1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
24
25 #include "internal.h"
26
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30 };
31
hpage_pincount_add(struct page * page,int refs)32 static void hpage_pincount_add(struct page *page, int refs)
33 {
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
36
37 atomic_add(refs, compound_pincount_ptr(page));
38 }
39
hpage_pincount_sub(struct page * page,int refs)40 static void hpage_pincount_sub(struct page *page, int refs)
41 {
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
44
45 atomic_sub(refs, compound_pincount_ptr(page));
46 }
47
48 /* Equivalent to calling put_page() @refs times. */
put_page_refs(struct page * page,int refs)49 static void put_page_refs(struct page *page, int refs)
50 {
51 #ifdef CONFIG_DEBUG_VM
52 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53 return;
54 #endif
55
56 /*
57 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 * ref needs a put_page().
59 */
60 if (refs > 1)
61 page_ref_sub(page, refs - 1);
62 put_page(page);
63 }
64
65 /*
66 * Return the compound head page with ref appropriately incremented,
67 * or NULL if that failed.
68 */
try_get_compound_head(struct page * page,int refs)69 static inline struct page *try_get_compound_head(struct page *page, int refs)
70 {
71 struct page *head = compound_head(page);
72
73 if (WARN_ON_ONCE(page_ref_count(head) < 0))
74 return NULL;
75 if (unlikely(!page_cache_add_speculative(head, refs)))
76 return NULL;
77
78 /*
79 * At this point we have a stable reference to the head page; but it
80 * could be that between the compound_head() lookup and the refcount
81 * increment, the compound page was split, in which case we'd end up
82 * holding a reference on a page that has nothing to do with the page
83 * we were given anymore.
84 * So now that the head page is stable, recheck that the pages still
85 * belong together.
86 */
87 if (unlikely(compound_head(page) != head)) {
88 put_page_refs(head, refs);
89 return NULL;
90 }
91
92 return head;
93 }
94
95 /**
96 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97 * flags-dependent amount.
98 *
99 * Even though the name includes "compound_head", this function is still
100 * appropriate for callers that have a non-compound @page to get.
101 *
102 * @page: pointer to page to be grabbed
103 * @refs: the value to (effectively) add to the page's refcount
104 * @flags: gup flags: these are the FOLL_* flag values.
105 *
106 * "grab" names in this file mean, "look at flags to decide whether to use
107 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
108 *
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
112 *
113 * FOLL_GET: page's refcount will be incremented by @refs.
114 *
115 * FOLL_PIN on compound pages that are > two pages long: page's refcount will
116 * be incremented by @refs, and page[2].hpage_pinned_refcount will be
117 * incremented by @refs * GUP_PIN_COUNTING_BIAS.
118 *
119 * FOLL_PIN on normal pages, or compound pages that are two pages long:
120 * page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS.
121 *
122 * Return: head page (with refcount appropriately incremented) for success, or
123 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
124 * considered failure, and furthermore, a likely bug in the caller, so a warning
125 * is also emitted.
126 */
try_grab_compound_head(struct page * page,int refs,unsigned int flags)127 struct page *try_grab_compound_head(struct page *page,
128 int refs, unsigned int flags)
129 {
130 if (flags & FOLL_GET)
131 return try_get_compound_head(page, refs);
132 else if (flags & FOLL_PIN) {
133 /*
134 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
135 * right zone, so fail and let the caller fall back to the slow
136 * path.
137 */
138 if (unlikely((flags & FOLL_LONGTERM) &&
139 !is_pinnable_page(page)))
140 return NULL;
141
142 /*
143 * CAUTION: Don't use compound_head() on the page before this
144 * point, the result won't be stable.
145 */
146 page = try_get_compound_head(page, refs);
147 if (!page)
148 return NULL;
149
150 /*
151 * When pinning a compound page of order > 1 (which is what
152 * hpage_pincount_available() checks for), use an exact count to
153 * track it, via hpage_pincount_add/_sub().
154 *
155 * However, be sure to *also* increment the normal page refcount
156 * field at least once, so that the page really is pinned.
157 * That's why the refcount from the earlier
158 * try_get_compound_head() is left intact.
159 */
160 if (hpage_pincount_available(page))
161 hpage_pincount_add(page, refs);
162 else
163 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
164
165 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
166 refs);
167
168 return page;
169 }
170
171 WARN_ON_ONCE(1);
172 return NULL;
173 }
174
put_compound_head(struct page * page,int refs,unsigned int flags)175 static void put_compound_head(struct page *page, int refs, unsigned int flags)
176 {
177 if (flags & FOLL_PIN) {
178 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
179 refs);
180
181 if (hpage_pincount_available(page))
182 hpage_pincount_sub(page, refs);
183 else
184 refs *= GUP_PIN_COUNTING_BIAS;
185 }
186
187 put_page_refs(page, refs);
188 }
189
190 /**
191 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
192 *
193 * This might not do anything at all, depending on the flags argument.
194 *
195 * "grab" names in this file mean, "look at flags to decide whether to use
196 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
197 *
198 * @page: pointer to page to be grabbed
199 * @flags: gup flags: these are the FOLL_* flag values.
200 *
201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202 * time. Cases: please see the try_grab_compound_head() documentation, with
203 * "refs=1".
204 *
205 * Return: true for success, or if no action was required (if neither FOLL_PIN
206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207 * FOLL_PIN was set, but the page could not be grabbed.
208 */
try_grab_page(struct page * page,unsigned int flags)209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
210 {
211 if (!(flags & (FOLL_GET | FOLL_PIN)))
212 return true;
213
214 return try_grab_compound_head(page, 1, flags);
215 }
216
217 /**
218 * unpin_user_page() - release a dma-pinned page
219 * @page: pointer to page to be released
220 *
221 * Pages that were pinned via pin_user_pages*() must be released via either
222 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
223 * that such pages can be separately tracked and uniquely handled. In
224 * particular, interactions with RDMA and filesystems need special handling.
225 */
unpin_user_page(struct page * page)226 void unpin_user_page(struct page *page)
227 {
228 put_compound_head(compound_head(page), 1, FOLL_PIN);
229 }
230 EXPORT_SYMBOL(unpin_user_page);
231
compound_range_next(unsigned long i,unsigned long npages,struct page ** list,struct page ** head,unsigned int * ntails)232 static inline void compound_range_next(unsigned long i, unsigned long npages,
233 struct page **list, struct page **head,
234 unsigned int *ntails)
235 {
236 struct page *next, *page;
237 unsigned int nr = 1;
238
239 if (i >= npages)
240 return;
241
242 next = *list + i;
243 page = compound_head(next);
244 if (PageCompound(page) && compound_order(page) >= 1)
245 nr = min_t(unsigned int,
246 page + compound_nr(page) - next, npages - i);
247
248 *head = page;
249 *ntails = nr;
250 }
251
252 #define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
253 for (__i = 0, \
254 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
255 __i < __npages; __i += __ntails, \
256 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
257
compound_next(unsigned long i,unsigned long npages,struct page ** list,struct page ** head,unsigned int * ntails)258 static inline void compound_next(unsigned long i, unsigned long npages,
259 struct page **list, struct page **head,
260 unsigned int *ntails)
261 {
262 struct page *page;
263 unsigned int nr;
264
265 if (i >= npages)
266 return;
267
268 page = compound_head(list[i]);
269 for (nr = i + 1; nr < npages; nr++) {
270 if (compound_head(list[nr]) != page)
271 break;
272 }
273
274 *head = page;
275 *ntails = nr - i;
276 }
277
278 #define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
279 for (__i = 0, \
280 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
281 __i < __npages; __i += __ntails, \
282 compound_next(__i, __npages, __list, &(__head), &(__ntails)))
283
284 /**
285 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
286 * @pages: array of pages to be maybe marked dirty, and definitely released.
287 * @npages: number of pages in the @pages array.
288 * @make_dirty: whether to mark the pages dirty
289 *
290 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
291 * variants called on that page.
292 *
293 * For each page in the @pages array, make that page (or its head page, if a
294 * compound page) dirty, if @make_dirty is true, and if the page was previously
295 * listed as clean. In any case, releases all pages using unpin_user_page(),
296 * possibly via unpin_user_pages(), for the non-dirty case.
297 *
298 * Please see the unpin_user_page() documentation for details.
299 *
300 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
301 * required, then the caller should a) verify that this is really correct,
302 * because _lock() is usually required, and b) hand code it:
303 * set_page_dirty_lock(), unpin_user_page().
304 *
305 */
unpin_user_pages_dirty_lock(struct page ** pages,unsigned long npages,bool make_dirty)306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
307 bool make_dirty)
308 {
309 unsigned long index;
310 struct page *head;
311 unsigned int ntails;
312
313 if (!make_dirty) {
314 unpin_user_pages(pages, npages);
315 return;
316 }
317
318 for_each_compound_head(index, pages, npages, head, ntails) {
319 /*
320 * Checking PageDirty at this point may race with
321 * clear_page_dirty_for_io(), but that's OK. Two key
322 * cases:
323 *
324 * 1) This code sees the page as already dirty, so it
325 * skips the call to set_page_dirty(). That could happen
326 * because clear_page_dirty_for_io() called
327 * page_mkclean(), followed by set_page_dirty().
328 * However, now the page is going to get written back,
329 * which meets the original intention of setting it
330 * dirty, so all is well: clear_page_dirty_for_io() goes
331 * on to call TestClearPageDirty(), and write the page
332 * back.
333 *
334 * 2) This code sees the page as clean, so it calls
335 * set_page_dirty(). The page stays dirty, despite being
336 * written back, so it gets written back again in the
337 * next writeback cycle. This is harmless.
338 */
339 if (!PageDirty(head))
340 set_page_dirty_lock(head);
341 put_compound_head(head, ntails, FOLL_PIN);
342 }
343 }
344 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
345
346 /**
347 * unpin_user_page_range_dirty_lock() - release and optionally dirty
348 * gup-pinned page range
349 *
350 * @page: the starting page of a range maybe marked dirty, and definitely released.
351 * @npages: number of consecutive pages to release.
352 * @make_dirty: whether to mark the pages dirty
353 *
354 * "gup-pinned page range" refers to a range of pages that has had one of the
355 * pin_user_pages() variants called on that page.
356 *
357 * For the page ranges defined by [page .. page+npages], make that range (or
358 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
359 * page range was previously listed as clean.
360 *
361 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
362 * required, then the caller should a) verify that this is really correct,
363 * because _lock() is usually required, and b) hand code it:
364 * set_page_dirty_lock(), unpin_user_page().
365 *
366 */
unpin_user_page_range_dirty_lock(struct page * page,unsigned long npages,bool make_dirty)367 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
368 bool make_dirty)
369 {
370 unsigned long index;
371 struct page *head;
372 unsigned int ntails;
373
374 for_each_compound_range(index, &page, npages, head, ntails) {
375 if (make_dirty && !PageDirty(head))
376 set_page_dirty_lock(head);
377 put_compound_head(head, ntails, FOLL_PIN);
378 }
379 }
380 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
381
382 /**
383 * unpin_user_pages() - release an array of gup-pinned pages.
384 * @pages: array of pages to be marked dirty and released.
385 * @npages: number of pages in the @pages array.
386 *
387 * For each page in the @pages array, release the page using unpin_user_page().
388 *
389 * Please see the unpin_user_page() documentation for details.
390 */
unpin_user_pages(struct page ** pages,unsigned long npages)391 void unpin_user_pages(struct page **pages, unsigned long npages)
392 {
393 unsigned long index;
394 struct page *head;
395 unsigned int ntails;
396
397 /*
398 * If this WARN_ON() fires, then the system *might* be leaking pages (by
399 * leaving them pinned), but probably not. More likely, gup/pup returned
400 * a hard -ERRNO error to the caller, who erroneously passed it here.
401 */
402 if (WARN_ON(IS_ERR_VALUE(npages)))
403 return;
404
405 for_each_compound_head(index, pages, npages, head, ntails)
406 put_compound_head(head, ntails, FOLL_PIN);
407 }
408 EXPORT_SYMBOL(unpin_user_pages);
409
410 /*
411 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
412 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
413 * cache bouncing on large SMP machines for concurrent pinned gups.
