 */
2191 if (!later_rq->dl.dl_nr_running ||
2192 dl_time_before(task->dl.deadline,
2193 later_rq->dl.earliest_dl.curr))
2194 break;
2195
2196 /* Otherwise we try again. */
2197 double_unlock_balance(rq, later_rq);
2198 later_rq = NULL;
2199 }
2200
2201 return later_rq;
2202 }
2203
pick_next_pushable_dl_task(struct rq * rq)2204 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2205 {
2206 struct task_struct *p;
2207
2208 if (!has_pushable_dl_tasks(rq))
2209 return NULL;
2210
2211 p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2212 struct task_struct, pushable_dl_tasks);
2213
2214 BUG_ON(rq->cpu != task_cpu(p));
2215 BUG_ON(task_current(rq, p));
2216 BUG_ON(p->nr_cpus_allowed <= 1);
2217
2218 BUG_ON(!task_on_rq_queued(p));
2219 BUG_ON(!dl_task(p));
2220
2221 return p;
2222 }
2223
2224 /*
2225 * See if the non running -deadline tasks on this rq
2226 * can be sent to some other CPU where they can preempt
2227 * and start executing.
2228 */
push_dl_task(struct rq * rq)2229 static int push_dl_task(struct rq *rq)
2230 {
2231 struct task_struct *next_task;
2232 struct rq *later_rq;
2233 int ret = 0;
2234
2235 if (!rq->dl.overloaded)
2236 return 0;
2237
2238 next_task = pick_next_pushable_dl_task(rq);
2239 if (!next_task)
2240 return 0;
2241
2242 retry:
2243 if (is_migration_disabled(next_task))
2244 return 0;
2245
2246 if (WARN_ON(next_task == rq->curr))
2247 return 0;
2248
2249 /*
2250 * If next_task preempts rq->curr, and rq->curr
2251 * can move away, it makes sense to just reschedule
2252 * without going further in pushing next_task.
2253 */
2254 if (dl_task(rq->curr) &&
2255 dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2256 rq->curr->nr_cpus_allowed > 1) {
2257 resched_curr(rq);
2258 return 0;
2259 }
2260
2261 /* We might release rq lock */
2262 get_task_struct(next_task);
2263
2264 /* Will lock the rq it'll find */
2265 later_rq = find_lock_later_rq(next_task, rq);
2266 if (!later_rq) {
2267 struct task_struct *task;
2268
2269 /*
2270 * We must check all this again, since
2271 * find_lock_later_rq releases rq->lock and it is
2272 * then possible that next_task has migrated.
2273 */
2274 task = pick_next_pushable_dl_task(rq);
2275 if (task == next_task) {
2276 /*
2277 * The task is still there. We don't try
2278 * again, some other CPU will pull it when ready.
2279 */
2280 goto out;
2281 }
2282
2283 if (!task)
2284 /* No more tasks */
2285 goto out;
2286
2287 put_task_struct(next_task);
2288 next_task = task;
2289 goto retry;
2290 }
2291
2292 deactivate_task(rq, next_task, 0);
2293 set_task_cpu(next_task, later_rq->cpu);
2294
2295 /*
2296 * Update the later_rq clock here, because the clock is used
2297 * by the cpufreq_update_util() inside __add_running_bw().
2298 */
2299 update_rq_clock(later_rq);
2300 activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2301 ret = 1;
2302
2303 resched_curr(later_rq);
2304
2305 double_unlock_balance(rq, later_rq);
2306
2307 out:
2308 put_task_struct(next_task);
2309
2310 return ret;
2311 }
2312
push_dl_tasks(struct rq * rq)2313 static void push_dl_tasks(struct rq *rq)
2314 {
2315 /* push_dl_task() will return true if it moved a -deadline task */
2316 while (push_dl_task(rq))
2317 ;
2318 }
2319
pull_dl_task(struct rq * this_rq)2320 static void pull_dl_task(struct rq *this_rq)
2321 {
2322 int this_cpu = this_rq->cpu, cpu;
2323 struct task_struct *p, *push_task;
2324 bool resched = false;
2325 struct rq *src_rq;
2326 u64 dmin = LONG_MAX;
2327
2328 if (likely(!dl_overloaded(this_rq)))
2329 return;
2330
2331 /*
2332 * Match the barrier from dl_set_overloaded; this guarantees that if we
2333 * see overloaded we must also see the dlo_mask bit.
