1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
8 * Copyright (C) 2008-2009 Red Hat, Inc.
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
13 * Hugh Dickins
14 */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44
45 #ifdef CONFIG_NUMA
46 #define NUMA(x) (x)
47 #define DO_NUMA(x) do { (x); } while (0)
48 #else
49 #define NUMA(x) (0)
50 #define DO_NUMA(x) do { } while (0)
51 #endif
52
53 /**
54 * DOC: Overview
55 *
56 * A few notes about the KSM scanning process,
57 * to make it easier to understand the data structures below:
58 *
59 * In order to reduce excessive scanning, KSM sorts the memory pages by their
60 * contents into a data structure that holds pointers to the pages' locations.
61 *
62 * Since the contents of the pages may change at any moment, KSM cannot just
63 * insert the pages into a normal sorted tree and expect it to find anything.
64 * Therefore KSM uses two data structures - the stable and the unstable tree.
65 *
66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67 * by their contents. Because each such page is write-protected, searching on
68 * this tree is fully assured to be working (except when pages are unmapped),
69 * and therefore this tree is called the stable tree.
70 *
71 * The stable tree node includes information required for reverse
72 * mapping from a KSM page to virtual addresses that map this page.
73 *
74 * In order to avoid large latencies of the rmap walks on KSM pages,
75 * KSM maintains two types of nodes in the stable tree:
76 *
77 * * the regular nodes that keep the reverse mapping structures in a
78 * linked list
79 * * the "chains" that link nodes ("dups") that represent the same
80 * write protected memory content, but each "dup" corresponds to a
81 * different KSM page copy of that content
82 *
83 * Internally, the regular nodes, "dups" and "chains" are represented
84 * using the same struct stable_node structure.
85 *
86 * In addition to the stable tree, KSM uses a second data structure called the
87 * unstable tree: this tree holds pointers to pages which have been found to
88 * be "unchanged for a period of time". The unstable tree sorts these pages
89 * by their contents, but since they are not write-protected, KSM cannot rely
90 * upon the unstable tree to work correctly - the unstable tree is liable to
91 * be corrupted as its contents are modified, and so it is called unstable.
92 *
93 * KSM solves this problem by several techniques:
94 *
95 * 1) The unstable tree is flushed every time KSM completes scanning all
96 * memory areas, and then the tree is rebuilt again from the beginning.
97 * 2) KSM will only insert into the unstable tree, pages whose hash value
98 * has not changed since the previous scan of all memory areas.
99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100 * colors of the nodes and not on their contents, assuring that even when
101 * the tree gets "corrupted" it won't get out of balance, so scanning time
102 * remains the same (also, searching and inserting nodes in an rbtree uses
103 * the same algorithm, so we have no overhead when we flush and rebuild).
104 * 4) KSM never flushes the stable tree, which means that even if it were to
105 * take 10 attempts to find a page in the unstable tree, once it is found,
106 * it is secured in the stable tree. (When we scan a new page, we first
107 * compare it against the stable tree, and then against the unstable tree.)
108 *
109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110 * stable trees and multiple unstable trees: one of each for each NUMA node.
111 */
112
113 /**
114 * struct mm_slot - ksm information per mm that is being scanned
115 * @link: link to the mm_slots hash list
116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118 * @mm: the mm that this information is valid for
119 */
120 struct mm_slot {
121 struct hlist_node link;
122 struct list_head mm_list;
123 struct rmap_item *rmap_list;
124 struct mm_struct *mm;
125 };
126
127 /**
128 * struct ksm_scan - cursor for scanning
129 * @mm_slot: the current mm_slot we are scanning
130 * @address: the next address inside that to be scanned
131 * @rmap_list: link to the next rmap to be scanned in the rmap_list
132 * @seqnr: count of completed full scans (needed when removing unstable node)
133 *
134 * There is only the one ksm_scan instance of this cursor structure.
135 */
136 struct ksm_scan {
137 struct mm_slot *mm_slot;
138 unsigned long address;
139 struct rmap_item **rmap_list;
140 unsigned long seqnr;
141 };
142
143 /**
144 * struct stable_node - node of the stable rbtree
145 * @node: rb node of this ksm page in the stable tree
146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148 * @list: linked into migrate_nodes, pending placement in the proper node tree
149 * @hlist: hlist head of rmap_items using this ksm page
150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151 * @chain_prune_time: time of the last full garbage collection
152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154 */
155 struct stable_node {
156 union {
157 struct rb_node node; /* when node of stable tree */
158 struct { /* when listed for migration */
159 struct list_head *head;
160 struct {
161 struct hlist_node hlist_dup;
162 struct list_head list;
163 };
164 };
165 };
166 struct hlist_head hlist;
167 union {
168 unsigned long kpfn;
169 unsigned long chain_prune_time;
170 };
171 /*
172 * STABLE_NODE_CHAIN can be any negative number in
173 * rmap_hlist_len negative range, but better not -1 to be able
174 * to reliably detect underflows.
175 */
176 #define STABLE_NODE_CHAIN -1024
177 int rmap_hlist_len;
178 #ifdef CONFIG_NUMA
179 int nid;
180 #endif
181 };
182
183 /**
184 * struct rmap_item - reverse mapping item for virtual addresses
185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187 * @nid: NUMA node id of unstable tree in which linked (may not match page)
188 * @mm: the memory structure this rmap_item is pointing into
189 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190 * @oldchecksum: previous checksum of the page at that virtual address
191 * @node: rb node of this rmap_item in the unstable tree
192 * @head: pointer to stable_node heading this list in the stable tree
193 * @hlist: link into hlist of rmap_items hanging off that stable_node
194 */
195 struct rmap_item {
196 struct rmap_item *rmap_list;
197 union {
198 struct anon_vma *anon_vma; /* when stable */
199 #ifdef CONFIG_NUMA
200 int nid; /* when node of unstable tree */
201 #endif
202 };
203 struct mm_struct *mm;
204 unsigned long address; /* + low bits used for flags below */
205 unsigned int oldchecksum; /* when unstable */
206 union {
207 struct rb_node node; /* when node of unstable tree */
208 struct { /* when listed from stable tree */
209 struct stable_node *head;
210 struct hlist_node hlist;
211 };
212 };
213 };
214
215 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
217 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
218
219 /* The stable and unstable tree heads */
220 static struct rb_root one_stable_tree[1] = { RB_ROOT };
221 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
222 static struct rb_root *root_stable_tree = one_stable_tree;
223 static struct rb_root *root_unstable_tree = one_unstable_tree;
224
225 /* Recently migrated nodes of stable tree, pending proper placement */
226 static LIST_HEAD(migrate_nodes);
227 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
228
229 #define MM_SLOTS_HASH_BITS 10
230 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
231
232 static struct mm_slot ksm_mm_head = {
233 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
234 };
235 static struct ksm_scan ksm_scan = {
236 .mm_slot = &ksm_mm_head,
237 };
238
239 static struct kmem_cache *rmap_item_cache;
240 static struct kmem_cache *stable_node_cache;
241 static struct kmem_cache *mm_slot_cache;
242
243 /* The number of nodes in the stable tree */
244 static unsigned long ksm_pages_shared;
245
246 /* The number of page slots additionally sharing those nodes */
247 static unsigned long ksm_pages_sharing;
248
249 /* The number of nodes in the unstable tree */
250 static unsigned long ksm_pages_unshared;
251
252 /* The number of rmap_items in use: to calculate pages_volatile */
253 static unsigned long ksm_rmap_items;
254
255 /* The number of stable_node chains */
256 static unsigned long ksm_stable_node_chains;
257
258 /* The number of stable_node dups linked to the stable_node chains */
259 static unsigned long ksm_stable_node_dups;
260
261 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
262 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
263
264 /* Maximum number of page slots sharing a stable node */
265 static int ksm_max_page_sharing = 256;
266
267 /* Number of pages ksmd should scan in one batch */
268 static unsigned int ksm_thread_pages_to_scan = 100;
269
270 /* Milliseconds ksmd should sleep between batches */
271 static unsigned int ksm_thread_sleep_millisecs = 20;
272
273 /* Checksum of an empty (zeroed) page */
274 static unsigned int zero_checksum __read_mostly;
275
276 /* Whether to merge empty (zeroed) pages with actual zero pages */
277 static bool ksm_use_zero_pages __read_mostly;
278
279 #ifdef CONFIG_NUMA
280 /* Zeroed when merging across nodes is not allowed */
281 static unsigned int ksm_merge_across_nodes = 1;
282 static int ksm_nr_node_ids = 1;
283 #else
284 #define ksm_merge_across_nodes 1U
285 #define ksm_nr_node_ids 1
286 #endif
287
288 #define KSM_RUN_STOP 0
289 #define KSM_RUN_MERGE 1
290 #define KSM_RUN_UNMERGE 2
291 #define KSM_RUN_OFFLINE 4
292 static unsigned long ksm_run = KSM_RUN_STOP;
293 static void wait_while_offlining(void);
294
295 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
297 static DEFINE_MUTEX(ksm_thread_mutex);
298 static DEFINE_SPINLOCK(ksm_mmlist_lock);
299
300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
301 sizeof(struct __struct), __alignof__(struct __struct),\
302 (__flags), NULL)
303
ksm_slab_init(void)304 static int __init ksm_slab_init(void)