414 */
mm_set_has_pinned_flag(unsigned long * mm_flags)415 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
416 {
417 if (!test_bit(MMF_HAS_PINNED, mm_flags))
418 set_bit(MMF_HAS_PINNED, mm_flags);
419 }
420
421 #ifdef CONFIG_MMU
no_page_table(struct vm_area_struct * vma,unsigned int flags)422 static struct page *no_page_table(struct vm_area_struct *vma,
423 unsigned int flags)
424 {
425 /*
426 * When core dumping an enormous anonymous area that nobody
427 * has touched so far, we don't want to allocate unnecessary pages or
428 * page tables. Return error instead of NULL to skip handle_mm_fault,
429 * then get_dump_page() will return NULL to leave a hole in the dump.
430 * But we can only make this optimization where a hole would surely
431 * be zero-filled if handle_mm_fault() actually did handle it.
432 */
433 if ((flags & FOLL_DUMP) &&
434 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
435 return ERR_PTR(-EFAULT);
436 return NULL;
437 }
438
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)439 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
440 pte_t *pte, unsigned int flags)
441 {
442 /* No page to get reference */
443 if (flags & FOLL_GET)
444 return -EFAULT;
445
446 if (flags & FOLL_TOUCH) {
447 pte_t entry = *pte;
448
449 if (flags & FOLL_WRITE)
450 entry = pte_mkdirty(entry);
451 entry = pte_mkyoung(entry);
452
453 if (!pte_same(*pte, entry)) {
454 set_pte_at(vma->vm_mm, address, pte, entry);
455 update_mmu_cache(vma, address, pte);
456 }
457 }
458
459 /* Proper page table entry exists, but no corresponding struct page */
460 return -EEXIST;
461 }
462
463 /*
464 * FOLL_FORCE can write to even unwritable pte's, but only
465 * after we've gone through a COW cycle and they are dirty.
466 */
can_follow_write_pte(pte_t pte,unsigned int flags)467 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
468 {
469 return pte_write(pte) ||
470 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
471 }
472
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags,struct dev_pagemap ** pgmap)473 static struct page *follow_page_pte(struct vm_area_struct *vma,
474 unsigned long address, pmd_t *pmd, unsigned int flags,
475 struct dev_pagemap **pgmap)
476 {
477 struct mm_struct *mm = vma->vm_mm;
478 struct page *page;
479 spinlock_t *ptl;
480 pte_t *ptep, pte;
481 int ret;
482
483 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
484 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
485 (FOLL_PIN | FOLL_GET)))
486 return ERR_PTR(-EINVAL);
487 retry:
488 if (unlikely(pmd_bad(*pmd)))
489 return no_page_table(vma, flags);
490
491 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
492 pte = *ptep;
493 if (!pte_present(pte)) {
494 swp_entry_t entry;
495 /*
496 * KSM's break_ksm() relies upon recognizing a ksm page
497 * even while it is being migrated, so for that case we
498 * need migration_entry_wait().
499 */
500 if (likely(!(flags & FOLL_MIGRATION)))
501 goto no_page;
502 if (pte_none(pte))
503 goto no_page;
504 entry = pte_to_swp_entry(pte);
505 if (!is_migration_entry(entry))
506 goto no_page;
507 pte_unmap_unlock(ptep, ptl);
508 migration_entry_wait(mm, pmd, address);
509 goto retry;
510 }
511 if ((flags & FOLL_NUMA) && pte_protnone(pte))
512 goto no_page;
513 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
514 pte_unmap_unlock(ptep, ptl);
515 return NULL;
516 }
517
518 page = vm_normal_page(vma, address, pte);
519 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
520 /*
521 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
522 * case since they are only valid while holding the pgmap
523 * reference.
524 */
525 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
526 if (*pgmap)
527 page = pte_page(pte);
528 else
529 goto no_page;
530 } else if (unlikely(!page)) {
531 if (flags & FOLL_DUMP) {
532 /* Avoid special (like zero) pages in core dumps */
533 page = ERR_PTR(-EFAULT);
534 goto out;
535 }
536
537 if (is_zero_pfn(pte_pfn(pte))) {
538 page = pte_page(pte);
539 } else {
540 ret = follow_pfn_pte(vma, address, ptep, flags);
541 page = ERR_PTR(ret);
542 goto out;
543 }
544 }
545
546 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
547 if (unlikely(!try_grab_page(page, flags))) {
548 page = ERR_PTR(-ENOMEM);
549 goto out;
550 }
551 /*
552 * We need to make the page accessible if and only if we are going
553 * to access its content (the FOLL_PIN case). Please see
554 * Documentation/core-api/pin_user_pages.rst for details.
555 */
556 if (flags & FOLL_PIN) {
557 ret = arch_make_page_accessible(page);
558 if (ret) {
559 unpin_user_page(page);
560 page = ERR_PTR(ret);
561 goto out;
562 }
563 }
564 if (flags & FOLL_TOUCH) {
565 if ((flags & FOLL_WRITE) &&
566 !pte_dirty(pte) && !PageDirty(page))
567 set_page_dirty(page);
568 /*
569 * pte_mkyoung() would be more correct here, but atomic care
570 * is needed to avoid losing the dirty bit: it is easier to use
571 * mark_page_accessed().
572 */
573 mark_page_accessed(page);
574 }
575 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
576 /* Do not mlock pte-mapped THP */
577 if (PageTransCompound(page))
578 goto out;
579
580 /*
581 * The preliminary mapping check is mainly to avoid the
582 * pointless overhead of lock_page on the ZERO_PAGE
583 * which might bounce very badly if there is contention.
584 *
585 * If the page is already locked, we don't need to
586 * handle it now - vmscan will handle it later if and
587 * when it attempts to reclaim the page.
588 */
589 if (page->mapping && trylock_page(page)) {
590 lru_add_drain(); /* push cached pages to LRU */
591 /*
592 * Because we lock page here, and migration is
593 * blocked by the pte's page reference, and we
594 * know the page is still mapped, we don't even
595 * need to check for file-cache page truncation.
596 */
597 mlock_vma_page(page);
598 unlock_page(page);
599 }
600 }
601 out:
602 pte_unmap_unlock(ptep, ptl);
603 return page;
604 no_page:
605 pte_unmap_unlock(ptep, ptl);
606 if (!pte_none(pte))
607 return NULL;
608 return no_page_table(vma, flags);
609 }
610
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,struct follow_page_context * ctx)611 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
612 unsigned long address, pud_t *pudp,
613 unsigned int flags,
614 struct follow_page_context *ctx)
615 {
616 pmd_t *pmd, pmdval;
617 spinlock_t *ptl;
618 struct page *page;
619 struct mm_struct *mm = vma->vm_mm;
620
621 pmd = pmd_offset(pudp, address);
622 /*
623 * The READ_ONCE() will stabilize the pmdval in a register or
624 * on the stack so that it will stop changing under the code.
625 */
626 pmdval = READ_ONCE(*pmd);
627 if (pmd_none(pmdval))
628 return no_page_table(vma, flags);
629 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
630 page = follow_huge_pmd(mm, address, pmd, flags);
631 if (page)
632 return page;
633 return no_page_table(vma, flags);
634 }
635 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
636 page = follow_huge_pd(vma, address,
637 __hugepd(pmd_val(pmdval)), flags,
638 PMD_SHIFT);
639 if (page)
640 return page;
641 return no_page_table(vma, flags);
642 }
643 retry:
644 if (!pmd_present(pmdval)) {
645 if (likely(!(flags & FOLL_MIGRATION)))
646 return no_page_table(vma, flags);
647 VM_BUG_ON(thp_migration_supported() &&
648 !is_pmd_migration_entry(pmdval));
649 if (is_pmd_migration_entry(pmdval))
650 pmd_migration_entry_wait(mm, pmd);
651 pmdval = READ_ONCE(*pmd);
652 /*
653 * MADV_DONTNEED may convert the pmd to null because
654 * mmap_lock is held in read mode
655 */
656 if (pmd_none(pmdval))
657 return no_page_table(vma, flags);
658 goto retry;
659 }
660 if (pmd_devmap(pmdval)) {
661 ptl = pmd_lock(mm, pmd);
662 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
663 spin_unlock(ptl);
664 if (page)
665 return page;
666 }
667 if (likely(!pmd_trans_huge(pmdval)))
668 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
669
670 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
671 return no_page_table(vma, flags);
672
673 retry_locked:
674 ptl = pmd_lock(mm, pmd);
675 if (unlikely(pmd_none(*pmd))) {
676 spin_unlock(ptl);
677 return no_page_table(vma, flags);
678 }
679 if (unlikely(!pmd_present(*pmd))) {
680 spin_unlock(ptl);
681 if (likely(!(flags & FOLL_MIGRATION)))
682 return no_page_table(vma, flags);
683 pmd_migration_entry_wait(mm, pmd);
684 goto retry_locked;
685 }
686 if (unlikely(!pmd_trans_huge(*pmd))) {
687 spin_unlock(ptl);
688 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
689 }
690 if (flags & FOLL_SPLIT_PMD) {
691 int ret;
692 page = pmd_page(*pmd);
693 if (is_huge_zero_page(page)) {
694 spin_unlock(ptl);
695 ret = 0;
696 split_huge_pmd(vma, pmd, address);
697 if (pmd_trans_unstable(pmd))
698 ret = -EBUSY;
699 } else {
700 spin_unlock(ptl);
701 split_huge_pmd(vma, pmd, address);
702 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
703 }
704
705 return ret ? ERR_PTR(ret) :
706 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
707 }
708 page = follow_trans_huge_pmd(vma, address, pmd, flags);
709 spin_unlock(ptl);
710 ctx->page_mask = HPAGE_PMD_NR - 1;
711 return page;
712 }
713
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,struct follow_page_context * ctx)714 static struct page *follow_pud_mask(struct vm_area_struct *vma,
715 unsigned long address, p4d_t *p4dp,
716 unsigned int flags,
717 struct follow_page_context *ctx)
718 {
719 pud_t *pud;
720 spinlock_t *ptl;
721 struct page *page;
722 struct mm_struct *mm = vma->vm_mm;
723
724 pud = pud_offset(p4dp, address);
725 if (pud_none(*pud))
726 return no_page_table(vma, flags);
727 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
728 page = follow_huge_pud(mm, address, pud, flags);
729 if (page)
730 return page;
731 return no_page_table(vma, flags);
732 }
733 if (is_hugepd(__hugepd(pud_val(*pud)))) {
734 page = follow_huge_pd(vma, address,
735 __hugepd(pud_val(*pud)), flags,
736 PUD_SHIFT);
737 if (page)
738 return page;
739 return no_page_table(vma, flags);
740 }
741 if (pud_devmap(*pud)) {
742 ptl = pud_lock(mm, pud);
743 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
744 spin_unlock(ptl);
745 if (page)
746 return page;
747 }
748 if (unlikely(pud_bad(*pud)))
749 return no_page_table(vma, flags);
750
751 return follow_pmd_mask(vma, address, pud, flags, ctx);
752 }
753
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,struct follow_page_context * ctx)754 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
755 unsigned long address, pgd_t *pgdp,
756 unsigned int flags,
757 struct follow_page_context *ctx)
758 {
759 p4d_t *p4d;
760 struct page *page;
761
762 p4d = p4d_offset(pgdp, address);
763 if (p4d_none(*p4d))
764 return no_page_table(vma, flags);
765 BUILD_BUG_ON(p4d_huge(*p4d));
766 if (unlikely(p4d_bad(*p4d)))
767 return no_page_table(vma, flags);
768
769 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
770 page = follow_huge_pd(vma, address,
771 __hugepd(p4d_val(*p4d)), flags,
772 P4D_SHIFT);
773 if (page)
774 return page;
775 return no_page_table(vma, flags);
776 }
777 return follow_pud_mask(vma, address, p4d, flags, ctx);
778 }
779
780 /**
781 * follow_page_mask - look up a page descriptor from a user-virtual address
782 * @vma: vm_area_struct mapping @address
783 * @address: virtual address to look up
784 * @flags: flags modifying lookup behaviour
785 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
786 * pointer to output page_mask
787 *
788 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
789 *
790 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
791 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
792 *
793 * On output, the @ctx->page_mask is set according to the size of the page.
794 *
795 * Return: the mapped (struct page *), %NULL if no mapping exists, or
796 * an error pointer if there is a mapping to something not represented
797 * by a page descriptor (see also vm_normal_page()).