2334 */
2335 smp_rmb();
2336
2337 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2338 if (this_cpu == cpu)
2339 continue;
2340
2341 src_rq = cpu_rq(cpu);
2342
2343 /*
2344 * It looks racy, abd it is! However, as in sched_rt.c,
2345 * we are fine with this.
2346 */
2347 if (this_rq->dl.dl_nr_running &&
2348 dl_time_before(this_rq->dl.earliest_dl.curr,
2349 src_rq->dl.earliest_dl.next))
2350 continue;
2351
2352 /* Might drop this_rq->lock */
2353 push_task = NULL;
2354 double_lock_balance(this_rq, src_rq);
2355
2356 /*
2357 * If there are no more pullable tasks on the
2358 * rq, we're done with it.
2359 */
2360 if (src_rq->dl.dl_nr_running <= 1)
2361 goto skip;
2362
2363 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2364
2365 /*
2366 * We found a task to be pulled if:
2367 * - it preempts our current (if there's one),
2368 * - it will preempt the last one we pulled (if any).
2369 */
2370 if (p && dl_time_before(p->dl.deadline, dmin) &&
2371 (!this_rq->dl.dl_nr_running ||
2372 dl_time_before(p->dl.deadline,
2373 this_rq->dl.earliest_dl.curr))) {
2374 WARN_ON(p == src_rq->curr);
2375 WARN_ON(!task_on_rq_queued(p));
2376
2377 /*
2378 * Then we pull iff p has actually an earlier
2379 * deadline than the current task of its runqueue.
2380 */
2381 if (dl_time_before(p->dl.deadline,
2382 src_rq->curr->dl.deadline))
2383 goto skip;
2384
2385 if (is_migration_disabled(p)) {
2386 push_task = get_push_task(src_rq);
2387 } else {
2388 deactivate_task(src_rq, p, 0);
2389 set_task_cpu(p, this_cpu);
2390 activate_task(this_rq, p, 0);
2391 dmin = p->dl.deadline;
2392 resched = true;
2393 }
2394
2395 /* Is there any other task even earlier? */
2396 }
2397 skip:
2398 double_unlock_balance(this_rq, src_rq);
2399
2400 if (push_task) {
2401 raw_spin_rq_unlock(this_rq);
2402 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2403 push_task, &src_rq->push_work);
2404 raw_spin_rq_lock(this_rq);
2405 }
2406 }
2407
2408 if (resched)
2409 resched_curr(this_rq);
2410 }
2411
2412 /*
2413 * Since the task is not running and a reschedule is not going to happen
2414 * anytime soon on its runqueue, we try pushing it away now.
2415 */
task_woken_dl(struct rq * rq,struct task_struct * p)2416 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2417 {
2418 if (!task_running(rq, p) &&
2419 !test_tsk_need_resched(rq->curr) &&
2420 p->nr_cpus_allowed > 1 &&
2421 dl_task(rq->curr) &&
2422 (rq->curr->nr_cpus_allowed < 2 ||
2423 !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2424 push_dl_tasks(rq);
2425 }
2426 }
2427
set_cpus_allowed_dl(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2428 static void set_cpus_allowed_dl(struct task_struct *p,
2429 const struct cpumask *new_mask,
2430 u32 flags)
2431 {
2432 struct root_domain *src_rd;
2433 struct rq *rq;
2434
2435 BUG_ON(!dl_task(p));
2436
2437 rq = task_rq(p);
2438 src_rd = rq->rd;
2439 /*
2440 * Migrating a SCHED_DEADLINE task between exclusive
2441 * cpusets (different root_domains) entails a bandwidth
2442 * update. We already made space for us in the destination
2443 * domain (see cpuset_can_attach()).