305 {
306 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
307 if (!rmap_item_cache)
308 goto out;
309
310 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
311 if (!stable_node_cache)
312 goto out_free1;
313
314 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
315 if (!mm_slot_cache)
316 goto out_free2;
317
318 return 0;
319
320 out_free2:
321 kmem_cache_destroy(stable_node_cache);
322 out_free1:
323 kmem_cache_destroy(rmap_item_cache);
324 out:
325 return -ENOMEM;
326 }
327
ksm_slab_free(void)328 static void __init ksm_slab_free(void)
329 {
330 kmem_cache_destroy(mm_slot_cache);
331 kmem_cache_destroy(stable_node_cache);
332 kmem_cache_destroy(rmap_item_cache);
333 mm_slot_cache = NULL;
334 }
335
is_stable_node_chain(struct stable_node * chain)336 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
337 {
338 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
339 }
340
is_stable_node_dup(struct stable_node * dup)341 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
342 {
343 return dup->head == STABLE_NODE_DUP_HEAD;
344 }
345
stable_node_chain_add_dup(struct stable_node * dup,struct stable_node * chain)346 static inline void stable_node_chain_add_dup(struct stable_node *dup,
347 struct stable_node *chain)
348 {
349 VM_BUG_ON(is_stable_node_dup(dup));
350 dup->head = STABLE_NODE_DUP_HEAD;
351 VM_BUG_ON(!is_stable_node_chain(chain));
352 hlist_add_head(&dup->hlist_dup, &chain->hlist);
353 ksm_stable_node_dups++;
354 }
355
__stable_node_dup_del(struct stable_node * dup)356 static inline void __stable_node_dup_del(struct stable_node *dup)
357 {
358 VM_BUG_ON(!is_stable_node_dup(dup));
359 hlist_del(&dup->hlist_dup);
360 ksm_stable_node_dups--;
361 }
362
stable_node_dup_del(struct stable_node * dup)363 static inline void stable_node_dup_del(struct stable_node *dup)
364 {
365 VM_BUG_ON(is_stable_node_chain(dup));
366 if (is_stable_node_dup(dup))
367 __stable_node_dup_del(dup);
368 else
369 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
370 #ifdef CONFIG_DEBUG_VM
371 dup->head = NULL;
372 #endif
373 }
374
alloc_rmap_item(void)375 static inline struct rmap_item *alloc_rmap_item(void)
376 {
377 struct rmap_item *rmap_item;
378
379 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
380 __GFP_NORETRY | __GFP_NOWARN);
381 if (rmap_item)
382 ksm_rmap_items++;
383 return rmap_item;
384 }
385
free_rmap_item(struct rmap_item * rmap_item)386 static inline void free_rmap_item(struct rmap_item *rmap_item)
387 {
388 ksm_rmap_items--;
389 rmap_item->mm = NULL; /* debug safety */
390 kmem_cache_free(rmap_item_cache, rmap_item);
391 }
392
alloc_stable_node(void)393 static inline struct stable_node *alloc_stable_node(void)
394 {
395 /*
396 * The allocation can take too long with GFP_KERNEL when memory is under
397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
398 * grants access to memory reserves, helping to avoid this problem.
399 */
400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
401 }
402
free_stable_node(struct stable_node * stable_node)403 static inline void free_stable_node(struct stable_node *stable_node)
404 {
405 VM_BUG_ON(stable_node->rmap_hlist_len &&
406 !is_stable_node_chain(stable_node));
407 kmem_cache_free(stable_node_cache, stable_node);
408 }
409
alloc_mm_slot(void)410 static inline struct mm_slot *alloc_mm_slot(void)
411 {
412 if (!mm_slot_cache) /* initialization failed */
413 return NULL;
414 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
415 }
416
free_mm_slot(struct mm_slot * mm_slot)417 static inline void free_mm_slot(struct mm_slot *mm_slot)
418 {
419 kmem_cache_free(mm_slot_cache, mm_slot);
420 }
421
get_mm_slot(struct mm_struct * mm)422 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
423 {
424 struct mm_slot *slot;
425
426 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
427 if (slot->mm == mm)
428 return slot;
429
430 return NULL;
431 }
432
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)433 static void insert_to_mm_slots_hash(struct mm_struct *mm,
434 struct mm_slot *mm_slot)
435 {
436 mm_slot->mm = mm;
437 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
438 }
439
440 /*
441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
442 * page tables after it has passed through ksm_exit() - which, if necessary,
443 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
444 * a special flag: they can just back out as soon as mm_users goes to zero.
445 * ksm_test_exit() is used throughout to make this test for exit: in some
446 * places for correctness, in some places just to avoid unnecessary work.
447 */
ksm_test_exit(struct mm_struct * mm)448 static inline bool ksm_test_exit(struct mm_struct *mm)
449 {
450 return atomic_read(&mm->mm_users) == 0;
451 }
452
453 /*
454 * We use break_ksm to break COW on a ksm page: it's a stripped down
455 *
456 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
457 * put_page(page);
458 *
459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
460 * in case the application has unmapped and remapped mm,addr meanwhile.
461 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
462 * mmap of /dev/mem, where we would not want to touch it.
463 *
464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
465 * of the process that owns 'vma'. We also do not want to enforce
466 * protection keys here anyway.
467 */
break_ksm(struct vm_area_struct * vma,unsigned long addr)468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
469 {
470 struct page *page;
471 vm_fault_t ret = 0;
472
473 do {
474 cond_resched();
475 page = follow_page(vma, addr,
476 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
477 if (IS_ERR_OR_NULL(page))
478 break;
479 if (PageKsm(page))
480 ret = handle_mm_fault(vma, addr,
481 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
482 NULL);
483 else
484 ret = VM_FAULT_WRITE;
485 put_page(page);
486 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
487 /*
488 * We must loop because handle_mm_fault() may back out if there's
489 * any difficulty e.g. if pte accessed bit gets updated concurrently.
490 *
491 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
492 * COW has been broken, even if the vma does not permit VM_WRITE;
493 * but note that a concurrent fault might break PageKsm for us.
494 *
495 * VM_FAULT_SIGBUS could occur if we race with truncation of the
496 * backing file, which also invalidates anonymous pages: that's
497 * okay, that truncation will have unmapped the PageKsm for us.
498 *
499 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501 * current task has TIF_MEMDIE set, and will be OOM killed on return
502 * to user; and ksmd, having no mm, would never be chosen for that.
503 *
504 * But if the mm is in a limited mem_cgroup, then the fault may fail
505 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506 * even ksmd can fail in this way - though it's usually breaking ksm
507 * just to undo a merge it made a moment before, so unlikely to oom.
508 *
509 * That's a pity: we might therefore have more kernel pages allocated
510 * than we're counting as nodes in the stable tree; but ksm_do_scan
511 * will retry to break_cow on each pass, so should recover the page
512 * in due course. The important thing is to not let VM_MERGEABLE
513 * be cleared while any such pages might remain in the area.
514 */
515 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516 }
517
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
519 unsigned long addr)
520 {
521 struct vm_area_struct *vma;
522 if (ksm_test_exit(mm))
523 return NULL;
524 vma = vma_lookup(mm, addr);
525 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
526 return NULL;
527 return vma;
528 }
529
break_cow(struct rmap_item * rmap_item)530 static void break_cow(struct rmap_item *rmap_item)
531 {
532 struct mm_struct *mm = rmap_item->mm;
533 unsigned long addr = rmap_item->address;
534 struct vm_area_struct *vma;
535
536 /*
537 * It is not an accident that whenever we want to break COW
538 * to undo, we also need to drop a reference to the anon_vma.
539 */
540 put_anon_vma(rmap_item->anon_vma);
541
542 mmap_read_lock(mm);
543 vma = find_mergeable_vma(mm, addr);
544 if (vma)
545 break_ksm(vma, addr);
546 mmap_read_unlock(mm);
547 }
548
get_mergeable_page(struct rmap_item * rmap_item)549 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
550 {
551 struct mm_struct *mm = rmap_item->mm;
552 unsigned long addr = rmap_item->address;
553 struct vm_area_struct *vma;
554 struct page *page;
555
556 mmap_read_lock(mm);
557 vma = find_mergeable_vma(mm, addr);
558 if (!vma)
559 goto out;
560
561 page = follow_page(vma, addr, FOLL_GET);
562 if (IS_ERR_OR_NULL(page))
563 goto out;
564 if (PageAnon(page)) {
565 flush_anon_page(vma, page, addr);
566 flush_dcache_page(page);
567 } else {
568 put_page(page);
569 out:
570 page = NULL;
571 }
572 mmap_read_unlock(mm);
573 return page;
574 }
575
576 /*
577 * This helper is used for getting right index into array of tree roots.
578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
579 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
580 * every node has its own stable and unstable tree.
581 */
get_kpfn_nid(unsigned long kpfn)582 static inline int get_kpfn_nid(unsigned long kpfn)
583 {
584 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
585 }
586
alloc_stable_node_chain(struct stable_node * dup,struct rb_root * root)587 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
588 struct rb_root *root)
589 {
590 struct stable_node *chain = alloc_stable_node();
591 VM_BUG_ON(is_stable_node_chain(dup));
592 if (likely(chain)) {
593 INIT_HLIST_HEAD(&chain->hlist);
594 chain->chain_prune_time = jiffies;
595 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
596 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
597 chain->nid = NUMA_NO_NODE; /* debug */
598 #endif
599 ksm_stable_node_chains++;
600
601 /*
602 * Put the stable node chain in the first dimension of
603 * the stable tree and at the same time remove the old
604 * stable node.