798 */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct follow_page_context * ctx)799 static struct page *follow_page_mask(struct vm_area_struct *vma,
800 unsigned long address, unsigned int flags,
801 struct follow_page_context *ctx)
802 {
803 pgd_t *pgd;
804 struct page *page;
805 struct mm_struct *mm = vma->vm_mm;
806
807 ctx->page_mask = 0;
808
809 /* make this handle hugepd */
810 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
811 if (!IS_ERR(page)) {
812 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
813 return page;
814 }
815
816 pgd = pgd_offset(mm, address);
817
818 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
819 return no_page_table(vma, flags);
820
821 if (pgd_huge(*pgd)) {
822 page = follow_huge_pgd(mm, address, pgd, flags);
823 if (page)
824 return page;
825 return no_page_table(vma, flags);
826 }
827 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
828 page = follow_huge_pd(vma, address,
829 __hugepd(pgd_val(*pgd)), flags,
830 PGDIR_SHIFT);
831 if (page)
832 return page;
833 return no_page_table(vma, flags);
834 }
835
836 return follow_p4d_mask(vma, address, pgd, flags, ctx);
837 }
838
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)839 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
840 unsigned int foll_flags)
841 {
842 struct follow_page_context ctx = { NULL };
843 struct page *page;
844
845 if (vma_is_secretmem(vma))
846 return NULL;
847
848 page = follow_page_mask(vma, address, foll_flags, &ctx);
849 if (ctx.pgmap)
850 put_dev_pagemap(ctx.pgmap);
851 return page;
852 }
853
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)854 static int get_gate_page(struct mm_struct *mm, unsigned long address,
855 unsigned int gup_flags, struct vm_area_struct **vma,
856 struct page **page)
857 {
858 pgd_t *pgd;
859 p4d_t *p4d;
860 pud_t *pud;
861 pmd_t *pmd;
862 pte_t *pte;
863 int ret = -EFAULT;
864
865 /* user gate pages are read-only */
866 if (gup_flags & FOLL_WRITE)
867 return -EFAULT;
868 if (address > TASK_SIZE)
869 pgd = pgd_offset_k(address);
870 else
871 pgd = pgd_offset_gate(mm, address);
872 if (pgd_none(*pgd))
873 return -EFAULT;
874 p4d = p4d_offset(pgd, address);
875 if (p4d_none(*p4d))
876 return -EFAULT;
877 pud = pud_offset(p4d, address);
878 if (pud_none(*pud))
879 return -EFAULT;
880 pmd = pmd_offset(pud, address);
881 if (!pmd_present(*pmd))
882 return -EFAULT;
883 VM_BUG_ON(pmd_trans_huge(*pmd));
884 pte = pte_offset_map(pmd, address);
885 if (pte_none(*pte))
886 goto unmap;
887 *vma = get_gate_vma(mm);
888 if (!page)
889 goto out;
890 *page = vm_normal_page(*vma, address, *pte);
891 if (!*page) {
892 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
893 goto unmap;
894 *page = pte_page(*pte);
895 }
896 if (unlikely(!try_grab_page(*page, gup_flags))) {
897 ret = -ENOMEM;
898 goto unmap;
899 }
900 out:
901 ret = 0;
902 unmap:
903 pte_unmap(pte);
904 return ret;
905 }
906
907 /*
908 * mmap_lock must be held on entry. If @locked != NULL and *@flags
909 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
910 * is, *@locked will be set to 0 and -EBUSY returned.
911 */
faultin_page(struct vm_area_struct * vma,unsigned long address,unsigned int * flags,int * locked)912 static int faultin_page(struct vm_area_struct *vma,
913 unsigned long address, unsigned int *flags, int *locked)
914 {
915 unsigned int fault_flags = 0;
916 vm_fault_t ret;
917
918 /* mlock all present pages, but do not fault in new pages */
919 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
920 return -ENOENT;
921 if (*flags & FOLL_NOFAULT)
922 return -EFAULT;
923 if (*flags & FOLL_WRITE)
924 fault_flags |= FAULT_FLAG_WRITE;
925 if (*flags & FOLL_REMOTE)
926 fault_flags |= FAULT_FLAG_REMOTE;
927 if (locked)
928 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
929 if (*flags & FOLL_NOWAIT)
930 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
931 if (*flags & FOLL_TRIED) {
932 /*
933 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
934 * can co-exist
935 */
936 fault_flags |= FAULT_FLAG_TRIED;
937 }
938
939 ret = handle_mm_fault(vma, address, fault_flags, NULL);
940 if (ret & VM_FAULT_ERROR) {
941 int err = vm_fault_to_errno(ret, *flags);
942
943 if (err)
944 return err;
945 BUG();
946 }
947
948 if (ret & VM_FAULT_RETRY) {
949 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
950 *locked = 0;
951 return -EBUSY;
952 }
953
954 /*
955 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
956 * necessary, even if maybe_mkwrite decided not to set pte_write. We
957 * can thus safely do subsequent page lookups as if they were reads.
958 * But only do so when looping for pte_write is futile: in some cases
959 * userspace may also be wanting to write to the gotten user page,
960 * which a read fault here might prevent (a readonly page might get
961 * reCOWed by userspace write).
962 */
963 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
964 *flags |= FOLL_COW;
965 return 0;
966 }
967
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)968 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
969 {
970 vm_flags_t vm_flags = vma->vm_flags;
971 int write = (gup_flags & FOLL_WRITE);
972 int foreign = (gup_flags & FOLL_REMOTE);
973
974 if (vm_flags & (VM_IO | VM_PFNMAP))
975 return -EFAULT;
976
977 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
978 return -EFAULT;
979
980 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
981 return -EOPNOTSUPP;
982
983 if (vma_is_secretmem(vma))
984 return -EFAULT;
985
986 if (write) {
987 if (!(vm_flags & VM_WRITE)) {
988 if (!(gup_flags & FOLL_FORCE))
989 return -EFAULT;
990 /*
991 * We used to let the write,force case do COW in a
992 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
993 * set a breakpoint in a read-only mapping of an
994 * executable, without corrupting the file (yet only
995 * when that file had been opened for writing!).
996 * Anon pages in shared mappings are surprising: now
997 * just reject it.
998 */
999 if (!is_cow_mapping(vm_flags))
1000 return -EFAULT;
1001 }
1002 } else if (!(vm_flags & VM_READ)) {
1003 if (!(gup_flags & FOLL_FORCE))
1004 return -EFAULT;
1005 /*
1006 * Is there actually any vma we can reach here which does not
1007 * have VM_MAYREAD set?
1008 */
1009 if (!(vm_flags & VM_MAYREAD))
1010 return -EFAULT;
1011 }
1012 /*
1013 * gups are always data accesses, not instruction
1014 * fetches, so execute=false here
1015 */
1016 if (!arch_vma_access_permitted(vma, write, false, foreign))
1017 return -EFAULT;
1018 return 0;
1019 }
1020
1021 /**
1022 * __get_user_pages() - pin user pages in memory
1023 * @mm: mm_struct of target mm
1024 * @start: starting user address
1025 * @nr_pages: number of pages from start to pin
1026 * @gup_flags: flags modifying pin behaviour
1027 * @pages: array that receives pointers to the pages pinned.
1028 * Should be at least nr_pages long. Or NULL, if caller
1029 * only intends to ensure the pages are faulted in.
1030 * @vmas: array of pointers to vmas corresponding to each page.
1031 * Or NULL if the caller does not require them.
1032 * @locked: whether we're still with the mmap_lock held
1033 *
1034 * Returns either number of pages pinned (which may be less than the
1035 * number requested), or an error. Details about the return value:
1036 *
1037 * -- If nr_pages is 0, returns 0.
1038 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1039 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1040 * pages pinned. Again, this may be less than nr_pages.
1041 * -- 0 return value is possible when the fault would need to be retried.
1042 *
1043 * The caller is responsible for releasing returned @pages, via put_page().
1044 *
1045 * @vmas are valid only as long as mmap_lock is held.
1046 *
1047 * Must be called with mmap_lock held. It may be released. See below.
1048 *
1049 * __get_user_pages walks a process's page tables and takes a reference to
1050 * each struct page that each user address corresponds to at a given
1051 * instant. That is, it takes the page that would be accessed if a user
1052 * thread accesses the given user virtual address at that instant.
1053 *
1054 * This does not guarantee that the page exists in the user mappings when
1055 * __get_user_pages returns, and there may even be a completely different
1056 * page there in some cases (eg. if mmapped pagecache has been invalidated
1057 * and subsequently re faulted). However it does guarantee that the page
1058 * won't be freed completely. And mostly callers simply care that the page
1059 * contains data that was valid *at some point in time*. Typically, an IO
1060 * or similar operation cannot guarantee anything stronger anyway because
1061 * locks can't be held over the syscall boundary.
1062 *
1063 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1064 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1065 * appropriate) must be called after the page is finished with, and
1066 * before put_page is called.
1067 *
1068 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1069 * released by an up_read(). That can happen if @gup_flags does not
1070 * have FOLL_NOWAIT.
1071 *
1072 * A caller using such a combination of @locked and @gup_flags
1073 * must therefore hold the mmap_lock for reading only, and recognize
1074 * when it's been released. Otherwise, it must be held for either
1075 * reading or writing and will not be released.
1076 *
1077 * In most cases, get_user_pages or get_user_pages_fast should be used
1078 * instead of __get_user_pages. __get_user_pages should be used only if
1079 * you need some special @gup_flags.
1080 */
__get_user_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1081 static long __get_user_pages(struct mm_struct *mm,
1082 unsigned long start, unsigned long nr_pages,
1083 unsigned int gup_flags, struct page **pages,
1084 struct vm_area_struct **vmas, int *locked)
1085 {
1086 long ret = 0, i = 0;
1087 struct vm_area_struct *vma = NULL;
1088 struct follow_page_context ctx = { NULL };
1089
1090 if (!nr_pages)
1091 return 0;
1092
1093 start = untagged_addr(start);
1094
1095 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1096
1097 /*
1098 * If FOLL_FORCE is set then do not force a full fault as the hinting
1099 * fault information is unrelated to the reference behaviour of a task
1100 * using the address space
1101 */
1102 if (!(gup_flags & FOLL_FORCE))
1103 gup_flags |= FOLL_NUMA;
1104
1105 do {
1106 struct page *page;
1107 unsigned int foll_flags = gup_flags;
1108 unsigned int page_increm;
1109
1110 /* first iteration or cross vma bound */
1111 if (!vma || start >= vma->vm_end) {
1112 vma = find_extend_vma(mm, start);
1113 if (!vma && in_gate_area(mm, start)) {
1114 ret = get_gate_page(mm, start & PAGE_MASK,
1115 gup_flags, &vma,
1116 pages ? &pages[i] : NULL);
1117 if (ret)
1118 goto out;
1119 ctx.page_mask = 0;
1120 goto next_page;
1121 }
1122
1123 if (!vma) {
1124 ret = -EFAULT;
1125 goto out;
1126 }
1127 ret = check_vma_flags(vma, gup_flags);
1128 if (ret)
1129 goto out;
1130
1131 if (is_vm_hugetlb_page(vma)) {
1132 i = follow_hugetlb_page(mm, vma, pages, vmas,
1133 &start, &nr_pages, i,
1134 gup_flags, locked);
1135 if (locked && *locked == 0) {
1136 /*
1137 * We've got a VM_FAULT_RETRY
1138 * and we've lost mmap_lock.
1139 * We must stop here.
1140 */
1141 BUG_ON(gup_flags & FOLL_NOWAIT);
1142 goto out;
1143 }
1144 continue;
1145 }
1146 }
1147 retry:
1148 /*
1149 * If we have a pending SIGKILL, don't keep faulting pages and
1150 * potentially allocating memory.
1151 */
1152 if (fatal_signal_pending(current)) {
1153 ret = -EINTR;
1154 goto out;
1155 }
1156 cond_resched();
1157
1158 page = follow_page_mask(vma, start, foll_flags, &ctx);
1159 if (!page) {
1160 ret = faultin_page(vma, start, &foll_flags, locked);
1161 switch (ret) {
1162 case 0:
1163 goto retry;
1164 case -EBUSY:
1165 ret = 0;
1166 fallthrough;
1167 case -EFAULT:
1168 case -ENOMEM:
1169 case -EHWPOISON:
1170 goto out;
1171 case -ENOENT:
1172 goto next_page;
1173 }
1174 BUG();
1175 } else if (PTR_ERR(page) == -EEXIST) {
1176 /*
1177 * Proper page table entry exists, but no corresponding
1178 * struct page.