2444 */
2445 if (!cpumask_intersects(src_rd->span, new_mask)) {
2446 struct dl_bw *src_dl_b;
2447
2448 src_dl_b = dl_bw_of(cpu_of(rq));
2449 /*
2450 * We now free resources of the root_domain we are migrating
2451 * off. In the worst case, sched_setattr() may temporary fail
2452 * until we complete the update.
2453 */
2454 raw_spin_lock(&src_dl_b->lock);
2455 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2456 raw_spin_unlock(&src_dl_b->lock);
2457 }
2458
2459 set_cpus_allowed_common(p, new_mask, flags);
2460 }
2461
2462 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2463 static void rq_online_dl(struct rq *rq)
2464 {
2465 if (rq->dl.overloaded)
2466 dl_set_overload(rq);
2467
2468 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2469 if (rq->dl.dl_nr_running > 0)
2470 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2471 }
2472
2473 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2474 static void rq_offline_dl(struct rq *rq)
2475 {
2476 if (rq->dl.overloaded)
2477 dl_clear_overload(rq);
2478
2479 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2480 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2481 }
2482
init_sched_dl_class(void)2483 void __init init_sched_dl_class(void)
2484 {
2485 unsigned int i;
2486
2487 for_each_possible_cpu(i)
2488 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2489 GFP_KERNEL, cpu_to_node(i));
2490 }
2491
dl_add_task_root_domain(struct task_struct * p)2492 void dl_add_task_root_domain(struct task_struct *p)
2493 {
2494 struct rq_flags rf;
2495 struct rq *rq;
2496 struct dl_bw *dl_b;
2497
2498 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2499 if (!dl_task(p)) {
2500 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2501 return;
2502 }
2503
2504 rq = __task_rq_lock(p, &rf);
2505
2506 dl_b = &rq->rd->dl_bw;
2507 raw_spin_lock(&dl_b->lock);
2508
2509 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2510
2511 raw_spin_unlock(&dl_b->lock);
2512
2513 task_rq_unlock(rq, p, &rf);
2514 }
2515
dl_clear_root_domain(struct root_domain * rd)2516 void dl_clear_root_domain(struct root_domain *rd)
2517 {
2518 unsigned long flags;
2519
2520 raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2521 rd->dl_bw.total_bw = 0;
2522 raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2523 }
2524
2525 #endif /* CONFIG_SMP */
2526
switched_from_dl(struct rq * rq,struct task_struct * p)2527 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2528 {
2529 /*
2530 * task_non_contending() can start the "inactive timer" (if the 0-lag
2531 * time is in the future). If the task switches back to dl before
2532 * the "inactive timer" fires, it can continue to consume its current
2533 * runtime using its current deadline. If it stays outside of
2534 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2535 * will reset the task parameters.
2536 */
2537 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2538 task_non_contending(p);
2539
2540 if (!task_on_rq_queued(p)) {
2541 /*
2542 * Inactive timer is armed. However, p is leaving DEADLINE and
2543 * might migrate away from this rq while continuing to run on
2544 * some other class. We need to remove its contribution from
2545 * this rq running_bw now, or sub_rq_bw (below) will complain.
2546 */
2547 if (p->dl.dl_non_contending)
2548 sub_running_bw(&p->dl, &rq->dl);
2549 sub_rq_bw(&p->dl, &rq->dl);
2550 }
2551
2552 /*
2553 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2554 * at the 0-lag time, because the task could have been migrated
2555 * while SCHED_OTHER in the meanwhile.
2556 */
2557 if (p->dl.dl_non_contending)
2558 p->dl.dl_non_contending = 0;
2559
2560 /*
2561 * Since this might be the only -deadline task on the rq,
2562 * this is the right place to try to pull some other one
2563 * from an overloaded CPU, if any.