605 */
606 rb_replace_node(&dup->node, &chain->node, root);
607
608 /*
609 * Move the old stable node to the second dimension
610 * queued in the hlist_dup. The invariant is that all
611 * dup stable_nodes in the chain->hlist point to pages
612 * that are write protected and have the exact same
613 * content.
614 */
615 stable_node_chain_add_dup(dup, chain);
616 }
617 return chain;
618 }
619
free_stable_node_chain(struct stable_node * chain,struct rb_root * root)620 static inline void free_stable_node_chain(struct stable_node *chain,
621 struct rb_root *root)
622 {
623 rb_erase(&chain->node, root);
624 free_stable_node(chain);
625 ksm_stable_node_chains--;
626 }
627
remove_node_from_stable_tree(struct stable_node * stable_node)628 static void remove_node_from_stable_tree(struct stable_node *stable_node)
629 {
630 struct rmap_item *rmap_item;
631
632 /* check it's not STABLE_NODE_CHAIN or negative */
633 BUG_ON(stable_node->rmap_hlist_len < 0);
634
635 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
636 if (rmap_item->hlist.next)
637 ksm_pages_sharing--;
638 else
639 ksm_pages_shared--;
640 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
641 stable_node->rmap_hlist_len--;
642 put_anon_vma(rmap_item->anon_vma);
643 rmap_item->address &= PAGE_MASK;
644 cond_resched();
645 }
646
647 /*
648 * We need the second aligned pointer of the migrate_nodes
649 * list_head to stay clear from the rb_parent_color union
650 * (aligned and different than any node) and also different
651 * from &migrate_nodes. This will verify that future list.h changes
652 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
653 */
654 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
655 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
656
657 if (stable_node->head == &migrate_nodes)
658 list_del(&stable_node->list);
659 else
660 stable_node_dup_del(stable_node);
661 free_stable_node(stable_node);
662 }
663
664 enum get_ksm_page_flags {
665 GET_KSM_PAGE_NOLOCK,
666 GET_KSM_PAGE_LOCK,
667 GET_KSM_PAGE_TRYLOCK
668 };
669
670 /*
671 * get_ksm_page: checks if the page indicated by the stable node
672 * is still its ksm page, despite having held no reference to it.
673 * In which case we can trust the content of the page, and it
674 * returns the gotten page; but if the page has now been zapped,
675 * remove the stale node from the stable tree and return NULL.
676 * But beware, the stable node's page might be being migrated.
677 *
678 * You would expect the stable_node to hold a reference to the ksm page.
679 * But if it increments the page's count, swapping out has to wait for
680 * ksmd to come around again before it can free the page, which may take
681 * seconds or even minutes: much too unresponsive. So instead we use a
682 * "keyhole reference": access to the ksm page from the stable node peeps
683 * out through its keyhole to see if that page still holds the right key,
684 * pointing back to this stable node. This relies on freeing a PageAnon
685 * page to reset its page->mapping to NULL, and relies on no other use of
686 * a page to put something that might look like our key in page->mapping.
687 * is on its way to being freed; but it is an anomaly to bear in mind.
688 */
get_ksm_page(struct stable_node * stable_node,enum get_ksm_page_flags flags)689 static struct page *get_ksm_page(struct stable_node *stable_node,
690 enum get_ksm_page_flags flags)
691 {
692 struct page *page;
693 void *expected_mapping;
694 unsigned long kpfn;
695
696 expected_mapping = (void *)((unsigned long)stable_node |
697 PAGE_MAPPING_KSM);
698 again:
699 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
700 page = pfn_to_page(kpfn);
701 if (READ_ONCE(page->mapping) != expected_mapping)
702 goto stale;
703
704 /*
705 * We cannot do anything with the page while its refcount is 0.
706 * Usually 0 means free, or tail of a higher-order page: in which
707 * case this node is no longer referenced, and should be freed;
708 * however, it might mean that the page is under page_ref_freeze().
709 * The __remove_mapping() case is easy, again the node is now stale;
710 * the same is in reuse_ksm_page() case; but if page is swapcache
711 * in migrate_page_move_mapping(), it might still be our page,
712 * in which case it's essential to keep the node.
713 */
714 while (!get_page_unless_zero(page)) {
715 /*
716 * Another check for page->mapping != expected_mapping would
717 * work here too. We have chosen the !PageSwapCache test to
718 * optimize the common case, when the page is or is about to
719 * be freed: PageSwapCache is cleared (under spin_lock_irq)
720 * in the ref_freeze section of __remove_mapping(); but Anon
721 * page->mapping reset to NULL later, in free_pages_prepare().
722 */
723 if (!PageSwapCache(page))
724 goto stale;
725 cpu_relax();
726 }
727
728 if (READ_ONCE(page->mapping) != expected_mapping) {
729 put_page(page);
730 goto stale;
731 }
732
733 if (flags == GET_KSM_PAGE_TRYLOCK) {
734 if (!trylock_page(page)) {
735 put_page(page);
736 return ERR_PTR(-EBUSY);
737 }
738 } else if (flags == GET_KSM_PAGE_LOCK)
739 lock_page(page);
740
741 if (flags != GET_KSM_PAGE_NOLOCK) {
742 if (READ_ONCE(page->mapping) != expected_mapping) {
743 unlock_page(page);
744 put_page(page);
745 goto stale;
746 }
747 }
748 return page;
749
750 stale:
751 /*
752 * We come here from above when page->mapping or !PageSwapCache
753 * suggests that the node is stale; but it might be under migration.
754 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
755 * before checking whether node->kpfn has been changed.
756 */
757 smp_rmb();
758 if (READ_ONCE(stable_node->kpfn) != kpfn)
759 goto again;
760 remove_node_from_stable_tree(stable_node);
761 return NULL;
762 }
763
764 /*
765 * Removing rmap_item from stable or unstable tree.
766 * This function will clean the information from the stable/unstable tree.
767 */
remove_rmap_item_from_tree(struct rmap_item * rmap_item)768 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
769 {
770 if (rmap_item->address & STABLE_FLAG) {
771 struct stable_node *stable_node;
772 struct page *page;
773
774 stable_node = rmap_item->head;
775 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
776 if (!page)
777 goto out;
778
779 hlist_del(&rmap_item->hlist);
780 unlock_page(page);
781 put_page(page);
782
783 if (!hlist_empty(&stable_node->hlist))
784 ksm_pages_sharing--;
785 else
786 ksm_pages_shared--;
787 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
788 stable_node->rmap_hlist_len--;
789
790 put_anon_vma(rmap_item->anon_vma);
791 rmap_item->head = NULL;
792 rmap_item->address &= PAGE_MASK;
793
794 } else if (rmap_item->address & UNSTABLE_FLAG) {
795 unsigned char age;
796 /*
797 * Usually ksmd can and must skip the rb_erase, because
798 * root_unstable_tree was already reset to RB_ROOT.
799 * But be careful when an mm is exiting: do the rb_erase
800 * if this rmap_item was inserted by this scan, rather
801 * than left over from before.
802 */
803 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
804 BUG_ON(age > 1);
805 if (!age)
806 rb_erase(&rmap_item->node,
807 root_unstable_tree + NUMA(rmap_item->nid));
808 ksm_pages_unshared--;
809 rmap_item->address &= PAGE_MASK;
810 }
811 out:
812 cond_resched(); /* we're called from many long loops */
813 }
814
remove_trailing_rmap_items(struct rmap_item ** rmap_list)815 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
816 {
817 while (*rmap_list) {
818 struct rmap_item *rmap_item = *rmap_list;
819 *rmap_list = rmap_item->rmap_list;
820 remove_rmap_item_from_tree(rmap_item);
821 free_rmap_item(rmap_item);
822 }
823 }
824
825 /*
826 * Though it's very tempting to unmerge rmap_items from stable tree rather
827 * than check every pte of a given vma, the locking doesn't quite work for
828 * that - an rmap_item is assigned to the stable tree after inserting ksm
829 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
830 * rmap_items from parent to child at fork time (so as not to waste time
831 * if exit comes before the next scan reaches it).
832 *
833 * Similarly, although we'd like to remove rmap_items (so updating counts
834 * and freeing memory) when unmerging an area, it's easier to leave that
835 * to the next pass of ksmd - consider, for example, how ksmd might be
836 * in cmp_and_merge_page on one of the rmap_items we would be removing.
837 */
unmerge_ksm_pages(struct vm_area_struct * vma,unsigned long start,unsigned long end)838 static int unmerge_ksm_pages(struct vm_area_struct *vma,
839 unsigned long start, unsigned long end)
840 {
841 unsigned long addr;
842 int err = 0;
843
844 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
845 if (ksm_test_exit(vma->vm_mm))
846 break;
847 if (signal_pending(current))
848 err = -ERESTARTSYS;
849 else
850 err = break_ksm(vma, addr);
851 }
852 return err;
853 }
854
folio_stable_node(struct folio * folio)855 static inline struct stable_node *folio_stable_node(struct folio *folio)
856 {
857 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
858 }
859
page_stable_node(struct page * page)860 static inline struct stable_node *page_stable_node(struct page *page)
861 {
862 return folio_stable_node(page_folio(page));
863 }
864
set_page_stable_node(struct page * page,struct stable_node * stable_node)865 static inline void set_page_stable_node(struct page *page,
866 struct stable_node *stable_node)
867 {
868 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
869 }
870
871 #ifdef CONFIG_SYSFS
872 /*
873 * Only called through the sysfs control interface:
874 */
remove_stable_node(struct stable_node * stable_node)875 static int remove_stable_node(struct stable_node *stable_node)
876 {
877 struct page *page;
878 int err;
879
880 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
881 if (!page) {
882 /*
883 * get_ksm_page did remove_node_from_stable_tree itself.