1179 */
1180 goto next_page;
1181 } else if (IS_ERR(page)) {
1182 ret = PTR_ERR(page);
1183 goto out;
1184 }
1185 if (pages) {
1186 pages[i] = page;
1187 flush_anon_page(vma, page, start);
1188 flush_dcache_page(page);
1189 ctx.page_mask = 0;
1190 }
1191 next_page:
1192 if (vmas) {
1193 vmas[i] = vma;
1194 ctx.page_mask = 0;
1195 }
1196 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1197 if (page_increm > nr_pages)
1198 page_increm = nr_pages;
1199 i += page_increm;
1200 start += page_increm * PAGE_SIZE;
1201 nr_pages -= page_increm;
1202 } while (nr_pages);
1203 out:
1204 if (ctx.pgmap)
1205 put_dev_pagemap(ctx.pgmap);
1206 return i ? i : ret;
1207 }
1208
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)1209 static bool vma_permits_fault(struct vm_area_struct *vma,
1210 unsigned int fault_flags)
1211 {
1212 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1213 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1214 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1215
1216 if (!(vm_flags & vma->vm_flags))
1217 return false;
1218
1219 /*
1220 * The architecture might have a hardware protection
1221 * mechanism other than read/write that can deny access.
1222 *
1223 * gup always represents data access, not instruction
1224 * fetches, so execute=false here:
1225 */
1226 if (!arch_vma_access_permitted(vma, write, false, foreign))
1227 return false;
1228
1229 return true;
1230 }
1231
1232 /**
1233 * fixup_user_fault() - manually resolve a user page fault
1234 * @mm: mm_struct of target mm
1235 * @address: user address
1236 * @fault_flags:flags to pass down to handle_mm_fault()
1237 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1238 * does not allow retry. If NULL, the caller must guarantee
1239 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1240 *
1241 * This is meant to be called in the specific scenario where for locking reasons
1242 * we try to access user memory in atomic context (within a pagefault_disable()
1243 * section), this returns -EFAULT, and we want to resolve the user fault before
1244 * trying again.
1245 *
1246 * Typically this is meant to be used by the futex code.
1247 *
1248 * The main difference with get_user_pages() is that this function will
1249 * unconditionally call handle_mm_fault() which will in turn perform all the
1250 * necessary SW fixup of the dirty and young bits in the PTE, while
1251 * get_user_pages() only guarantees to update these in the struct page.
1252 *
1253 * This is important for some architectures where those bits also gate the
1254 * access permission to the page because they are maintained in software. On
1255 * such architectures, gup() will not be enough to make a subsequent access
1256 * succeed.
1257 *
1258 * This function will not return with an unlocked mmap_lock. So it has not the
1259 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1260 */
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1261 int fixup_user_fault(struct mm_struct *mm,
1262 unsigned long address, unsigned int fault_flags,
1263 bool *unlocked)
1264 {
1265 struct vm_area_struct *vma;
1266 vm_fault_t ret;
1267
1268 address = untagged_addr(address);
1269
1270 if (unlocked)
1271 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1272
1273 retry:
1274 vma = find_extend_vma(mm, address);
1275 if (!vma || address < vma->vm_start)
1276 return -EFAULT;
1277
1278 if (!vma_permits_fault(vma, fault_flags))
1279 return -EFAULT;
1280
1281 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1282 fatal_signal_pending(current))
1283 return -EINTR;
1284
1285 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1286 if (ret & VM_FAULT_ERROR) {
1287 int err = vm_fault_to_errno(ret, 0);
1288
1289 if (err)
1290 return err;
1291 BUG();
1292 }
1293
1294 if (ret & VM_FAULT_RETRY) {
1295 mmap_read_lock(mm);
1296 *unlocked = true;
1297 fault_flags |= FAULT_FLAG_TRIED;
1298 goto retry;
1299 }
1300
1301 return 0;
1302 }
1303 EXPORT_SYMBOL_GPL(fixup_user_fault);
1304
1305 /*
1306 * Please note that this function, unlike __get_user_pages will not
1307 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1308 */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int flags)1309 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1310 unsigned long start,
1311 unsigned long nr_pages,
1312 struct page **pages,
1313 struct vm_area_struct **vmas,
1314 int *locked,
1315 unsigned int flags)
1316 {
1317 long ret, pages_done;
1318 bool lock_dropped;
1319
1320 if (locked) {
1321 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1322 BUG_ON(vmas);
1323 /* check caller initialized locked */
1324 BUG_ON(*locked != 1);
1325 }
1326
1327 if (flags & FOLL_PIN)
1328 mm_set_has_pinned_flag(&mm->flags);
1329
1330 /*
1331 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1332 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1333 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1334 * for FOLL_GET, not for the newer FOLL_PIN.
1335 *
1336 * FOLL_PIN always expects pages to be non-null, but no need to assert
1337 * that here, as any failures will be obvious enough.
1338 */
1339 if (pages && !(flags & FOLL_PIN))
1340 flags |= FOLL_GET;
1341
1342 pages_done = 0;
1343 lock_dropped = false;
1344 for (;;) {
1345 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1346 vmas, locked);
1347 if (!locked)
1348 /* VM_FAULT_RETRY couldn't trigger, bypass */
1349 return ret;
1350
1351 /* VM_FAULT_RETRY cannot return errors */
1352 if (!*locked) {
1353 BUG_ON(ret < 0);
1354 BUG_ON(ret >= nr_pages);
1355 }
1356
1357 if (ret > 0) {
1358 nr_pages -= ret;
1359 pages_done += ret;
1360 if (!nr_pages)
1361 break;
1362 }
1363 if (*locked) {
1364 /*
1365 * VM_FAULT_RETRY didn't trigger or it was a
1366 * FOLL_NOWAIT.
1367 */
1368 if (!pages_done)
1369 pages_done = ret;
1370 break;
1371 }
1372 /*
1373 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1374 * For the prefault case (!pages) we only update counts.
1375 */
1376 if (likely(pages))
1377 pages += ret;
1378 start += ret << PAGE_SHIFT;
1379 lock_dropped = true;
1380
1381 retry:
1382 /*
1383 * Repeat on the address that fired VM_FAULT_RETRY
1384 * with both FAULT_FLAG_ALLOW_RETRY and
1385 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1386 * by fatal signals, so we need to check it before we
1387 * start trying again otherwise it can loop forever.
1388 */
1389
1390 if (fatal_signal_pending(current)) {
1391 if (!pages_done)
1392 pages_done = -EINTR;
1393 break;
1394 }
1395
1396 ret = mmap_read_lock_killable(mm);
1397 if (ret) {
1398 BUG_ON(ret > 0);
1399 if (!pages_done)
1400 pages_done = ret;
1401 break;
1402 }
1403
1404 *locked = 1;
1405 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1406 pages, NULL, locked);
1407 if (!*locked) {
1408 /* Continue to retry until we succeeded */
1409 BUG_ON(ret != 0);
1410 goto retry;
1411 }
1412 if (ret != 1) {
1413 BUG_ON(ret > 1);
1414 if (!pages_done)
1415 pages_done = ret;
1416 break;
1417 }
1418 nr_pages--;
1419 pages_done++;
1420 if (!nr_pages)
1421 break;
1422 if (likely(pages))
1423 pages++;
1424 start += PAGE_SIZE;
1425 }
1426 if (lock_dropped && *locked) {
1427 /*
1428 * We must let the caller know we temporarily dropped the lock
1429 * and so the critical section protected by it was lost.
1430 */
1431 mmap_read_unlock(mm);
1432 *locked = 0;
1433 }
1434 return pages_done;
1435 }
1436
1437 /**
1438 * populate_vma_page_range() - populate a range of pages in the vma.
1439 * @vma: target vma
1440 * @start: start address
1441 * @end: end address
1442 * @locked: whether the mmap_lock is still held
1443 *
1444 * This takes care of mlocking the pages too if VM_LOCKED is set.
1445 *
1446 * Return either number of pages pinned in the vma, or a negative error
1447 * code on error.
1448 *
1449 * vma->vm_mm->mmap_lock must be held.
1450 *
1451 * If @locked is NULL, it may be held for read or write and will
1452 * be unperturbed.
1453 *
1454 * If @locked is non-NULL, it must held for read only and may be
1455 * released. If it's released, *@locked will be set to 0.
1456 */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * locked)1457 long populate_vma_page_range(struct vm_area_struct *vma,
1458 unsigned long start, unsigned long end, int *locked)
1459 {
1460 struct mm_struct *mm = vma->vm_mm;
1461 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1462 int gup_flags;
1463
1464 VM_BUG_ON(!PAGE_ALIGNED(start));
1465 VM_BUG_ON(!PAGE_ALIGNED(end));
1466 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1467 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1468 mmap_assert_locked(mm);
1469
1470 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1471 if (vma->vm_flags & VM_LOCKONFAULT)
1472 gup_flags &= ~FOLL_POPULATE;
1473 /*
1474 * We want to touch writable mappings with a write fault in order
1475 * to break COW, except for shared mappings because these don't COW
1476 * and we would not want to dirty them for nothing.
1477 */
1478 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1479 gup_flags |= FOLL_WRITE;
1480
1481 /*
1482 * We want mlock to succeed for regions that have any permissions
1483 * other than PROT_NONE.
1484 */
1485 if (vma_is_accessible(vma))
1486 gup_flags |= FOLL_FORCE;
1487
1488 /*
1489 * We made sure addr is within a VMA, so the following will
1490 * not result in a stack expansion that recurses back here.
1491 */
1492 return __get_user_pages(mm, start, nr_pages, gup_flags,
1493 NULL, NULL, locked);
1494 }
1495
1496 /*
1497 * faultin_vma_page_range() - populate (prefault) page tables inside the
1498 * given VMA range readable/writable
1499 *
1500 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1501 *
1502 * @vma: target vma
1503 * @start: start address
1504 * @end: end address
1505 * @write: whether to prefault readable or writable
1506 * @locked: whether the mmap_lock is still held
1507 *
1508 * Returns either number of processed pages in the vma, or a negative error
1509 * code on error (see __get_user_pages()).
1510 *
1511 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1512 * covered by the VMA.
1513 *
1514 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1515 *
1516 * If @locked is non-NULL, it must held for read only and may be released. If
1517 * it's released, *@locked will be set to 0.
1518 */
faultin_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool write,int * locked)1519 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1520 unsigned long end, bool write, int *locked)
1521 {
1522 struct mm_struct *mm = vma->vm_mm;
1523 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1524 int gup_flags;
1525
1526 VM_BUG_ON(!PAGE_ALIGNED(start));
1527 VM_BUG_ON(!PAGE_ALIGNED(end));
1528 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1529 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1530 mmap_assert_locked(mm);
1531
1532 /*
1533 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1534 * the page dirty with FOLL_WRITE -- which doesn't make a
1535 * difference with !FOLL_FORCE, because the page is writable
1536 * in the page table.
1537 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1538 * a poisoned page.
1539 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1540 * !FOLL_FORCE: Require proper access permissions.
1541 */
1542 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1543 if (write)
1544 gup_flags |= FOLL_WRITE;
1545
1546 /*
1547 * We want to report -EINVAL instead of -EFAULT for any permission
1548 * problems or incompatible mappings.
1549 */
1550 if (check_vma_flags(vma, gup_flags))
1551 return -EINVAL;
1552
1553 return __get_user_pages(mm, start, nr_pages, gup_flags,
1554 NULL, NULL, locked);
1555 }
1556
1557 /*
1558 * __mm_populate - populate and/or mlock pages within a range of address space.
1559 *
1560 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1561 * flags. VMAs must be already marked with the desired vm_flags, and
1562 * mmap_lock must not be held.
1563 */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1564 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1565 {
1566 struct mm_struct *mm = current->mm;
1567 unsigned long end, nstart, nend;
1568 struct vm_area_struct *vma = NULL;
1569 int locked = 0;
1570 long ret = 0;
1571
1572 end = start + len;
1573
1574 for (nstart = start; nstart < end; nstart = nend) {
1575 /*
1576 * We want to fault in pages for [nstart; end) address range.
1577 * Find first corresponding VMA.