2564 */
2565 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2566 return;
2567
2568 deadline_queue_pull_task(rq);
2569 }
2570
2571 /*
2572 * When switching to -deadline, we may overload the rq, then
2573 * we try to push someone off, if possible.
2574 */
switched_to_dl(struct rq * rq,struct task_struct * p)2575 static void switched_to_dl(struct rq *rq, struct task_struct *p)
2576 {
2577 if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2578 put_task_struct(p);
2579
2580 /* If p is not queued we will update its parameters at next wakeup. */
2581 if (!task_on_rq_queued(p)) {
2582 add_rq_bw(&p->dl, &rq->dl);
2583
2584 return;
2585 }
2586
2587 if (rq->curr != p) {
2588 #ifdef CONFIG_SMP
2589 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2590 deadline_queue_push_tasks(rq);
2591 #endif
2592 if (dl_task(rq->curr))
2593 check_preempt_curr_dl(rq, p, 0);
2594 else
2595 resched_curr(rq);
2596 } else {
2597 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2598 }
2599 }
2600
2601 /*
2602 * If the scheduling parameters of a -deadline task changed,
2603 * a push or pull operation might be needed.
2604 */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)2605 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2606 int oldprio)
2607 {
2608 if (task_on_rq_queued(p) || task_current(rq, p)) {
2609 #ifdef CONFIG_SMP
2610 /*
2611 * This might be too much, but unfortunately
2612 * we don't have the old deadline value, and
2613 * we can't argue if the task is increasing
2614 * or lowering its prio, so...
2615 */
2616 if (!rq->dl.overloaded)
2617 deadline_queue_pull_task(rq);
2618
2619 /*
2620 * If we now have a earlier deadline task than p,
2621 * then reschedule, provided p is still on this
2622 * runqueue.
2623 */
2624 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2625 resched_curr(rq);
2626 #else
2627 /*
2628 * Again, we don't know if p has a earlier
2629 * or later deadline, so let's blindly set a
2630 * (maybe not needed) rescheduling point.
2631 */
2632 resched_curr(rq);
2633 #endif /* CONFIG_SMP */
2634 }
2635 }
2636
2637 DEFINE_SCHED_CLASS(dl) = {
2638
2639 .enqueue_task = enqueue_task_dl,
2640 .dequeue_task = dequeue_task_dl,
2641 .yield_task = yield_task_dl,
2642
2643 .check_preempt_curr = check_preempt_curr_dl,
2644
2645 .pick_next_task = pick_next_task_dl,
2646 .put_prev_task = put_prev_task_dl,
2647 .set_next_task = set_next_task_dl,
2648
2649 #ifdef CONFIG_SMP
2650 .balance = balance_dl,
2651 .pick_task = pick_task_dl,
2652 .select_task_rq = select_task_rq_dl,
2653 .migrate_task_rq = migrate_task_rq_dl,
2654 .set_cpus_allowed = set_cpus_allowed_dl,
2655 .rq_online = rq_online_dl,
2656 .rq_offline = rq_offline_dl,
2657 .task_woken = task_woken_dl,
2658 .find_lock_rq = find_lock_later_rq,
2659 #endif
2660
2661 .task_tick = task_tick_dl,
2662 .task_fork = task_fork_dl,
2663
2664 .prio_changed = prio_changed_dl,
2665 .switched_from = switched_from_dl,
2666 .switched_to = switched_to_dl,
2667
2668 .update_curr = update_curr_dl,
2669 };
2670
2671 /* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
2672 static u64 dl_generation;
2673
sched_dl_global_validate(void)2674 int sched_dl_global_validate(void)
2675 {
2676 u64 runtime = global_rt_runtime();
2677 u64 period = global_rt_period();
2678 u64 new_bw = to_ratio(period, runtime);
2679 u64 gen = ++dl_generation;
2680 struct dl_bw *dl_b;
2681 int cpu, cpus, ret = 0;
2682 unsigned long flags;
2683
2684 /*
2685 * Here we want to check the bandwidth not being set to some
2686 * value smaller than the currently allocated bandwidth in
2687 * any of the root_domains.