884 */
885 return 0;
886 }
887
888 /*
889 * Page could be still mapped if this races with __mmput() running in
890 * between ksm_exit() and exit_mmap(). Just refuse to let
891 * merge_across_nodes/max_page_sharing be switched.
892 */
893 err = -EBUSY;
894 if (!page_mapped(page)) {
895 /*
896 * The stable node did not yet appear stale to get_ksm_page(),
897 * since that allows for an unmapped ksm page to be recognized
898 * right up until it is freed; but the node is safe to remove.
899 * This page might be in a pagevec waiting to be freed,
900 * or it might be PageSwapCache (perhaps under writeback),
901 * or it might have been removed from swapcache a moment ago.
902 */
903 set_page_stable_node(page, NULL);
904 remove_node_from_stable_tree(stable_node);
905 err = 0;
906 }
907
908 unlock_page(page);
909 put_page(page);
910 return err;
911 }
912
remove_stable_node_chain(struct stable_node * stable_node,struct rb_root * root)913 static int remove_stable_node_chain(struct stable_node *stable_node,
914 struct rb_root *root)
915 {
916 struct stable_node *dup;
917 struct hlist_node *hlist_safe;
918
919 if (!is_stable_node_chain(stable_node)) {
920 VM_BUG_ON(is_stable_node_dup(stable_node));
921 if (remove_stable_node(stable_node))
922 return true;
923 else
924 return false;
925 }
926
927 hlist_for_each_entry_safe(dup, hlist_safe,
928 &stable_node->hlist, hlist_dup) {
929 VM_BUG_ON(!is_stable_node_dup(dup));
930 if (remove_stable_node(dup))
931 return true;
932 }
933 BUG_ON(!hlist_empty(&stable_node->hlist));
934 free_stable_node_chain(stable_node, root);
935 return false;
936 }
937
remove_all_stable_nodes(void)938 static int remove_all_stable_nodes(void)
939 {
940 struct stable_node *stable_node, *next;
941 int nid;
942 int err = 0;
943
944 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
945 while (root_stable_tree[nid].rb_node) {
946 stable_node = rb_entry(root_stable_tree[nid].rb_node,
947 struct stable_node, node);
948 if (remove_stable_node_chain(stable_node,
949 root_stable_tree + nid)) {
950 err = -EBUSY;
951 break; /* proceed to next nid */
952 }
953 cond_resched();
954 }
955 }
956 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
957 if (remove_stable_node(stable_node))
958 err = -EBUSY;
959 cond_resched();
960 }
961 return err;
962 }
963
unmerge_and_remove_all_rmap_items(void)964 static int unmerge_and_remove_all_rmap_items(void)
965 {
966 struct mm_slot *mm_slot;
967 struct mm_struct *mm;
968 struct vm_area_struct *vma;
969 int err = 0;
970
971 spin_lock(&ksm_mmlist_lock);
972 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
973 struct mm_slot, mm_list);
974 spin_unlock(&ksm_mmlist_lock);
975
976 for (mm_slot = ksm_scan.mm_slot;
977 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
978 mm = mm_slot->mm;
979 mmap_read_lock(mm);
980 for (vma = mm->mmap; vma; vma = vma->vm_next) {
981 if (ksm_test_exit(mm))
982 break;
983 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
984 continue;
985 err = unmerge_ksm_pages(vma,
986 vma->vm_start, vma->vm_end);
987 if (err)
988 goto error;
989 }
990
991 remove_trailing_rmap_items(&mm_slot->rmap_list);
992 mmap_read_unlock(mm);
993
994 spin_lock(&ksm_mmlist_lock);
995 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
996 struct mm_slot, mm_list);
997 if (ksm_test_exit(mm)) {
998 hash_del(&mm_slot->link);
999 list_del(&mm_slot->mm_list);
1000 spin_unlock(&ksm_mmlist_lock);
1001
1002 free_mm_slot(mm_slot);
1003 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1004 mmdrop(mm);
1005 } else
1006 spin_unlock(&ksm_mmlist_lock);
1007 }
1008
1009 /* Clean up stable nodes, but don't worry if some are still busy */
1010 remove_all_stable_nodes();
1011 ksm_scan.seqnr = 0;
1012 return 0;
1013
1014 error:
1015 mmap_read_unlock(mm);
1016 spin_lock(&ksm_mmlist_lock);
1017 ksm_scan.mm_slot = &ksm_mm_head;
1018 spin_unlock(&ksm_mmlist_lock);
1019 return err;
1020 }
1021 #endif /* CONFIG_SYSFS */
1022
calc_checksum(struct page * page)1023 static u32 calc_checksum(struct page *page)
1024 {
1025 u32 checksum;
1026 void *addr = kmap_atomic(page);
1027 checksum = xxhash(addr, PAGE_SIZE, 0);
1028 kunmap_atomic(addr);
1029 return checksum;
1030 }
1031
write_protect_page(struct vm_area_struct * vma,struct page * page,pte_t * orig_pte)1032 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1033 pte_t *orig_pte)
1034 {
1035 struct mm_struct *mm = vma->vm_mm;
1036 struct page_vma_mapped_walk pvmw = {
1037 .page = page,
1038 .vma = vma,
1039 };
1040 int swapped;
1041 int err = -EFAULT;
1042 struct mmu_notifier_range range;
1043
1044 pvmw.address = page_address_in_vma(page, vma);
1045 if (pvmw.address == -EFAULT)
1046 goto out;
1047
1048 BUG_ON(PageTransCompound(page));
1049
1050 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1051 pvmw.address,
1052 pvmw.address + PAGE_SIZE);
1053 mmu_notifier_invalidate_range_start(&range);
1054
1055 if (!page_vma_mapped_walk(&pvmw))
1056 goto out_mn;
1057 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1058 goto out_unlock;
1059
1060 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1061 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1062 mm_tlb_flush_pending(mm)) {
1063 pte_t entry;
1064
1065 swapped = PageSwapCache(page);
1066 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1067 /*
1068 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1069 * take any lock, therefore the check that we are going to make
1070 * with the pagecount against the mapcount is racy and
1071 * O_DIRECT can happen right after the check.
1072 * So we clear the pte and flush the tlb before the check
1073 * this assure us that no O_DIRECT can happen after the check
1074 * or in the middle of the check.
1075 *
1076 * No need to notify as we are downgrading page table to read
1077 * only not changing it to point to a new page.
1078 *
1079 * See Documentation/vm/mmu_notifier.rst
1080 */
1081 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1082 /*
1083 * Check that no O_DIRECT or similar I/O is in progress on the
1084 * page
1085 */
1086 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1087 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1088 goto out_unlock;
1089 }
1090 if (pte_dirty(entry))
1091 set_page_dirty(page);
1092
1093 if (pte_protnone(entry))
1094 entry = pte_mkclean(pte_clear_savedwrite(entry));
1095 else
1096 entry = pte_mkclean(pte_wrprotect(entry));
1097 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1098 }
1099 *orig_pte = *pvmw.pte;
1100 err = 0;
1101
1102 out_unlock:
1103 page_vma_mapped_walk_done(&pvmw);
1104 out_mn:
1105 mmu_notifier_invalidate_range_end(&range);
1106 out:
1107 return err;
1108 }
1109
1110 /**
1111 * replace_page - replace page in vma by new ksm page
1112 * @vma: vma that holds the pte pointing to page
1113 * @page: the page we are replacing by kpage
1114 * @kpage: the ksm page we replace page by
1115 * @orig_pte: the original value of the pte
1116 *
1117 * Returns 0 on success, -EFAULT on failure.
1118 */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)1119 static int replace_page(struct vm_area_struct *vma, struct page *page,
1120 struct page *kpage, pte_t orig_pte)
1121 {
1122 struct mm_struct *mm = vma->vm_mm;
1123 pmd_t *pmd;
1124 pte_t *ptep;
1125 pte_t newpte;
1126 spinlock_t *ptl;
1127 unsigned long addr;
1128 int err = -EFAULT;
1129 struct mmu_notifier_range range;
1130
1131 addr = page_address_in_vma(page, vma);
1132 if (addr == -EFAULT)
1133 goto out;
1134
1135 pmd = mm_find_pmd(mm, addr);
1136 if (!pmd)
1137 goto out;
1138
1139 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1140 addr + PAGE_SIZE);
1141 mmu_notifier_invalidate_range_start(&range);
1142
1143 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1144 if (!pte_same(*ptep, orig_pte)) {
1145 pte_unmap_unlock(ptep, ptl);
1146 goto out_mn;
1147 }
1148
1149 /*
1150 * No need to check ksm_use_zero_pages here: we can only have a
1151 * zero_page here if ksm_use_zero_pages was enabled already.
1152 */
1153 if (!is_zero_pfn(page_to_pfn(kpage))) {
1154 get_page(kpage);
1155 page_add_anon_rmap(kpage, vma, addr, false);
1156 newpte = mk_pte(kpage, vma->vm_page_prot);
1157 } else {
1158 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1159 vma->vm_page_prot));
1160 /*
1161 * We're replacing an anonymous page with a zero page, which is
1162 * not anonymous. We need to do proper accounting otherwise we
1163 * will get wrong values in /proc, and a BUG message in dmesg
1164 * when tearing down the mm.