1578 */
1579 if (!locked) {
1580 locked = 1;
1581 mmap_read_lock(mm);
1582 vma = find_vma(mm, nstart);
1583 } else if (nstart >= vma->vm_end)
1584 vma = vma->vm_next;
1585 if (!vma || vma->vm_start >= end)
1586 break;
1587 /*
1588 * Set [nstart; nend) to intersection of desired address
1589 * range with the first VMA. Also, skip undesirable VMA types.
1590 */
1591 nend = min(end, vma->vm_end);
1592 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1593 continue;
1594 if (nstart < vma->vm_start)
1595 nstart = vma->vm_start;
1596 /*
1597 * Now fault in a range of pages. populate_vma_page_range()
1598 * double checks the vma flags, so that it won't mlock pages
1599 * if the vma was already munlocked.
1600 */
1601 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1602 if (ret < 0) {
1603 if (ignore_errors) {
1604 ret = 0;
1605 continue; /* continue at next VMA */
1606 }
1607 break;
1608 }
1609 nend = nstart + ret * PAGE_SIZE;
1610 ret = 0;
1611 }
1612 if (locked)
1613 mmap_read_unlock(mm);
1614 return ret; /* 0 or negative error code */
1615 }
1616 #else /* CONFIG_MMU */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int foll_flags)1617 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1618 unsigned long nr_pages, struct page **pages,
1619 struct vm_area_struct **vmas, int *locked,
1620 unsigned int foll_flags)
1621 {
1622 struct vm_area_struct *vma;
1623 unsigned long vm_flags;
1624 long i;
1625
1626 /* calculate required read or write permissions.
1627 * If FOLL_FORCE is set, we only require the "MAY" flags.
1628 */
1629 vm_flags = (foll_flags & FOLL_WRITE) ?
1630 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1631 vm_flags &= (foll_flags & FOLL_FORCE) ?
1632 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1633
1634 for (i = 0; i < nr_pages; i++) {
1635 vma = find_vma(mm, start);
1636 if (!vma)
1637 goto finish_or_fault;
1638
1639 /* protect what we can, including chardevs */
1640 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1641 !(vm_flags & vma->vm_flags))
1642 goto finish_or_fault;
1643
1644 if (pages) {
1645 pages[i] = virt_to_page(start);
1646 if (pages[i])
1647 get_page(pages[i]);
1648 }
1649 if (vmas)
1650 vmas[i] = vma;
1651 start = (start + PAGE_SIZE) & PAGE_MASK;
1652 }
1653
1654 return i;
1655
1656 finish_or_fault:
1657 return i ? : -EFAULT;
1658 }
1659 #endif /* !CONFIG_MMU */
1660
1661 /**
1662 * fault_in_writeable - fault in userspace address range for writing
1663 * @uaddr: start of address range
1664 * @size: size of address range
1665 *
1666 * Returns the number of bytes not faulted in (like copy_to_user() and
1667 * copy_from_user()).
1668 */
fault_in_writeable(char __user * uaddr,size_t size)1669 size_t fault_in_writeable(char __user *uaddr, size_t size)
1670 {
1671 char __user *start = uaddr, *end;
1672
1673 if (unlikely(size == 0))
1674 return 0;
1675 if (!PAGE_ALIGNED(uaddr)) {
1676 if (unlikely(__put_user(0, uaddr) != 0))
1677 return size;
1678 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1679 }
1680 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1681 if (unlikely(end < start))
1682 end = NULL;
1683 while (uaddr != end) {
1684 if (unlikely(__put_user(0, uaddr) != 0))
1685 goto out;
1686 uaddr += PAGE_SIZE;
1687 }
1688
1689 out:
1690 if (size > uaddr - start)
1691 return size - (uaddr - start);
1692 return 0;
1693 }
1694 EXPORT_SYMBOL(fault_in_writeable);
1695
1696 /*
1697 * fault_in_safe_writeable - fault in an address range for writing
1698 * @uaddr: start of address range
1699 * @size: length of address range
1700 *
1701 * Faults in an address range using get_user_pages, i.e., without triggering
1702 * hardware page faults. This is primarily useful when we already know that
1703 * some or all of the pages in the address range aren't in memory.
1704 *
1705 * Other than fault_in_writeable(), this function is non-destructive.
1706 *
1707 * Note that we don't pin or otherwise hold the pages referenced that we fault
1708 * in. There's no guarantee that they'll stay in memory for any duration of
1709 * time.
1710 *
1711 * Returns the number of bytes not faulted in, like copy_to_user() and
1712 * copy_from_user().
1713 */
fault_in_safe_writeable(const char __user * uaddr,size_t size)1714 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1715 {
1716 unsigned long start = (unsigned long)untagged_addr(uaddr);
1717 unsigned long end, nstart, nend;
1718 struct mm_struct *mm = current->mm;
1719 struct vm_area_struct *vma = NULL;
1720 int locked = 0;
1721
1722 nstart = start & PAGE_MASK;
1723 end = PAGE_ALIGN(start + size);
1724 if (end < nstart)
1725 end = 0;
1726 for (; nstart != end; nstart = nend) {
1727 unsigned long nr_pages;
1728 long ret;
1729
1730 if (!locked) {
1731 locked = 1;
1732 mmap_read_lock(mm);
1733 vma = find_vma(mm, nstart);
1734 } else if (nstart >= vma->vm_end)
1735 vma = vma->vm_next;
1736 if (!vma || vma->vm_start >= end)
1737 break;
1738 nend = end ? min(end, vma->vm_end) : vma->vm_end;
1739 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1740 continue;
1741 if (nstart < vma->vm_start)
1742 nstart = vma->vm_start;
1743 nr_pages = (nend - nstart) / PAGE_SIZE;
1744 ret = __get_user_pages_locked(mm, nstart, nr_pages,
1745 NULL, NULL, &locked,
1746 FOLL_TOUCH | FOLL_WRITE);
1747 if (ret <= 0)
1748 break;
1749 nend = nstart + ret * PAGE_SIZE;
1750 }
1751 if (locked)
1752 mmap_read_unlock(mm);
1753 if (nstart == end)
1754 return 0;
1755 return size - min_t(size_t, nstart - start, size);
1756 }
1757 EXPORT_SYMBOL(fault_in_safe_writeable);
1758
1759 /**
1760 * fault_in_readable - fault in userspace address range for reading
1761 * @uaddr: start of user address range
1762 * @size: size of user address range
1763 *
1764 * Returns the number of bytes not faulted in (like copy_to_user() and
1765 * copy_from_user()).
1766 */
fault_in_readable(const char __user * uaddr,size_t size)1767 size_t fault_in_readable(const char __user *uaddr, size_t size)
1768 {
1769 const char __user *start = uaddr, *end;
1770 volatile char c;
1771
1772 if (unlikely(size == 0))
1773 return 0;
1774 if (!PAGE_ALIGNED(uaddr)) {
1775 if (unlikely(__get_user(c, uaddr) != 0))
1776 return size;
1777 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1778 }
1779 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1780 if (unlikely(end < start))
1781 end = NULL;
1782 while (uaddr != end) {
1783 if (unlikely(__get_user(c, uaddr) != 0))
1784 goto out;
1785 uaddr += PAGE_SIZE;
1786 }
1787
1788 out:
1789 (void)c;
1790 if (size > uaddr - start)
1791 return size - (uaddr - start);
1792 return 0;
1793 }
1794 EXPORT_SYMBOL(fault_in_readable);
1795
1796 /**
1797 * get_dump_page() - pin user page in memory while writing it to core dump
1798 * @addr: user address
1799 *
1800 * Returns struct page pointer of user page pinned for dump,
1801 * to be freed afterwards by put_page().
1802 *
1803 * Returns NULL on any kind of failure - a hole must then be inserted into
1804 * the corefile, to preserve alignment with its headers; and also returns
1805 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1806 * allowing a hole to be left in the corefile to save disk space.
1807 *
1808 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1809 */
1810 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)1811 struct page *get_dump_page(unsigned long addr)
1812 {
1813 struct mm_struct *mm = current->mm;
1814 struct page *page;
1815 int locked = 1;
1816 int ret;
1817
1818 if (mmap_read_lock_killable(mm))
1819 return NULL;
1820 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1821 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1822 if (locked)
1823 mmap_read_unlock(mm);
1824 return (ret == 1) ? page : NULL;
1825 }
1826 #endif /* CONFIG_ELF_CORE */
1827
1828 #ifdef CONFIG_MIGRATION
1829 /*
1830 * Check whether all pages are pinnable, if so return number of pages. If some
1831 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1832 * pages were migrated, or if some pages were not successfully isolated.
1833 * Return negative error if migration fails.
1834 */
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)1835 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1836 struct page **pages,
1837 unsigned int gup_flags)
1838 {
1839 unsigned long i;
1840 unsigned long isolation_error_count = 0;
1841 bool drain_allow = true;
1842 LIST_HEAD(movable_page_list);
1843 long ret = 0;
1844 struct page *prev_head = NULL;
1845 struct page *head;
1846 struct migration_target_control mtc = {
1847 .nid = NUMA_NO_NODE,
1848 .gfp_mask = GFP_USER | __GFP_NOWARN,
1849 };
1850
1851 for (i = 0; i < nr_pages; i++) {
1852 head = compound_head(pages[i]);
1853 if (head == prev_head)
1854 continue;
1855 prev_head = head;
1856 /*
1857 * If we get a movable page, since we are going to be pinning
1858 * these entries, try to move them out if possible.
1859 */
1860 if (!is_pinnable_page(head)) {
1861 if (PageHuge(head)) {
1862 if (!isolate_huge_page(head, &movable_page_list))
1863 isolation_error_count++;
1864 } else {
1865 if (!PageLRU(head) && drain_allow) {
1866 lru_add_drain_all();
1867 drain_allow = false;
1868 }
1869
1870 if (isolate_lru_page(head)) {
1871 isolation_error_count++;
1872 continue;
1873 }
1874 list_add_tail(&head->lru, &movable_page_list);
1875 mod_node_page_state(page_pgdat(head),
1876 NR_ISOLATED_ANON +
1877 page_is_file_lru(head),
1878 thp_nr_pages(head));
1879 }
1880 }
1881 }
1882
1883 /*
1884 * If list is empty, and no isolation errors, means that all pages are
1885 * in the correct zone.
1886 */
1887 if (list_empty(&movable_page_list) && !isolation_error_count)
1888 return nr_pages;
1889
1890 if (gup_flags & FOLL_PIN) {
1891 unpin_user_pages(pages, nr_pages);
1892 } else {
1893 for (i = 0; i < nr_pages; i++)
1894 put_page(pages[i]);
1895 }
1896 if (!list_empty(&movable_page_list)) {
1897 ret = migrate_pages(&movable_page_list, alloc_migration_target,
1898 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1899 MR_LONGTERM_PIN, NULL);
1900 if (ret && !list_empty(&movable_page_list))
1901 putback_movable_pages(&movable_page_list);
1902 }
1903
1904 return ret > 0 ? -ENOMEM : ret;
1905 }
1906 #else
check_and_migrate_movable_pages(unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)1907 static long check_and_migrate_movable_pages(unsigned long nr_pages,
1908 struct page **pages,
1909 unsigned int gup_flags)
1910 {
1911 return nr_pages;
1912 }
1913 #endif /* CONFIG_MIGRATION */
1914
1915 /*
1916 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1917 * allows us to process the FOLL_LONGTERM flag.
1918 */
__gup_longterm_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,unsigned int gup_flags)1919 static long __gup_longterm_locked(struct mm_struct *mm,
1920 unsigned long start,
1921 unsigned long nr_pages,
1922 struct page **pages,
1923 struct vm_area_struct **vmas,
1924 unsigned int gup_flags)
1925 {
1926 unsigned int flags;
1927 long rc;
1928
1929 if (!(gup_flags & FOLL_LONGTERM))
1930 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1931 NULL, gup_flags);
1932 flags = memalloc_pin_save();
1933 do {
1934 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1935 NULL, gup_flags);
1936 if (rc <= 0)
1937 break;
1938 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1939 } while (!rc);
1940 memalloc_pin_restore(flags);
1941
1942 return rc;
1943 }
1944
is_valid_gup_flags(unsigned int gup_flags)1945 static bool is_valid_gup_flags(unsigned int gup_flags)
1946 {
1947 /*
1948 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1949 * never directly by the caller, so enforce that with an assertion:
1950 */
1951 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1952 return false;
1953 /*
1954 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1955 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1956 * FOLL_PIN.