2688 */
2689 for_each_possible_cpu(cpu) {
2690 rcu_read_lock_sched();
2691
2692 if (dl_bw_visited(cpu, gen))
2693 goto next;
2694
2695 dl_b = dl_bw_of(cpu);
2696 cpus = dl_bw_cpus(cpu);
2697
2698 raw_spin_lock_irqsave(&dl_b->lock, flags);
2699 if (new_bw * cpus < dl_b->total_bw)
2700 ret = -EBUSY;
2701 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2702
2703 next:
2704 rcu_read_unlock_sched();
2705
2706 if (ret)
2707 break;
2708 }
2709
2710 return ret;
2711 }
2712
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)2713 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2714 {
2715 if (global_rt_runtime() == RUNTIME_INF) {
2716 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2717 dl_rq->extra_bw = 1 << BW_SHIFT;
2718 } else {
2719 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2720 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2721 dl_rq->extra_bw = to_ratio(global_rt_period(),
2722 global_rt_runtime());
2723 }
2724 }
2725
sched_dl_do_global(void)2726 void sched_dl_do_global(void)
2727 {
2728 u64 new_bw = -1;
2729 u64 gen = ++dl_generation;
2730 struct dl_bw *dl_b;
2731 int cpu;
2732 unsigned long flags;
2733
2734 def_dl_bandwidth.dl_period = global_rt_period();
2735 def_dl_bandwidth.dl_runtime = global_rt_runtime();
2736
2737 if (global_rt_runtime() != RUNTIME_INF)
2738 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2739
2740 for_each_possible_cpu(cpu) {
2741 rcu_read_lock_sched();
2742
2743 if (dl_bw_visited(cpu, gen)) {
2744 rcu_read_unlock_sched();
2745 continue;
2746 }
2747
2748 dl_b = dl_bw_of(cpu);
2749
2750 raw_spin_lock_irqsave(&dl_b->lock, flags);
2751 dl_b->bw = new_bw;
2752 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2753
2754 rcu_read_unlock_sched();
2755 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2756 }
2757 }
2758
2759 /*
2760 * We must be sure that accepting a new task (or allowing changing the
2761 * parameters of an existing one) is consistent with the bandwidth
2762 * constraints. If yes, this function also accordingly updates the currently
2763 * allocated bandwidth to reflect the new situation.
2764 *
2765 * This function is called while holding p's rq->lock.
2766 */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2767 int sched_dl_overflow(struct task_struct *p, int policy,
2768 const struct sched_attr *attr)
2769 {
2770 u64 period = attr->sched_period ?: attr->sched_deadline;
2771 u64 runtime = attr->sched_runtime;
2772 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2773 int cpus, err = -1, cpu = task_cpu(p);
2774 struct dl_bw *dl_b = dl_bw_of(cpu);
2775 unsigned long cap;
2776
2777 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2778 return 0;
2779
2780 /* !deadline task may carry old deadline bandwidth */
2781 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2782 return 0;
2783
2784 /*
2785 * Either if a task, enters, leave, or stays -deadline but changes
2786 * its parameters, we may need to update accordingly the total
2787 * allocated bandwidth of the container.
2788 */
2789 raw_spin_lock(&dl_b->lock);
2790 cpus = dl_bw_cpus(cpu);
2791 cap = dl_bw_capacity(cpu);
2792
2793 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2794 !__dl_overflow(dl_b, cap, 0, new_bw)) {
2795 if (hrtimer_active(&p->dl.inactive_timer))
2796 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2797 __dl_add(dl_b, new_bw, cpus);
2798 err = 0;
2799 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2800 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
2801 /*
2802 * XXX this is slightly incorrect: when the task
2803 * utilization decreases, we should delay the total
2804 * utilization change until the task's 0-lag point.