1165 */
1166 dec_mm_counter(mm, MM_ANONPAGES);
1167 }
1168
1169 flush_cache_page(vma, addr, pte_pfn(*ptep));
1170 /*
1171 * No need to notify as we are replacing a read only page with another
1172 * read only page with the same content.
1173 *
1174 * See Documentation/vm/mmu_notifier.rst
1175 */
1176 ptep_clear_flush(vma, addr, ptep);
1177 set_pte_at_notify(mm, addr, ptep, newpte);
1178
1179 page_remove_rmap(page, false);
1180 if (!page_mapped(page))
1181 try_to_free_swap(page);
1182 put_page(page);
1183
1184 pte_unmap_unlock(ptep, ptl);
1185 err = 0;
1186 out_mn:
1187 mmu_notifier_invalidate_range_end(&range);
1188 out:
1189 return err;
1190 }
1191
1192 /*
1193 * try_to_merge_one_page - take two pages and merge them into one
1194 * @vma: the vma that holds the pte pointing to page
1195 * @page: the PageAnon page that we want to replace with kpage
1196 * @kpage: the PageKsm page that we want to map instead of page,
1197 * or NULL the first time when we want to use page as kpage.
1198 *
1199 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1200 */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1201 static int try_to_merge_one_page(struct vm_area_struct *vma,
1202 struct page *page, struct page *kpage)
1203 {
1204 pte_t orig_pte = __pte(0);
1205 int err = -EFAULT;
1206
1207 if (page == kpage) /* ksm page forked */
1208 return 0;
1209
1210 if (!PageAnon(page))
1211 goto out;
1212
1213 /*
1214 * We need the page lock to read a stable PageSwapCache in
1215 * write_protect_page(). We use trylock_page() instead of
1216 * lock_page() because we don't want to wait here - we
1217 * prefer to continue scanning and merging different pages,
1218 * then come back to this page when it is unlocked.
1219 */
1220 if (!trylock_page(page))
1221 goto out;
1222
1223 if (PageTransCompound(page)) {
1224 if (split_huge_page(page))
1225 goto out_unlock;
1226 }
1227
1228 /*
1229 * If this anonymous page is mapped only here, its pte may need
1230 * to be write-protected. If it's mapped elsewhere, all of its
1231 * ptes are necessarily already write-protected. But in either
1232 * case, we need to lock and check page_count is not raised.
1233 */
1234 if (write_protect_page(vma, page, &orig_pte) == 0) {
1235 if (!kpage) {
1236 /*
1237 * While we hold page lock, upgrade page from
1238 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1239 * stable_tree_insert() will update stable_node.
1240 */
1241 set_page_stable_node(page, NULL);
1242 mark_page_accessed(page);
1243 /*
1244 * Page reclaim just frees a clean page with no dirty
1245 * ptes: make sure that the ksm page would be swapped.
1246 */
1247 if (!PageDirty(page))
1248 SetPageDirty(page);
1249 err = 0;
1250 } else if (pages_identical(page, kpage))
1251 err = replace_page(vma, page, kpage, orig_pte);
1252 }
1253
1254 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1255 munlock_vma_page(page);
1256 if (!PageMlocked(kpage)) {
1257 unlock_page(page);
1258 lock_page(kpage);
1259 mlock_vma_page(kpage);
1260 page = kpage; /* for final unlock */
1261 }
1262 }
1263
1264 out_unlock:
1265 unlock_page(page);
1266 out:
1267 return err;
1268 }
1269
1270 /*
1271 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1272 * but no new kernel page is allocated: kpage must already be a ksm page.
1273 *
1274 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1275 */
try_to_merge_with_ksm_page(struct rmap_item * rmap_item,struct page * page,struct page * kpage)1276 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1277 struct page *page, struct page *kpage)
1278 {
1279 struct mm_struct *mm = rmap_item->mm;
1280 struct vm_area_struct *vma;
1281 int err = -EFAULT;
1282
1283 mmap_read_lock(mm);
1284 vma = find_mergeable_vma(mm, rmap_item->address);
1285 if (!vma)
1286 goto out;
1287
1288 err = try_to_merge_one_page(vma, page, kpage);
1289 if (err)
1290 goto out;
1291
1292 /* Unstable nid is in union with stable anon_vma: remove first */
1293 remove_rmap_item_from_tree(rmap_item);
1294
1295 /* Must get reference to anon_vma while still holding mmap_lock */
1296 rmap_item->anon_vma = vma->anon_vma;
1297 get_anon_vma(vma->anon_vma);
1298 out:
1299 mmap_read_unlock(mm);
1300 return err;
1301 }
1302
1303 /*
1304 * try_to_merge_two_pages - take two identical pages and prepare them
1305 * to be merged into one page.
1306 *
1307 * This function returns the kpage if we successfully merged two identical
1308 * pages into one ksm page, NULL otherwise.
1309 *
1310 * Note that this function upgrades page to ksm page: if one of the pages
1311 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1312 */
try_to_merge_two_pages(struct rmap_item * rmap_item,struct page * page,struct rmap_item * tree_rmap_item,struct page * tree_page)1313 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1314 struct page *page,
1315 struct rmap_item *tree_rmap_item,
1316 struct page *tree_page)
1317 {
1318 int err;
1319
1320 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1321 if (!err) {
1322 err = try_to_merge_with_ksm_page(tree_rmap_item,
1323 tree_page, page);
1324 /*
1325 * If that fails, we have a ksm page with only one pte
1326 * pointing to it: so break it.
1327 */
1328 if (err)
1329 break_cow(rmap_item);
1330 }
1331 return err ? NULL : page;
1332 }
1333
1334 static __always_inline
__is_page_sharing_candidate(struct stable_node * stable_node,int offset)1335 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1336 {
1337 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1338 /*
1339 * Check that at least one mapping still exists, otherwise
1340 * there's no much point to merge and share with this
1341 * stable_node, as the underlying tree_page of the other
1342 * sharer is going to be freed soon.
1343 */
1344 return stable_node->rmap_hlist_len &&
1345 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1346 }
1347
1348 static __always_inline
is_page_sharing_candidate(struct stable_node * stable_node)1349 bool is_page_sharing_candidate(struct stable_node *stable_node)
1350 {
1351 return __is_page_sharing_candidate(stable_node, 0);
1352 }
1353
stable_node_dup(struct stable_node ** _stable_node_dup,struct stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1354 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1355 struct stable_node **_stable_node,
1356 struct rb_root *root,
1357 bool prune_stale_stable_nodes)
1358 {
1359 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1360 struct hlist_node *hlist_safe;
1361 struct page *_tree_page, *tree_page = NULL;
1362 int nr = 0;
1363 int found_rmap_hlist_len;
1364
1365 if (!prune_stale_stable_nodes ||
1366 time_before(jiffies, stable_node->chain_prune_time +
1367 msecs_to_jiffies(
1368 ksm_stable_node_chains_prune_millisecs)))
1369 prune_stale_stable_nodes = false;
1370 else
1371 stable_node->chain_prune_time = jiffies;
1372
1373 hlist_for_each_entry_safe(dup, hlist_safe,
1374 &stable_node->hlist, hlist_dup) {
1375 cond_resched();
1376 /*
1377 * We must walk all stable_node_dup to prune the stale
1378 * stable nodes during lookup.
1379 *
1380 * get_ksm_page can drop the nodes from the
1381 * stable_node->hlist if they point to freed pages
1382 * (that's why we do a _safe walk). The "dup"
1383 * stable_node parameter itself will be freed from
1384 * under us if it returns NULL.
1385 */
1386 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1387 if (!_tree_page)
1388 continue;
1389 nr += 1;
1390 if (is_page_sharing_candidate(dup)) {
1391 if (!found ||
1392 dup->rmap_hlist_len > found_rmap_hlist_len) {
1393 if (found)
1394 put_page(tree_page);
1395 found = dup;
1396 found_rmap_hlist_len = found->rmap_hlist_len;
1397 tree_page = _tree_page;
1398
1399 /* skip put_page for found dup */
1400 if (!prune_stale_stable_nodes)
1401 break;
1402 continue;
1403 }
1404 }
1405 put_page(_tree_page);
1406 }
1407
1408 if (found) {
1409 /*
1410 * nr is counting all dups in the chain only if
1411 * prune_stale_stable_nodes is true, otherwise we may
1412 * break the loop at nr == 1 even if there are
1413 * multiple entries.
1414 */
1415 if (prune_stale_stable_nodes && nr == 1) {
1416 /*
1417 * If there's not just one entry it would
1418 * corrupt memory, better BUG_ON. In KSM
1419 * context with no lock held it's not even
1420 * fatal.
1421 */
1422 BUG_ON(stable_node->hlist.first->next);
1423
1424 /*
1425 * There's just one entry and it is below the
1426 * deduplication limit so drop the chain.
1427 */
1428 rb_replace_node(&stable_node->node, &found->node,
1429 root);
1430 free_stable_node(stable_node);
1431 ksm_stable_node_chains--;
1432 ksm_stable_node_dups--;
1433 /*
1434 * NOTE: the caller depends on the stable_node
1435 * to be equal to stable_node_dup if the chain
1436 * was collapsed.
1437 */
1438 *_stable_node = found;
1439 /*
1440 * Just for robustness, as stable_node is
1441 * otherwise left as a stable pointer, the
1442 * compiler shall optimize it away at build
1443 * time.