1957 */
1958 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1959 return false;
1960
1961 return true;
1962 }
1963
1964 #ifdef CONFIG_MMU
__get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1965 static long __get_user_pages_remote(struct mm_struct *mm,
1966 unsigned long start, unsigned long nr_pages,
1967 unsigned int gup_flags, struct page **pages,
1968 struct vm_area_struct **vmas, int *locked)
1969 {
1970 /*
1971 * Parts of FOLL_LONGTERM behavior are incompatible with
1972 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1973 * vmas. However, this only comes up if locked is set, and there are
1974 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1975 * allow what we can.
1976 */
1977 if (gup_flags & FOLL_LONGTERM) {
1978 if (WARN_ON_ONCE(locked))
1979 return -EINVAL;
1980 /*
1981 * This will check the vmas (even if our vmas arg is NULL)
1982 * and return -ENOTSUPP if DAX isn't allowed in this case:
1983 */
1984 return __gup_longterm_locked(mm, start, nr_pages, pages,
1985 vmas, gup_flags | FOLL_TOUCH |
1986 FOLL_REMOTE);
1987 }
1988
1989 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1990 locked,
1991 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1992 }
1993
1994 /**
1995 * get_user_pages_remote() - pin user pages in memory
1996 * @mm: mm_struct of target mm
1997 * @start: starting user address
1998 * @nr_pages: number of pages from start to pin
1999 * @gup_flags: flags modifying lookup behaviour
2000 * @pages: array that receives pointers to the pages pinned.
2001 * Should be at least nr_pages long. Or NULL, if caller
2002 * only intends to ensure the pages are faulted in.
2003 * @vmas: array of pointers to vmas corresponding to each page.
2004 * Or NULL if the caller does not require them.
2005 * @locked: pointer to lock flag indicating whether lock is held and
2006 * subsequently whether VM_FAULT_RETRY functionality can be
2007 * utilised. Lock must initially be held.
2008 *
2009 * Returns either number of pages pinned (which may be less than the
2010 * number requested), or an error. Details about the return value:
2011 *
2012 * -- If nr_pages is 0, returns 0.
2013 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2014 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2015 * pages pinned. Again, this may be less than nr_pages.
2016 *
2017 * The caller is responsible for releasing returned @pages, via put_page().
2018 *
2019 * @vmas are valid only as long as mmap_lock is held.
2020 *
2021 * Must be called with mmap_lock held for read or write.
2022 *
2023 * get_user_pages_remote walks a process's page tables and takes a reference
2024 * to each struct page that each user address corresponds to at a given
2025 * instant. That is, it takes the page that would be accessed if a user
2026 * thread accesses the given user virtual address at that instant.
2027 *
2028 * This does not guarantee that the page exists in the user mappings when
2029 * get_user_pages_remote returns, and there may even be a completely different
2030 * page there in some cases (eg. if mmapped pagecache has been invalidated
2031 * and subsequently re faulted). However it does guarantee that the page
2032 * won't be freed completely. And mostly callers simply care that the page
2033 * contains data that was valid *at some point in time*. Typically, an IO
2034 * or similar operation cannot guarantee anything stronger anyway because
2035 * locks can't be held over the syscall boundary.
2036 *
2037 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2038 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2039 * be called after the page is finished with, and before put_page is called.
2040 *
2041 * get_user_pages_remote is typically used for fewer-copy IO operations,
2042 * to get a handle on the memory by some means other than accesses
2043 * via the user virtual addresses. The pages may be submitted for
2044 * DMA to devices or accessed via their kernel linear mapping (via the
2045 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2046 *
2047 * See also get_user_pages_fast, for performance critical applications.
2048 *
2049 * get_user_pages_remote should be phased out in favor of
2050 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2051 * should use get_user_pages_remote because it cannot pass
2052 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2053 */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2054 long get_user_pages_remote(struct mm_struct *mm,
2055 unsigned long start, unsigned long nr_pages,
2056 unsigned int gup_flags, struct page **pages,
2057 struct vm_area_struct **vmas, int *locked)
2058 {
2059 if (!is_valid_gup_flags(gup_flags))
2060 return -EINVAL;
2061
2062 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2063 pages, vmas, locked);
2064 }
2065 EXPORT_SYMBOL(get_user_pages_remote);
2066
2067 #else /* CONFIG_MMU */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2068 long get_user_pages_remote(struct mm_struct *mm,
2069 unsigned long start, unsigned long nr_pages,
2070 unsigned int gup_flags, struct page **pages,
2071 struct vm_area_struct **vmas, int *locked)
2072 {
2073 return 0;
2074 }
2075
__get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2076 static long __get_user_pages_remote(struct mm_struct *mm,
2077 unsigned long start, unsigned long nr_pages,
2078 unsigned int gup_flags, struct page **pages,
2079 struct vm_area_struct **vmas, int *locked)
2080 {
2081 return 0;
2082 }
2083 #endif /* !CONFIG_MMU */
2084
2085 /**
2086 * get_user_pages() - pin user pages in memory
2087 * @start: starting user address
2088 * @nr_pages: number of pages from start to pin
2089 * @gup_flags: flags modifying lookup behaviour
2090 * @pages: array that receives pointers to the pages pinned.
2091 * Should be at least nr_pages long. Or NULL, if caller
2092 * only intends to ensure the pages are faulted in.
2093 * @vmas: array of pointers to vmas corresponding to each page.
2094 * Or NULL if the caller does not require them.
2095 *
2096 * This is the same as get_user_pages_remote(), just with a less-flexible
2097 * calling convention where we assume that the mm being operated on belongs to
2098 * the current task, and doesn't allow passing of a locked parameter. We also
2099 * obviously don't pass FOLL_REMOTE in here.
2100 */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)2101 long get_user_pages(unsigned long start, unsigned long nr_pages,
2102 unsigned int gup_flags, struct page **pages,
2103 struct vm_area_struct **vmas)
2104 {
2105 if (!is_valid_gup_flags(gup_flags))
2106 return -EINVAL;
2107
2108 return __gup_longterm_locked(current->mm, start, nr_pages,
2109 pages, vmas, gup_flags | FOLL_TOUCH);
2110 }
2111 EXPORT_SYMBOL(get_user_pages);
2112
2113 /**
2114 * get_user_pages_locked() - variant of get_user_pages()
2115 *
2116 * @start: starting user address
2117 * @nr_pages: number of pages from start to pin
2118 * @gup_flags: flags modifying lookup behaviour
2119 * @pages: array that receives pointers to the pages pinned.
2120 * Should be at least nr_pages long. Or NULL, if caller
2121 * only intends to ensure the pages are faulted in.
2122 * @locked: pointer to lock flag indicating whether lock is held and
2123 * subsequently whether VM_FAULT_RETRY functionality can be
2124 * utilised. Lock must initially be held.
2125 *
2126 * It is suitable to replace the form:
2127 *
2128 * mmap_read_lock(mm);
2129 * do_something()
2130 * get_user_pages(mm, ..., pages, NULL);
2131 * mmap_read_unlock(mm);
2132 *
2133 * to:
2134 *
2135 * int locked = 1;
2136 * mmap_read_lock(mm);
2137 * do_something()
2138 * get_user_pages_locked(mm, ..., pages, &locked);
2139 * if (locked)
2140 * mmap_read_unlock(mm);
2141 *
2142 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2143 * paths better by using either get_user_pages_locked() or
2144 * get_user_pages_unlocked().
2145 *
2146 */
get_user_pages_locked(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)2147 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2148 unsigned int gup_flags, struct page **pages,
2149 int *locked)
2150 {
2151 /*
2152 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2153 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2154 * vmas. As there are no users of this flag in this call we simply
2155 * disallow this option for now.
2156 */
2157 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2158 return -EINVAL;
2159 /*
2160 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2161 * never directly by the caller, so enforce that:
2162 */
2163 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2164 return -EINVAL;
2165
2166 return __get_user_pages_locked(current->mm, start, nr_pages,
2167 pages, NULL, locked,
2168 gup_flags | FOLL_TOUCH);
2169 }
2170 EXPORT_SYMBOL(get_user_pages_locked);
2171
2172 /*
2173 * get_user_pages_unlocked() is suitable to replace the form:
2174 *
2175 * mmap_read_lock(mm);
2176 * get_user_pages(mm, ..., pages, NULL);
2177 * mmap_read_unlock(mm);
2178 *
2179 * with:
2180 *
2181 * get_user_pages_unlocked(mm, ..., pages);
2182 *
2183 * It is functionally equivalent to get_user_pages_fast so
2184 * get_user_pages_fast should be used instead if specific gup_flags
2185 * (e.g. FOLL_FORCE) are not required.
2186 */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)2187 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2188 struct page **pages, unsigned int gup_flags)
2189 {
2190 struct mm_struct *mm = current->mm;
2191 int locked = 1;
2192 long ret;
2193
2194 /*
2195 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2196 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2197 * vmas. As there are no users of this flag in this call we simply
2198 * disallow this option for now.
2199 */
2200 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2201 return -EINVAL;
2202
2203 mmap_read_lock(mm);
2204 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2205 &locked, gup_flags | FOLL_TOUCH);
2206 if (locked)
2207 mmap_read_unlock(mm);
2208 return ret;
2209 }
2210 EXPORT_SYMBOL(get_user_pages_unlocked);
2211
2212 /*
2213 * Fast GUP
2214 *
2215 * get_user_pages_fast attempts to pin user pages by walking the page
2216 * tables directly and avoids taking locks. Thus the walker needs to be
2217 * protected from page table pages being freed from under it, and should
2218 * block any THP splits.
2219 *
2220 * One way to achieve this is to have the walker disable interrupts, and
2221 * rely on IPIs from the TLB flushing code blocking before the page table
2222 * pages are freed. This is unsuitable for architectures that do not need
2223 * to broadcast an IPI when invalidating TLBs.
2224 *
2225 * Another way to achieve this is to batch up page table containing pages
2226 * belonging to more than one mm_user, then rcu_sched a callback to free those
2227 * pages. Disabling interrupts will allow the fast_gup walker to both block
2228 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2229 * (which is a relatively rare event). The code below adopts this strategy.
2230 *
2231 * Before activating this code, please be aware that the following assumptions
2232 * are currently made:
2233 *
2234 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2235 * free pages containing page tables or TLB flushing requires IPI broadcast.
2236 *
2237 * *) ptes can be read atomically by the architecture.
2238 *
2239 * *) access_ok is sufficient to validate userspace address ranges.
2240 *
2241 * The last two assumptions can be relaxed by the addition of helper functions.
2242 *
2243 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2244 */
2245 #ifdef CONFIG_HAVE_FAST_GUP
2246
undo_dev_pagemap(int * nr,int nr_start,unsigned int flags,struct page ** pages)2247 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2248 unsigned int flags,
2249 struct page **pages)
2250 {
2251 while ((*nr) - nr_start) {
2252 struct page *page = pages[--(*nr)];
2253
2254 ClearPageReferenced(page);
2255 if (flags & FOLL_PIN)
2256 unpin_user_page(page);
2257 else
2258 put_page(page);
2259 }
2260 }
2261
2262 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
gup_pte_range(pmd_t pmd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2263 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2264 unsigned int flags, struct page **pages, int *nr)
2265 {
2266 struct dev_pagemap *pgmap = NULL;
2267 int nr_start = *nr, ret = 0;
2268 pte_t *ptep, *ptem;
2269
2270 ptem = ptep = pte_offset_map(&pmd, addr);
2271 do {
2272 pte_t pte = ptep_get_lockless(ptep);
2273 struct page *head, *page;
2274
2275 /*
2276 * Similar to the PMD case below, NUMA hinting must take slow
2277 * path using the pte_protnone check.