2805 * But this would require to set the task's "inactive
2806 * timer" when the task is not inactive.
2807 */
2808 __dl_sub(dl_b, p->dl.dl_bw, cpus);
2809 __dl_add(dl_b, new_bw, cpus);
2810 dl_change_utilization(p, new_bw);
2811 err = 0;
2812 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2813 /*
2814 * Do not decrease the total deadline utilization here,
2815 * switched_from_dl() will take care to do it at the correct
2816 * (0-lag) time.
2817 */
2818 err = 0;
2819 }
2820 raw_spin_unlock(&dl_b->lock);
2821
2822 return err;
2823 }
2824
2825 /*
2826 * This function initializes the sched_dl_entity of a newly becoming
2827 * SCHED_DEADLINE task.
2828 *
2829 * Only the static values are considered here, the actual runtime and the
2830 * absolute deadline will be properly calculated when the task is enqueued
2831 * for the first time with its new policy.
2832 */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)2833 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2834 {
2835 struct sched_dl_entity *dl_se = &p->dl;
2836
2837 dl_se->dl_runtime = attr->sched_runtime;
2838 dl_se->dl_deadline = attr->sched_deadline;
2839 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2840 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
2841 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2842 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2843 }
2844
__getparam_dl(struct task_struct * p,struct sched_attr * attr)2845 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2846 {
2847 struct sched_dl_entity *dl_se = &p->dl;
2848
2849 attr->sched_priority = p->rt_priority;
2850 attr->sched_runtime = dl_se->dl_runtime;
2851 attr->sched_deadline = dl_se->dl_deadline;
2852 attr->sched_period = dl_se->dl_period;
2853 attr->sched_flags &= ~SCHED_DL_FLAGS;
2854 attr->sched_flags |= dl_se->flags;
2855 }
2856
2857 /*
2858 * Default limits for DL period; on the top end we guard against small util
2859 * tasks still getting ridiculously long effective runtimes, on the bottom end we
2860 * guard against timer DoS.
2861 */
2862 unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
2863 unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
2864
2865 /*
2866 * This function validates the new parameters of a -deadline task.
2867 * We ask for the deadline not being zero, and greater or equal
2868 * than the runtime, as well as the period of being zero or
2869 * greater than deadline. Furthermore, we have to be sure that
2870 * user parameters are above the internal resolution of 1us (we
2871 * check sched_runtime only since it is always the smaller one) and
2872 * below 2^63 ns (we have to check both sched_deadline and
2873 * sched_period, as the latter can be zero).
2874 */
__checkparam_dl(const struct sched_attr * attr)2875 bool __checkparam_dl(const struct sched_attr *attr)
2876 {
2877 u64 period, max, min;
2878
2879 /* special dl tasks don't actually use any parameter */
2880 if (attr->sched_flags & SCHED_FLAG_SUGOV)
2881 return true;
2882
2883 /* deadline != 0 */
2884 if (attr->sched_deadline == 0)
2885 return false;
2886
2887 /*
2888 * Since we truncate DL_SCALE bits, make sure we're at least
2889 * that big.
2890 */
2891 if (attr->sched_runtime < (1ULL << DL_SCALE))
2892 return false;
2893
2894 /*
2895 * Since we use the MSB for wrap-around and sign issues, make
2896 * sure it's not set (mind that period can be equal to zero).
2897 */
2898 if (attr->sched_deadline & (1ULL << 63) ||
2899 attr->sched_period & (1ULL << 63))
2900 return false;
2901
2902 period = attr->sched_period;
2903 if (!period)
2904 period = attr->sched_deadline;
2905
2906 /* runtime <= deadline <= period (if period != 0) */
2907 if (period < attr->sched_deadline ||
2908 attr->sched_deadline < attr->sched_runtime)
2909 return false;
2910
2911 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
2912 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
2913
2914 if (period < min || period > max)
2915 return false;
2916
2917 return true;
2918 }
2919
2920 /*
2921 * This function clears the sched_dl_entity static params.