1444 */
1445 stable_node = NULL;
1446 } else if (stable_node->hlist.first != &found->hlist_dup &&
1447 __is_page_sharing_candidate(found, 1)) {
1448 /*
1449 * If the found stable_node dup can accept one
1450 * more future merge (in addition to the one
1451 * that is underway) and is not at the head of
1452 * the chain, put it there so next search will
1453 * be quicker in the !prune_stale_stable_nodes
1454 * case.
1455 *
1456 * NOTE: it would be inaccurate to use nr > 1
1457 * instead of checking the hlist.first pointer
1458 * directly, because in the
1459 * prune_stale_stable_nodes case "nr" isn't
1460 * the position of the found dup in the chain,
1461 * but the total number of dups in the chain.
1462 */
1463 hlist_del(&found->hlist_dup);
1464 hlist_add_head(&found->hlist_dup,
1465 &stable_node->hlist);
1466 }
1467 }
1468
1469 *_stable_node_dup = found;
1470 return tree_page;
1471 }
1472
stable_node_dup_any(struct stable_node * stable_node,struct rb_root * root)1473 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1474 struct rb_root *root)
1475 {
1476 if (!is_stable_node_chain(stable_node))
1477 return stable_node;
1478 if (hlist_empty(&stable_node->hlist)) {
1479 free_stable_node_chain(stable_node, root);
1480 return NULL;
1481 }
1482 return hlist_entry(stable_node->hlist.first,
1483 typeof(*stable_node), hlist_dup);
1484 }
1485
1486 /*
1487 * Like for get_ksm_page, this function can free the *_stable_node and
1488 * *_stable_node_dup if the returned tree_page is NULL.
1489 *
1490 * It can also free and overwrite *_stable_node with the found
1491 * stable_node_dup if the chain is collapsed (in which case
1492 * *_stable_node will be equal to *_stable_node_dup like if the chain
1493 * never existed). It's up to the caller to verify tree_page is not
1494 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1495 *
1496 * *_stable_node_dup is really a second output parameter of this
1497 * function and will be overwritten in all cases, the caller doesn't
1498 * need to initialize it.
1499 */
__stable_node_chain(struct stable_node ** _stable_node_dup,struct stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1500 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1501 struct stable_node **_stable_node,
1502 struct rb_root *root,
1503 bool prune_stale_stable_nodes)
1504 {
1505 struct stable_node *stable_node = *_stable_node;
1506 if (!is_stable_node_chain(stable_node)) {
1507 if (is_page_sharing_candidate(stable_node)) {
1508 *_stable_node_dup = stable_node;
1509 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1510 }
1511 /*
1512 * _stable_node_dup set to NULL means the stable_node
1513 * reached the ksm_max_page_sharing limit.
1514 */
1515 *_stable_node_dup = NULL;
1516 return NULL;
1517 }
1518 return stable_node_dup(_stable_node_dup, _stable_node, root,
1519 prune_stale_stable_nodes);
1520 }
1521
chain_prune(struct stable_node ** s_n_d,struct stable_node ** s_n,struct rb_root * root)1522 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1523 struct stable_node **s_n,
1524 struct rb_root *root)
1525 {
1526 return __stable_node_chain(s_n_d, s_n, root, true);
1527 }
1528
chain(struct stable_node ** s_n_d,struct stable_node * s_n,struct rb_root * root)1529 static __always_inline struct page *chain(struct stable_node **s_n_d,
1530 struct stable_node *s_n,
1531 struct rb_root *root)
1532 {
1533 struct stable_node *old_stable_node = s_n;
1534 struct page *tree_page;
1535
1536 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1537 /* not pruning dups so s_n cannot have changed */
1538 VM_BUG_ON(s_n != old_stable_node);
1539 return tree_page;
1540 }
1541
1542 /*
1543 * stable_tree_search - search for page inside the stable tree
1544 *
1545 * This function checks if there is a page inside the stable tree
1546 * with identical content to the page that we are scanning right now.
1547 *
1548 * This function returns the stable tree node of identical content if found,
1549 * NULL otherwise.
1550 */
stable_tree_search(struct page * page)1551 static struct page *stable_tree_search(struct page *page)
1552 {
1553 int nid;
1554 struct rb_root *root;
1555 struct rb_node **new;
1556 struct rb_node *parent;
1557 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1558 struct stable_node *page_node;
1559
1560 page_node = page_stable_node(page);
1561 if (page_node && page_node->head != &migrate_nodes) {
1562 /* ksm page forked */
1563 get_page(page);
1564 return page;
1565 }
1566
1567 nid = get_kpfn_nid(page_to_pfn(page));
1568 root = root_stable_tree + nid;
1569 again:
1570 new = &root->rb_node;
1571 parent = NULL;
1572
1573 while (*new) {
1574 struct page *tree_page;
1575 int ret;
1576
1577 cond_resched();
1578 stable_node = rb_entry(*new, struct stable_node, node);
1579 stable_node_any = NULL;
1580 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1581 /*
1582 * NOTE: stable_node may have been freed by
1583 * chain_prune() if the returned stable_node_dup is
1584 * not NULL. stable_node_dup may have been inserted in
1585 * the rbtree instead as a regular stable_node (in
1586 * order to collapse the stable_node chain if a single
1587 * stable_node dup was found in it). In such case the
1588 * stable_node is overwritten by the calleee to point
1589 * to the stable_node_dup that was collapsed in the
1590 * stable rbtree and stable_node will be equal to
1591 * stable_node_dup like if the chain never existed.
1592 */
1593 if (!stable_node_dup) {
1594 /*
1595 * Either all stable_node dups were full in
1596 * this stable_node chain, or this chain was
1597 * empty and should be rb_erased.
1598 */
1599 stable_node_any = stable_node_dup_any(stable_node,
1600 root);
1601 if (!stable_node_any) {
1602 /* rb_erase just run */
1603 goto again;
1604 }
1605 /*
1606 * Take any of the stable_node dups page of
1607 * this stable_node chain to let the tree walk
1608 * continue. All KSM pages belonging to the
1609 * stable_node dups in a stable_node chain
1610 * have the same content and they're
1611 * write protected at all times. Any will work
1612 * fine to continue the walk.
1613 */
1614 tree_page = get_ksm_page(stable_node_any,
1615 GET_KSM_PAGE_NOLOCK);
1616 }
1617 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1618 if (!tree_page) {
1619 /*
1620 * If we walked over a stale stable_node,
1621 * get_ksm_page() will call rb_erase() and it
1622 * may rebalance the tree from under us. So
1623 * restart the search from scratch. Returning
1624 * NULL would be safe too, but we'd generate
1625 * false negative insertions just because some
1626 * stable_node was stale.
1627 */
1628 goto again;
1629 }
1630
1631 ret = memcmp_pages(page, tree_page);
1632 put_page(tree_page);
1633
1634 parent = *new;
1635 if (ret < 0)
1636 new = &parent->rb_left;
1637 else if (ret > 0)
1638 new = &parent->rb_right;
1639 else {
1640 if (page_node) {
1641 VM_BUG_ON(page_node->head != &migrate_nodes);
1642 /*
1643 * Test if the migrated page should be merged
1644 * into a stable node dup. If the mapcount is
1645 * 1 we can migrate it with another KSM page
1646 * without adding it to the chain.
1647 */
1648 if (page_mapcount(page) > 1)
1649 goto chain_append;
1650 }
1651
1652 if (!stable_node_dup) {
1653 /*
1654 * If the stable_node is a chain and
1655 * we got a payload match in memcmp
1656 * but we cannot merge the scanned
1657 * page in any of the existing
1658 * stable_node dups because they're
1659 * all full, we need to wait the
1660 * scanned page to find itself a match
1661 * in the unstable tree to create a
1662 * brand new KSM page to add later to
1663 * the dups of this stable_node.
1664 */
1665 return NULL;
1666 }
1667
1668 /*
1669 * Lock and unlock the stable_node's page (which
1670 * might already have been migrated) so that page
1671 * migration is sure to notice its raised count.
1672 * It would be more elegant to return stable_node
1673 * than kpage, but that involves more changes.
1674 */
1675 tree_page = get_ksm_page(stable_node_dup,
1676 GET_KSM_PAGE_TRYLOCK);
1677
1678 if (PTR_ERR(tree_page) == -EBUSY)
1679 return ERR_PTR(-EBUSY);
1680
1681 if (unlikely(!tree_page))
1682 /*
1683 * The tree may have been rebalanced,
1684 * so re-evaluate parent and new.
1685 */
1686 goto again;
1687 unlock_page(tree_page);
1688
1689 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1690 NUMA(stable_node_dup->nid)) {
1691 put_page(tree_page);
1692 goto replace;
1693 }
1694 return tree_page;
1695 }
1696 }
1697
1698 if (!page_node)
1699 return NULL;
1700
1701 list_del(&page_node->list);
1702 DO_NUMA(page_node->nid = nid);
1703 rb_link_node(&page_node->node, parent, new);
1704 rb_insert_color(&page_node->node, root);
1705 out:
1706 if (is_page_sharing_candidate(page_node)) {
1707 get_page(page);
1708 return page;
1709 } else
1710 return NULL;
1711
1712 replace:
1713 /*
1714 * If stable_node was a chain and chain_prune collapsed it,
1715 * stable_node has been updated to be the new regular
1716 * stable_node. A collapse of the chain is indistinguishable
1717 * from the case there was no chain in the stable
1718 * rbtree. Otherwise stable_node is the chain and
1719 * stable_node_dup is the dup to replace.