2278 */
2279 if (pte_protnone(pte))
2280 goto pte_unmap;
2281
2282 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2283 goto pte_unmap;
2284
2285 if (pte_devmap(pte)) {
2286 if (unlikely(flags & FOLL_LONGTERM))
2287 goto pte_unmap;
2288
2289 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2290 if (unlikely(!pgmap)) {
2291 undo_dev_pagemap(nr, nr_start, flags, pages);
2292 goto pte_unmap;
2293 }
2294 } else if (pte_special(pte))
2295 goto pte_unmap;
2296
2297 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2298 page = pte_page(pte);
2299
2300 head = try_grab_compound_head(page, 1, flags);
2301 if (!head)
2302 goto pte_unmap;
2303
2304 if (unlikely(page_is_secretmem(page))) {
2305 put_compound_head(head, 1, flags);
2306 goto pte_unmap;
2307 }
2308
2309 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2310 put_compound_head(head, 1, flags);
2311 goto pte_unmap;
2312 }
2313
2314 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2315
2316 /*
2317 * We need to make the page accessible if and only if we are
2318 * going to access its content (the FOLL_PIN case). Please
2319 * see Documentation/core-api/pin_user_pages.rst for
2320 * details.
2321 */
2322 if (flags & FOLL_PIN) {
2323 ret = arch_make_page_accessible(page);
2324 if (ret) {
2325 unpin_user_page(page);
2326 goto pte_unmap;
2327 }
2328 }
2329 SetPageReferenced(page);
2330 pages[*nr] = page;
2331 (*nr)++;
2332
2333 } while (ptep++, addr += PAGE_SIZE, addr != end);
2334
2335 ret = 1;
2336
2337 pte_unmap:
2338 if (pgmap)
2339 put_dev_pagemap(pgmap);
2340 pte_unmap(ptem);
2341 return ret;
2342 }
2343 #else
2344
2345 /*
2346 * If we can't determine whether or not a pte is special, then fail immediately
2347 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2348 * to be special.
2349 *
2350 * For a futex to be placed on a THP tail page, get_futex_key requires a
2351 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2352 * useful to have gup_huge_pmd even if we can't operate on ptes.
2353 */
gup_pte_range(pmd_t pmd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2354 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2355 unsigned int flags, struct page **pages, int *nr)
2356 {
2357 return 0;
2358 }
2359 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2360
2361 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
__gup_device_huge(unsigned long pfn,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2362 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2363 unsigned long end, unsigned int flags,
2364 struct page **pages, int *nr)
2365 {
2366 int nr_start = *nr;
2367 struct dev_pagemap *pgmap = NULL;
2368
2369 do {
2370 struct page *page = pfn_to_page(pfn);
2371
2372 pgmap = get_dev_pagemap(pfn, pgmap);
2373 if (unlikely(!pgmap)) {
2374 undo_dev_pagemap(nr, nr_start, flags, pages);
2375 break;
2376 }
2377 SetPageReferenced(page);
2378 pages[*nr] = page;
2379 if (unlikely(!try_grab_page(page, flags))) {
2380 undo_dev_pagemap(nr, nr_start, flags, pages);
2381 break;
2382 }
2383 (*nr)++;
2384 pfn++;
2385 } while (addr += PAGE_SIZE, addr != end);
2386
2387 put_dev_pagemap(pgmap);
2388 return addr == end;
2389 }
2390
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2391 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2392 unsigned long end, unsigned int flags,
2393 struct page **pages, int *nr)
2394 {
2395 unsigned long fault_pfn;
2396 int nr_start = *nr;
2397
2398 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2399 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2400 return 0;
2401
2402 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2403 undo_dev_pagemap(nr, nr_start, flags, pages);
2404 return 0;
2405 }
2406 return 1;
2407 }
2408
__gup_device_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2409 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2410 unsigned long end, unsigned int flags,
2411 struct page **pages, int *nr)
2412 {
2413 unsigned long fault_pfn;
2414 int nr_start = *nr;
2415
2416 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2417 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2418 return 0;
2419
2420 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2421 undo_dev_pagemap(nr, nr_start, flags, pages);
2422 return 0;
2423 }
2424 return 1;
2425 }
2426 #else
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2427 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2428 unsigned long end, unsigned int flags,
2429 struct page **pages, int *nr)
2430 {
2431 BUILD_BUG();
2432 return 0;
2433 }
2434
__gup_device_huge_pud(pud_t pud,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2435 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2436 unsigned long end, unsigned int flags,
2437 struct page **pages, int *nr)
2438 {
2439 BUILD_BUG();
2440 return 0;
2441 }
2442 #endif
2443
record_subpages(struct page * page,unsigned long addr,unsigned long end,struct page ** pages)2444 static int record_subpages(struct page *page, unsigned long addr,
2445 unsigned long end, struct page **pages)
2446 {
2447 int nr;
2448
2449 for (nr = 0; addr != end; addr += PAGE_SIZE)
2450 pages[nr++] = page++;
2451
2452 return nr;
2453 }
2454
2455 #ifdef CONFIG_ARCH_HAS_HUGEPD
hugepte_addr_end(unsigned long addr,unsigned long end,unsigned long sz)2456 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2457 unsigned long sz)
2458 {
2459 unsigned long __boundary = (addr + sz) & ~(sz-1);
2460 return (__boundary - 1 < end - 1) ? __boundary : end;
2461 }
2462
gup_hugepte(pte_t * ptep,unsigned long sz,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2463 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2464 unsigned long end, unsigned int flags,
2465 struct page **pages, int *nr)
2466 {
2467 unsigned long pte_end;
2468 struct page *head, *page;
2469 pte_t pte;
2470 int refs;
2471
2472 pte_end = (addr + sz) & ~(sz-1);
2473 if (pte_end < end)
2474 end = pte_end;
2475
2476 pte = huge_ptep_get(ptep);
2477
2478 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2479 return 0;
2480
2481 /* hugepages are never "special" */
2482 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2483
2484 head = pte_page(pte);
2485 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2486 refs = record_subpages(page, addr, end, pages + *nr);
2487
2488 head = try_grab_compound_head(head, refs, flags);
2489 if (!head)
2490 return 0;
2491
2492 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2493 put_compound_head(head, refs, flags);
2494 return 0;
2495 }
2496
2497 *nr += refs;
2498 SetPageReferenced(head);
2499 return 1;
2500 }
2501
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2502 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2503 unsigned int pdshift, unsigned long end, unsigned int flags,
2504 struct page **pages, int *nr)
2505 {
2506 pte_t *ptep;
2507 unsigned long sz = 1UL << hugepd_shift(hugepd);
2508 unsigned long next;
2509
2510 ptep = hugepte_offset(hugepd, addr, pdshift);
2511 do {
2512 next = hugepte_addr_end(addr, end, sz);
2513 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2514 return 0;
2515 } while (ptep++, addr = next, addr != end);
2516
2517 return 1;
2518 }
2519 #else
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2520 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2521 unsigned int pdshift, unsigned long end, unsigned int flags,
2522 struct page **pages, int *nr)
2523 {
2524 return 0;
2525 }
2526 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2527
gup_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2528 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2529 unsigned long end, unsigned int flags,
2530 struct page **pages, int *nr)
2531 {
2532 struct page *head, *page;
2533 int refs;
2534
2535 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2536 return 0;
2537
2538 if (pmd_devmap(orig)) {
2539 if (unlikely(flags & FOLL_LONGTERM))
2540 return 0;
2541 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2542 pages, nr);
2543 }
2544
2545 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2546 refs = record_subpages(page, addr, end, pages + *nr);
2547
2548 head = try_grab_compound_head(pmd_page(orig), refs, flags);
2549 if (!head)
2550 return 0;
2551
2552 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2553 put_compound_head(head, refs, flags);
2554 return 0;
2555 }
2556
2557 *nr += refs;
2558 SetPageReferenced(head);
2559 return 1;
2560 }
2561
gup_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2562 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2563 unsigned long end, unsigned int flags,
2564 struct page **pages, int *nr)
2565 {
2566 struct page *head, *page;
2567 int refs;
2568
2569 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2570 return 0;
2571
2572 if (pud_devmap(orig)) {
2573 if (unlikely(flags & FOLL_LONGTERM))
2574 return 0;
2575 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2576 pages, nr);
2577 }
2578
2579 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2580 refs = record_subpages(page, addr, end, pages + *nr);
2581
2582 head = try_grab_compound_head(pud_page(orig), refs, flags);
2583 if (!head)
2584 return 0;
2585
2586 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2587 put_compound_head(head, refs, flags);
2588 return 0;
2589 }
2590
2591 *nr += refs;
2592 SetPageReferenced(head);
2593 return 1;
2594 }
2595
gup_huge_pgd(pgd_t orig,pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2596 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2597 unsigned long end, unsigned int flags,
2598 struct page **pages, int *nr)
2599 {
2600 int refs;
2601 struct page *head, *page;
2602
2603 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2604 return 0;
2605
2606 BUILD_BUG_ON(pgd_devmap(orig));
2607
2608 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2609 refs = record_subpages(page, addr, end, pages + *nr);
2610
2611 head = try_grab_compound_head(pgd_page(orig), refs, flags);
2612 if (!head)
2613 return 0;
2614
2615 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2616 put_compound_head(head, refs, flags);
2617 return 0;
2618 }
2619
2620 *nr += refs;
2621 SetPageReferenced(head);
2622 return 1;
2623 }
2624
gup_pmd_range(pud_t * pudp,pud_t pud,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2625 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2626 unsigned int flags, struct page **pages, int *nr)
2627 {
2628 unsigned long next;
2629 pmd_t *pmdp;
2630
2631 pmdp = pmd_offset_lockless(pudp, pud, addr);
2632 do {
2633 pmd_t pmd = READ_ONCE(*pmdp);
2634
2635 next = pmd_addr_end(addr, end);
2636 if (!pmd_present(pmd))
2637 return 0;
2638
2639 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2640 pmd_devmap(pmd))) {
2641 /*
2642 * NUMA hinting faults need to be handled in the GUP
2643 * slowpath for accounting purposes and so that they
2644 * can be serialised against THP migration.
2645 */
2646 if (pmd_protnone(pmd))
2647 return 0;
2648
2649 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2650 pages, nr))
2651 return 0;
2652
2653 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2654 /*
2655 * architecture have different format for hugetlbfs
2656 * pmd format and THP pmd format
2657 */
2658 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2659 PMD_SHIFT, next, flags, pages, nr))
2660 return 0;
2661 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2662 return 0;
2663 } while (pmdp++, addr = next, addr != end);
2664
2665 return 1;
2666 }
2667
gup_pud_range(p4d_t * p4dp,p4d_t p4d,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2668 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2669 unsigned int flags, struct page **pages, int *nr)
2670 {
2671 unsigned long next;
2672 pud_t *pudp;
2673
2674 pudp = pud_offset_lockless(p4dp, p4d, addr);
2675 do {
2676 pud_t pud = READ_ONCE(*pudp);
2677
2678 next = pud_addr_end(addr, end);
2679 if (unlikely(!pud_present(pud)))
2680 return 0;
2681 if (unlikely(pud_huge(pud))) {
2682 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2683 pages, nr))
2684 return 0;
2685 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2686 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2687 PUD_SHIFT, next, flags, pages, nr))
2688 return 0;
2689 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2690 return 0;
2691 } while (pudp++, addr = next, addr != end);
2692
2693 return 1;
2694 }
2695
gup_p4d_range(pgd_t * pgdp,pgd_t pgd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2696 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2697 unsigned int flags, struct page **pages, int *nr)
2698 {
2699 unsigned long next;
2700 p4d_t *p4dp;
2701
2702 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2703 do {
2704 p4d_t p4d = READ_ONCE(*p4dp);
2705
2706 next = p4d_addr_end(addr, end);
2707 if (p4d_none(p4d))
2708 return 0;
2709 BUILD_BUG_ON(p4d_huge(p4d));
2710 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2711 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2712 P4D_SHIFT, next, flags, pages, nr))
2713 return 0;
2714 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2715 return 0;
2716 } while (p4dp++, addr = next, addr != end);
2717
2718 return 1;
2719 }
2720
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2721 static void gup_pgd_range(unsigned long addr, unsigned long end,
2722 unsigned int flags, struct page **pages, int *nr)
2723 {
2724 unsigned long next;
2725 pgd_t *pgdp;
2726
2727 pgdp = pgd_offset(current->mm, addr);
2728 do {
2729 pgd_t pgd = READ_ONCE(*pgdp);
2730
2731 next = pgd_addr_end(addr, end);
2732 if (pgd_none(pgd))
2733 return;
2734 if (unlikely(pgd_huge(pgd))) {
2735 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2736 pages, nr))
2737 return;
2738 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2739 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2740 PGDIR_SHIFT, next, flags, pages, nr))
2741 return;
2742 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2743 return;
2744 } while (pgdp++, addr = next, addr != end);
2745 }
2746 #else
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2747 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2748 unsigned int flags, struct page **pages, int *nr)
2749 {
2750 }
2751 #endif /* CONFIG_HAVE_FAST_GUP */
2752
2753 #ifndef gup_fast_permitted
2754 /*
2755 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2756 * we need to fall back to the slow version:
2757 */
gup_fast_permitted(unsigned long start,unsigned long end)2758 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2759 {
2760 return true;
2761 }
2762 #endif
2763
__gup_longterm_unlocked(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2764 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2765 unsigned int gup_flags, struct page **pages)
2766 {
2767 int ret;
2768
2769 /*
2770 * FIXME: FOLL_LONGTERM does not work with
2771 * get_user_pages_unlocked() (see comments in that function)
2772 */
2773 if (gup_flags & FOLL_LONGTERM) {
2774 mmap_read_lock(current->mm);
2775 ret = __gup_longterm_locked(current->mm,
2776 start, nr_pages,
2777 pages, NULL, gup_flags);
2778 mmap_read_unlock(current->mm);
2779 } else {
2780 ret = get_user_pages_unlocked(start, nr_pages,
2781 pages, gup_flags);
2782 }
2783
2784 return ret;
2785 }
2786
lockless_pages_from_mm(unsigned long start,unsigned long end,unsigned int gup_flags,struct page ** pages)2787 static unsigned long lockless_pages_from_mm(unsigned long start,
2788 unsigned long end,
2789 unsigned int gup_flags,
2790 struct page **pages)
2791 {
2792 unsigned long flags;
2793 int nr_pinned = 0;
2794 unsigned seq;
2795
2796 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2797 !gup_fast_permitted(start, end))
2798 return 0;
2799
2800 if (gup_flags & FOLL_PIN) {
2801 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2802 if (seq & 1)
2803 return 0;
2804 }
2805
2806 /*
2807 * Disable interrupts. The nested form is used, in order to allow full,
2808 * general purpose use of this routine.