2922 */
__dl_clear_params(struct task_struct * p)2923 void __dl_clear_params(struct task_struct *p)
2924 {
2925 struct sched_dl_entity *dl_se = &p->dl;
2926
2927 dl_se->dl_runtime = 0;
2928 dl_se->dl_deadline = 0;
2929 dl_se->dl_period = 0;
2930 dl_se->flags = 0;
2931 dl_se->dl_bw = 0;
2932 dl_se->dl_density = 0;
2933
2934 dl_se->dl_throttled = 0;
2935 dl_se->dl_yielded = 0;
2936 dl_se->dl_non_contending = 0;
2937 dl_se->dl_overrun = 0;
2938
2939 #ifdef CONFIG_RT_MUTEXES
2940 dl_se->pi_se = dl_se;
2941 #endif
2942 }
2943
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)2944 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2945 {
2946 struct sched_dl_entity *dl_se = &p->dl;
2947
2948 if (dl_se->dl_runtime != attr->sched_runtime ||
2949 dl_se->dl_deadline != attr->sched_deadline ||
2950 dl_se->dl_period != attr->sched_period ||
2951 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
2952 return true;
2953
2954 return false;
2955 }
2956
2957 #ifdef CONFIG_SMP
dl_task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)2958 int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2959 {
2960 unsigned long flags, cap;
2961 unsigned int dest_cpu;
2962 struct dl_bw *dl_b;
2963 bool overflow;
2964 int ret;
2965
2966 dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2967
2968 rcu_read_lock_sched();
2969 dl_b = dl_bw_of(dest_cpu);
2970 raw_spin_lock_irqsave(&dl_b->lock, flags);
2971 cap = dl_bw_capacity(dest_cpu);
2972 overflow = __dl_overflow(dl_b, cap, 0, p->dl.dl_bw);
2973 if (overflow) {
2974 ret = -EBUSY;
2975 } else {
2976 /*
2977 * We reserve space for this task in the destination
2978 * root_domain, as we can't fail after this point.
2979 * We will free resources in the source root_domain
2980 * later on (see set_cpus_allowed_dl()).
2981 */
2982 int cpus = dl_bw_cpus(dest_cpu);
2983
2984 __dl_add(dl_b, p->dl.dl_bw, cpus);
2985 ret = 0;
2986 }
2987 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2988 rcu_read_unlock_sched();
2989
2990 return ret;
2991 }
2992
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)2993 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2994 const struct cpumask *trial)
2995 {
2996 int ret = 1, trial_cpus;
2997 struct dl_bw *cur_dl_b;
2998 unsigned long flags;
2999
3000 rcu_read_lock_sched();
3001 cur_dl_b = dl_bw_of(cpumask_any(cur));
3002 trial_cpus = cpumask_weight(trial);
3003
3004 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3005 if (cur_dl_b->bw != -1 &&
3006 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
3007 ret = 0;
3008 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3009 rcu_read_unlock_sched();
3010
3011 return ret;
3012 }
3013
dl_cpu_busy(unsigned int cpu)3014 bool dl_cpu_busy(unsigned int cpu)
3015 {
3016 unsigned long flags, cap;
3017 struct dl_bw *dl_b;
3018 bool overflow;
3019
3020 rcu_read_lock_sched();
3021 dl_b = dl_bw_of(cpu);
3022 raw_spin_lock_irqsave(&dl_b->lock, flags);
3023 cap = dl_bw_capacity(cpu);
3024 overflow = __dl_overflow(dl_b, cap, 0, 0);
3025 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3026 rcu_read_unlock_sched();
3027
3028 return overflow;
3029 }
3030 #endif
3031
3032 #ifdef CONFIG_SCHED_DEBUG
print_dl_stats(struct seq_file * m,int cpu)3033 void print_dl_stats(struct seq_file *m, int cpu)
3034 {
3035 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3036 }
3037 #endif /* CONFIG_SCHED_DEBUG */
3038