1720 */
1721 if (stable_node_dup == stable_node) {
1722 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1723 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1724 /* there is no chain */
1725 if (page_node) {
1726 VM_BUG_ON(page_node->head != &migrate_nodes);
1727 list_del(&page_node->list);
1728 DO_NUMA(page_node->nid = nid);
1729 rb_replace_node(&stable_node_dup->node,
1730 &page_node->node,
1731 root);
1732 if (is_page_sharing_candidate(page_node))
1733 get_page(page);
1734 else
1735 page = NULL;
1736 } else {
1737 rb_erase(&stable_node_dup->node, root);
1738 page = NULL;
1739 }
1740 } else {
1741 VM_BUG_ON(!is_stable_node_chain(stable_node));
1742 __stable_node_dup_del(stable_node_dup);
1743 if (page_node) {
1744 VM_BUG_ON(page_node->head != &migrate_nodes);
1745 list_del(&page_node->list);
1746 DO_NUMA(page_node->nid = nid);
1747 stable_node_chain_add_dup(page_node, stable_node);
1748 if (is_page_sharing_candidate(page_node))
1749 get_page(page);
1750 else
1751 page = NULL;
1752 } else {
1753 page = NULL;
1754 }
1755 }
1756 stable_node_dup->head = &migrate_nodes;
1757 list_add(&stable_node_dup->list, stable_node_dup->head);
1758 return page;
1759
1760 chain_append:
1761 /* stable_node_dup could be null if it reached the limit */
1762 if (!stable_node_dup)
1763 stable_node_dup = stable_node_any;
1764 /*
1765 * If stable_node was a chain and chain_prune collapsed it,
1766 * stable_node has been updated to be the new regular
1767 * stable_node. A collapse of the chain is indistinguishable
1768 * from the case there was no chain in the stable
1769 * rbtree. Otherwise stable_node is the chain and
1770 * stable_node_dup is the dup to replace.
1771 */
1772 if (stable_node_dup == stable_node) {
1773 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1774 /* chain is missing so create it */
1775 stable_node = alloc_stable_node_chain(stable_node_dup,
1776 root);
1777 if (!stable_node)
1778 return NULL;
1779 }
1780 /*
1781 * Add this stable_node dup that was
1782 * migrated to the stable_node chain
1783 * of the current nid for this page
1784 * content.
1785 */
1786 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1787 VM_BUG_ON(page_node->head != &migrate_nodes);
1788 list_del(&page_node->list);
1789 DO_NUMA(page_node->nid = nid);
1790 stable_node_chain_add_dup(page_node, stable_node);
1791 goto out;
1792 }
1793
1794 /*
1795 * stable_tree_insert - insert stable tree node pointing to new ksm page
1796 * into the stable tree.
1797 *
1798 * This function returns the stable tree node just allocated on success,
1799 * NULL otherwise.
1800 */
stable_tree_insert(struct page * kpage)1801 static struct stable_node *stable_tree_insert(struct page *kpage)
1802 {
1803 int nid;
1804 unsigned long kpfn;
1805 struct rb_root *root;
1806 struct rb_node **new;
1807 struct rb_node *parent;
1808 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1809 bool need_chain = false;
1810
1811 kpfn = page_to_pfn(kpage);
1812 nid = get_kpfn_nid(kpfn);
1813 root = root_stable_tree + nid;
1814 again:
1815 parent = NULL;
1816 new = &root->rb_node;
1817
1818 while (*new) {
1819 struct page *tree_page;
1820 int ret;
1821
1822 cond_resched();
1823 stable_node = rb_entry(*new, struct stable_node, node);
1824 stable_node_any = NULL;
1825 tree_page = chain(&stable_node_dup, stable_node, root);
1826 if (!stable_node_dup) {
1827 /*
1828 * Either all stable_node dups were full in
1829 * this stable_node chain, or this chain was
1830 * empty and should be rb_erased.
1831 */
1832 stable_node_any = stable_node_dup_any(stable_node,
1833 root);
1834 if (!stable_node_any) {
1835 /* rb_erase just run */
1836 goto again;
1837 }
1838 /*
1839 * Take any of the stable_node dups page of
1840 * this stable_node chain to let the tree walk
1841 * continue. All KSM pages belonging to the
1842 * stable_node dups in a stable_node chain
1843 * have the same content and they're
1844 * write protected at all times. Any will work
1845 * fine to continue the walk.
1846 */
1847 tree_page = get_ksm_page(stable_node_any,
1848 GET_KSM_PAGE_NOLOCK);
1849 }
1850 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1851 if (!tree_page) {
1852 /*
1853 * If we walked over a stale stable_node,
1854 * get_ksm_page() will call rb_erase() and it
1855 * may rebalance the tree from under us. So
1856 * restart the search from scratch. Returning
1857 * NULL would be safe too, but we'd generate
1858 * false negative insertions just because some
1859 * stable_node was stale.
1860 */
1861 goto again;
1862 }
1863
1864 ret = memcmp_pages(kpage, tree_page);
1865 put_page(tree_page);
1866
1867 parent = *new;
1868 if (ret < 0)
1869 new = &parent->rb_left;
1870 else if (ret > 0)
1871 new = &parent->rb_right;
1872 else {
1873 need_chain = true;
1874 break;
1875 }
1876 }
1877
1878 stable_node_dup = alloc_stable_node();
1879 if (!stable_node_dup)
1880 return NULL;
1881
1882 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1883 stable_node_dup->kpfn = kpfn;
1884 set_page_stable_node(kpage, stable_node_dup);
1885 stable_node_dup->rmap_hlist_len = 0;
1886 DO_NUMA(stable_node_dup->nid = nid);
1887 if (!need_chain) {
1888 rb_link_node(&stable_node_dup->node, parent, new);
1889 rb_insert_color(&stable_node_dup->node, root);
1890 } else {
1891 if (!is_stable_node_chain(stable_node)) {
1892 struct stable_node *orig = stable_node;
1893 /* chain is missing so create it */
1894 stable_node = alloc_stable_node_chain(orig, root);
1895 if (!stable_node) {
1896 free_stable_node(stable_node_dup);
1897 return NULL;
1898 }
1899 }
1900 stable_node_chain_add_dup(stable_node_dup, stable_node);
1901 }
1902
1903 return stable_node_dup;
1904 }
1905
1906 /*
1907 * unstable_tree_search_insert - search for identical page,
1908 * else insert rmap_item into the unstable tree.
1909 *
1910 * This function searches for a page in the unstable tree identical to the
1911 * page currently being scanned; and if no identical page is found in the
1912 * tree, we insert rmap_item as a new object into the unstable tree.
1913 *
1914 * This function returns pointer to rmap_item found to be identical
1915 * to the currently scanned page, NULL otherwise.
1916 *
1917 * This function does both searching and inserting, because they share
1918 * the same walking algorithm in an rbtree.
1919 */
1920 static
unstable_tree_search_insert(struct rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)1921 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1922 struct page *page,
1923 struct page **tree_pagep)
1924 {
1925 struct rb_node **new;
1926 struct rb_root *root;
1927 struct rb_node *parent = NULL;
1928 int nid;
1929
1930 nid = get_kpfn_nid(page_to_pfn(page));
1931 root = root_unstable_tree + nid;
1932 new = &root->rb_node;
1933
1934 while (*new) {
1935 struct rmap_item *tree_rmap_item;
1936 struct page *tree_page;
1937 int ret;
1938
1939 cond_resched();
1940 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1941 tree_page = get_mergeable_page(tree_rmap_item);
1942 if (!tree_page)
1943 return NULL;
1944
1945 /*
1946 * Don't substitute a ksm page for a forked page.
1947 */
1948 if (page == tree_page) {
1949 put_page(tree_page);
1950 return NULL;
1951 }
1952
1953 ret = memcmp_pages(page, tree_page);
1954
1955 parent = *new;
1956 if (ret < 0) {
1957 put_page(tree_page);
1958 new = &parent->rb_left;
1959 } else if (ret > 0) {
1960 put_page(tree_page);
1961 new = &parent->rb_right;
1962 } else if (!ksm_merge_across_nodes &&
1963 page_to_nid(tree_page) != nid) {
1964 /*
1965 * If tree_page has been migrated to another NUMA node,
1966 * it will be flushed out and put in the right unstable
1967 * tree next time: only merge with it when across_nodes.
1968 */
1969 put_page(tree_page);
1970 return NULL;
1971 } else {
1972 *tree_pagep = tree_page;
1973 return tree_rmap_item;
1974 }
1975 }
1976
1977 rmap_item->address |= UNSTABLE_FLAG;
1978 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1979 DO_NUMA(rmap_item->nid = nid);
1980 rb_link_node(&rmap_item->node, parent, new);
1981 rb_insert_color(&rmap_item->node, root);
1982
1983 ksm_pages_unshared++;
1984 return NULL;
1985 }
1986
1987 /*
1988 * stable_tree_append - add another rmap_item to the linked list of
1989 * rmap_items hanging off a given node of the stable tree, all sharing
1990 * the same ksm page.
1991 */
stable_tree_append(struct rmap_item * rmap_item,struct stable_node * stable_node,bool max_page_sharing_bypass)1992 static void stable_tree_append(struct rmap_item *rmap_item,
1993 struct stable_node *stable_node,
1994 bool max_page_sharing_bypass)
1995 {
1996 /*
1997 * rmap won't find this mapping if we don't insert the
1998 * rmap_item in the right stable_node
1999 * duplicate. page_migration could break later if rmap breaks,
2000 * so we can as well crash here. We really need to check for
2001 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2002 * for other negative values as an underflow if detected here
2003 * for the first time (and not when decreasing rmap_hlist_len)
2004 * would be sign of memory corruption in the stable_node.