2809 *
2810 * With interrupts disabled, we block page table pages from being freed
2811 * from under us. See struct mmu_table_batch comments in
2812 * include/asm-generic/tlb.h for more details.
2813 *
2814 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2815 * that come from THPs splitting.
2816 */
2817 local_irq_save(flags);
2818 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2819 local_irq_restore(flags);
2820
2821 /*
2822 * When pinning pages for DMA there could be a concurrent write protect
2823 * from fork() via copy_page_range(), in this case always fail fast GUP.
2824 */
2825 if (gup_flags & FOLL_PIN) {
2826 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2827 unpin_user_pages(pages, nr_pinned);
2828 return 0;
2829 }
2830 }
2831 return nr_pinned;
2832 }
2833
internal_get_user_pages_fast(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)2834 static int internal_get_user_pages_fast(unsigned long start,
2835 unsigned long nr_pages,
2836 unsigned int gup_flags,
2837 struct page **pages)
2838 {
2839 unsigned long len, end;
2840 unsigned long nr_pinned;
2841 int ret;
2842
2843 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2844 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2845 FOLL_FAST_ONLY | FOLL_NOFAULT)))
2846 return -EINVAL;
2847
2848 if (gup_flags & FOLL_PIN)
2849 mm_set_has_pinned_flag(¤t->mm->flags);
2850
2851 if (!(gup_flags & FOLL_FAST_ONLY))
2852 might_lock_read(¤t->mm->mmap_lock);
2853
2854 start = untagged_addr(start) & PAGE_MASK;
2855 len = nr_pages << PAGE_SHIFT;
2856 if (check_add_overflow(start, len, &end))
2857 return 0;
2858 if (unlikely(!access_ok((void __user *)start, len)))
2859 return -EFAULT;
2860
2861 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2862 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2863 return nr_pinned;
2864
2865 /* Slow path: try to get the remaining pages with get_user_pages */
2866 start += nr_pinned << PAGE_SHIFT;
2867 pages += nr_pinned;
2868 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2869 pages);
2870 if (ret < 0) {
2871 /*
2872 * The caller has to unpin the pages we already pinned so
2873 * returning -errno is not an option
2874 */
2875 if (nr_pinned)
2876 return nr_pinned;
2877 return ret;
2878 }
2879 return ret + nr_pinned;
2880 }
2881
2882 /**
2883 * get_user_pages_fast_only() - pin user pages in memory
2884 * @start: starting user address
2885 * @nr_pages: number of pages from start to pin
2886 * @gup_flags: flags modifying pin behaviour
2887 * @pages: array that receives pointers to the pages pinned.
2888 * Should be at least nr_pages long.
2889 *
2890 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2891 * the regular GUP.
2892 * Note a difference with get_user_pages_fast: this always returns the
2893 * number of pages pinned, 0 if no pages were pinned.
2894 *
2895 * If the architecture does not support this function, simply return with no
2896 * pages pinned.
2897 *
2898 * Careful, careful! COW breaking can go either way, so a non-write
2899 * access can get ambiguous page results. If you call this function without
2900 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2901 */
get_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2902 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2903 unsigned int gup_flags, struct page **pages)
2904 {
2905 int nr_pinned;
2906 /*
2907 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2908 * because gup fast is always a "pin with a +1 page refcount" request.
2909 *
2910 * FOLL_FAST_ONLY is required in order to match the API description of
2911 * this routine: no fall back to regular ("slow") GUP.
2912 */
2913 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2914
2915 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2916 pages);
2917
2918 /*
2919 * As specified in the API description above, this routine is not
2920 * allowed to return negative values. However, the common core
2921 * routine internal_get_user_pages_fast() *can* return -errno.
2922 * Therefore, correct for that here:
2923 */
2924 if (nr_pinned < 0)
2925 nr_pinned = 0;
2926
2927 return nr_pinned;
2928 }
2929 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2930
2931 /**
2932 * get_user_pages_fast() - pin user pages in memory
2933 * @start: starting user address
2934 * @nr_pages: number of pages from start to pin
2935 * @gup_flags: flags modifying pin behaviour
2936 * @pages: array that receives pointers to the pages pinned.
2937 * Should be at least nr_pages long.
2938 *
2939 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2940 * If not successful, it will fall back to taking the lock and
2941 * calling get_user_pages().
2942 *
2943 * Returns number of pages pinned. This may be fewer than the number requested.
2944 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2945 * -errno.
2946 */
get_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2947 int get_user_pages_fast(unsigned long start, int nr_pages,
2948 unsigned int gup_flags, struct page **pages)
2949 {
2950 if (!is_valid_gup_flags(gup_flags))
2951 return -EINVAL;
2952
2953 /*
2954 * The caller may or may not have explicitly set FOLL_GET; either way is
2955 * OK. However, internally (within mm/gup.c), gup fast variants must set
2956 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2957 * request.
2958 */
2959 gup_flags |= FOLL_GET;
2960 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2961 }
2962 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2963
2964 /**
2965 * pin_user_pages_fast() - pin user pages in memory without taking locks
2966 *
2967 * @start: starting user address
2968 * @nr_pages: number of pages from start to pin
2969 * @gup_flags: flags modifying pin behaviour
2970 * @pages: array that receives pointers to the pages pinned.
2971 * Should be at least nr_pages long.
2972 *
2973 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2974 * get_user_pages_fast() for documentation on the function arguments, because
2975 * the arguments here are identical.
2976 *
2977 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2978 * see Documentation/core-api/pin_user_pages.rst for further details.
2979 */
pin_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2980 int pin_user_pages_fast(unsigned long start, int nr_pages,
2981 unsigned int gup_flags, struct page **pages)
2982 {
2983 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2984 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2985 return -EINVAL;
2986
2987 gup_flags |= FOLL_PIN;
2988 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2989 }
2990 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2991
2992 /*
2993 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2994 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2995 *
2996 * The API rules are the same, too: no negative values may be returned.
2997 */
pin_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2998 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2999 unsigned int gup_flags, struct page **pages)
3000 {
3001 int nr_pinned;
3002
3003 /*
3004 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3005 * rules require returning 0, rather than -errno:
3006 */
3007 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3008 return 0;
3009 /*
3010 * FOLL_FAST_ONLY is required in order to match the API description of
3011 * this routine: no fall back to regular ("slow") GUP.
3012 */
3013 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3014 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3015 pages);
3016 /*
3017 * This routine is not allowed to return negative values. However,
3018 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3019 * correct for that here:
3020 */
3021 if (nr_pinned < 0)
3022 nr_pinned = 0;
3023
3024 return nr_pinned;
3025 }
3026 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3027
3028 /**
3029 * pin_user_pages_remote() - pin pages of a remote process
3030 *
3031 * @mm: mm_struct of target mm
3032 * @start: starting user address
3033 * @nr_pages: number of pages from start to pin
3034 * @gup_flags: flags modifying lookup behaviour
3035 * @pages: array that receives pointers to the pages pinned.
3036 * Should be at least nr_pages long. Or NULL, if caller
3037 * only intends to ensure the pages are faulted in.
3038 * @vmas: array of pointers to vmas corresponding to each page.
3039 * Or NULL if the caller does not require them.
3040 * @locked: pointer to lock flag indicating whether lock is held and
3041 * subsequently whether VM_FAULT_RETRY functionality can be
3042 * utilised. Lock must initially be held.
3043 *
3044 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3045 * get_user_pages_remote() for documentation on the function arguments, because
3046 * the arguments here are identical.
3047 *
3048 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3049 * see Documentation/core-api/pin_user_pages.rst for details.
3050 */
pin_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)3051 long pin_user_pages_remote(struct mm_struct *mm,
3052 unsigned long start, unsigned long nr_pages,
3053 unsigned int gup_flags, struct page **pages,
3054 struct vm_area_struct **vmas, int *locked)
3055 {
3056 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3057 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3058 return -EINVAL;
3059
3060 gup_flags |= FOLL_PIN;
3061 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3062 pages, vmas, locked);
3063 }
3064 EXPORT_SYMBOL(pin_user_pages_remote);
3065
3066 /**
3067 * pin_user_pages() - pin user pages in memory for use by other devices
3068 *
3069 * @start: starting user address
3070 * @nr_pages: number of pages from start to pin
3071 * @gup_flags: flags modifying lookup behaviour
3072 * @pages: array that receives pointers to the pages pinned.
3073 * Should be at least nr_pages long. Or NULL, if caller
3074 * only intends to ensure the pages are faulted in.
3075 * @vmas: array of pointers to vmas corresponding to each page.
3076 * Or NULL if the caller does not require them.
3077 *
3078 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3079 * FOLL_PIN is set.
3080 *
3081 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3082 * see Documentation/core-api/pin_user_pages.rst for details.
3083 */
pin_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)3084 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3085 unsigned int gup_flags, struct page **pages,
3086 struct vm_area_struct **vmas)
3087 {
3088 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3089 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3090 return -EINVAL;
3091
3092 gup_flags |= FOLL_PIN;
3093 return __gup_longterm_locked(current->mm, start, nr_pages,
3094 pages, vmas, gup_flags);
3095 }
3096 EXPORT_SYMBOL(pin_user_pages);
3097
3098 /*
3099 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3100 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3101 * FOLL_PIN and rejects FOLL_GET.
3102 */
pin_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)3103 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3104 struct page **pages, unsigned int gup_flags)
3105 {
3106 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3107 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3108 return -EINVAL;
3109
3110 gup_flags |= FOLL_PIN;
3111 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3112 }
3113 EXPORT_SYMBOL(pin_user_pages_unlocked);
3114
3115 /*
3116 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3117 * Behavior is the same, except that this one sets FOLL_PIN and rejects
3118 * FOLL_GET.
3119 */
pin_user_pages_locked(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)3120 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3121 unsigned int gup_flags, struct page **pages,
3122 int *locked)
3123 {
3124 /*
3125 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3126 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3127 * vmas. As there are no users of this flag in this call we simply
3128 * disallow this option for now.
3129 */
3130 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3131 return -EINVAL;
3132
3133 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3134 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3135 return -EINVAL;
3136
3137 gup_flags |= FOLL_PIN;
3138 return __get_user_pages_locked(current->mm, start, nr_pages,
3139 pages, NULL, locked,
3140 gup_flags | FOLL_TOUCH);
3141 }
3142 EXPORT_SYMBOL(pin_user_pages_locked);
3143