2005 */
2006 BUG_ON(stable_node->rmap_hlist_len < 0);
2007
2008 stable_node->rmap_hlist_len++;
2009 if (!max_page_sharing_bypass)
2010 /* possibly non fatal but unexpected overflow, only warn */
2011 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2012 ksm_max_page_sharing);
2013
2014 rmap_item->head = stable_node;
2015 rmap_item->address |= STABLE_FLAG;
2016 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2017
2018 if (rmap_item->hlist.next)
2019 ksm_pages_sharing++;
2020 else
2021 ksm_pages_shared++;
2022 }
2023
2024 /*
2025 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2026 * if not, compare checksum to previous and if it's the same, see if page can
2027 * be inserted into the unstable tree, or merged with a page already there and
2028 * both transferred to the stable tree.
2029 *
2030 * @page: the page that we are searching identical page to.
2031 * @rmap_item: the reverse mapping into the virtual address of this page
2032 */
cmp_and_merge_page(struct page * page,struct rmap_item * rmap_item)2033 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2034 {
2035 struct mm_struct *mm = rmap_item->mm;
2036 struct rmap_item *tree_rmap_item;
2037 struct page *tree_page = NULL;
2038 struct stable_node *stable_node;
2039 struct page *kpage;
2040 unsigned int checksum;
2041 int err;
2042 bool max_page_sharing_bypass = false;
2043
2044 stable_node = page_stable_node(page);
2045 if (stable_node) {
2046 if (stable_node->head != &migrate_nodes &&
2047 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2048 NUMA(stable_node->nid)) {
2049 stable_node_dup_del(stable_node);
2050 stable_node->head = &migrate_nodes;
2051 list_add(&stable_node->list, stable_node->head);
2052 }
2053 if (stable_node->head != &migrate_nodes &&
2054 rmap_item->head == stable_node)
2055 return;
2056 /*
2057 * If it's a KSM fork, allow it to go over the sharing limit
2058 * without warnings.
2059 */
2060 if (!is_page_sharing_candidate(stable_node))
2061 max_page_sharing_bypass = true;
2062 }
2063
2064 /* We first start with searching the page inside the stable tree */
2065 kpage = stable_tree_search(page);
2066 if (kpage == page && rmap_item->head == stable_node) {
2067 put_page(kpage);
2068 return;
2069 }
2070
2071 remove_rmap_item_from_tree(rmap_item);
2072
2073 if (kpage) {
2074 if (PTR_ERR(kpage) == -EBUSY)
2075 return;
2076
2077 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2078 if (!err) {
2079 /*
2080 * The page was successfully merged:
2081 * add its rmap_item to the stable tree.
2082 */
2083 lock_page(kpage);
2084 stable_tree_append(rmap_item, page_stable_node(kpage),
2085 max_page_sharing_bypass);
2086 unlock_page(kpage);
2087 }
2088 put_page(kpage);
2089 return;
2090 }
2091
2092 /*
2093 * If the hash value of the page has changed from the last time
2094 * we calculated it, this page is changing frequently: therefore we
2095 * don't want to insert it in the unstable tree, and we don't want
2096 * to waste our time searching for something identical to it there.
2097 */
2098 checksum = calc_checksum(page);
2099 if (rmap_item->oldchecksum != checksum) {
2100 rmap_item->oldchecksum = checksum;
2101 return;
2102 }
2103
2104 /*
2105 * Same checksum as an empty page. We attempt to merge it with the
2106 * appropriate zero page if the user enabled this via sysfs.
2107 */
2108 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2109 struct vm_area_struct *vma;
2110
2111 mmap_read_lock(mm);
2112 vma = find_mergeable_vma(mm, rmap_item->address);
2113 if (vma) {
2114 err = try_to_merge_one_page(vma, page,
2115 ZERO_PAGE(rmap_item->address));
2116 } else {
2117 /*
2118 * If the vma is out of date, we do not need to
2119 * continue.
2120 */
2121 err = 0;
2122 }
2123 mmap_read_unlock(mm);
2124 /*
2125 * In case of failure, the page was not really empty, so we
2126 * need to continue. Otherwise we're done.
2127 */
2128 if (!err)
2129 return;
2130 }
2131 tree_rmap_item =
2132 unstable_tree_search_insert(rmap_item, page, &tree_page);
2133 if (tree_rmap_item) {
2134 bool split;
2135
2136 kpage = try_to_merge_two_pages(rmap_item, page,
2137 tree_rmap_item, tree_page);
2138 /*
2139 * If both pages we tried to merge belong to the same compound
2140 * page, then we actually ended up increasing the reference
2141 * count of the same compound page twice, and split_huge_page
2142 * failed.
2143 * Here we set a flag if that happened, and we use it later to
2144 * try split_huge_page again. Since we call put_page right
2145 * afterwards, the reference count will be correct and
2146 * split_huge_page should succeed.
2147 */
2148 split = PageTransCompound(page)
2149 && compound_head(page) == compound_head(tree_page);
2150 put_page(tree_page);
2151 if (kpage) {
2152 /*
2153 * The pages were successfully merged: insert new
2154 * node in the stable tree and add both rmap_items.
2155 */
2156 lock_page(kpage);
2157 stable_node = stable_tree_insert(kpage);
2158 if (stable_node) {
2159 stable_tree_append(tree_rmap_item, stable_node,
2160 false);
2161 stable_tree_append(rmap_item, stable_node,
2162 false);
2163 }
2164 unlock_page(kpage);
2165
2166 /*
2167 * If we fail to insert the page into the stable tree,
2168 * we will have 2 virtual addresses that are pointing
2169 * to a ksm page left outside the stable tree,
2170 * in which case we need to break_cow on both.
2171 */
2172 if (!stable_node) {
2173 break_cow(tree_rmap_item);
2174 break_cow(rmap_item);
2175 }
2176 } else if (split) {
2177 /*
2178 * We are here if we tried to merge two pages and
2179 * failed because they both belonged to the same
2180 * compound page. We will split the page now, but no
2181 * merging will take place.
2182 * We do not want to add the cost of a full lock; if
2183 * the page is locked, it is better to skip it and
2184 * perhaps try again later.
2185 */
2186 if (!trylock_page(page))
2187 return;
2188 split_huge_page(page);
2189 unlock_page(page);
2190 }
2191 }
2192 }
2193
get_next_rmap_item(struct mm_slot * mm_slot,struct rmap_item ** rmap_list,unsigned long addr)2194 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2195 struct rmap_item **rmap_list,
2196 unsigned long addr)
2197 {
2198 struct rmap_item *rmap_item;
2199
2200 while (*rmap_list) {
2201 rmap_item = *rmap_list;
2202 if ((rmap_item->address & PAGE_MASK) == addr)
2203 return rmap_item;
2204 if (rmap_item->address > addr)
2205 break;
2206 *rmap_list = rmap_item->rmap_list;
2207 remove_rmap_item_from_tree(rmap_item);
2208 free_rmap_item(rmap_item);
2209 }
2210
2211 rmap_item = alloc_rmap_item();
2212 if (rmap_item) {
2213 /* It has already been zeroed */
2214 rmap_item->mm = mm_slot->mm;
2215 rmap_item->address = addr;
2216 rmap_item->rmap_list = *rmap_list;
2217 *rmap_list = rmap_item;
2218 }
2219 return rmap_item;
2220 }
2221
scan_get_next_rmap_item(struct page ** page)2222 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2223 {
2224 struct mm_struct *mm;
2225 struct mm_slot *slot;
2226 struct vm_area_struct *vma;
2227 struct rmap_item *rmap_item;
2228 int nid;
2229
2230 if (list_empty(&ksm_mm_head.mm_list))
2231 return NULL;
2232
2233 slot = ksm_scan.mm_slot;
2234 if (slot == &ksm_mm_head) {
2235 /*
2236 * A number of pages can hang around indefinitely on per-cpu
2237 * pagevecs, raised page count preventing write_protect_page
2238 * from merging them. Though it doesn't really matter much,
2239 * it is puzzling to see some stuck in pages_volatile until
2240 * other activity jostles them out, and they also prevented
2241 * LTP's KSM test from succeeding deterministically; so drain
2242 * them here (here rather than on entry to ksm_do_scan(),
2243 * so we don't IPI too often when pages_to_scan is set low).
2244 */
2245 lru_add_drain_all();
2246
2247 /*
2248 * Whereas stale stable_nodes on the stable_tree itself
2249 * get pruned in the regular course of stable_tree_search(),
2250 * those moved out to the migrate_nodes list can accumulate:
2251 * so prune them once before each full scan.
2252 */
2253 if (!ksm_merge_across_nodes) {
2254 struct stable_node *stable_node, *next;
2255 struct page *page;
2256
2257 list_for_each_entry_safe(stable_node, next,
2258 &migrate_nodes, list) {
2259 page = get_ksm_page(stable_node,
2260 GET_KSM_PAGE_NOLOCK);
2261 if (page)
2262 put_page(page);
2263 cond_resched();
2264 }
2265 }
2266
2267 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2268 root_unstable_tree[nid] = RB_ROOT;
2269
2270 spin_lock(&ksm_mmlist_lock);
2271 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2272 ksm_scan.mm_slot = slot;
2273 spin_unlock(&ksm_mmlist_lock);
2274 /*
2275 * Although we tested list_empty() above, a racing __ksm_exit
2276 * of the last mm on the list may have removed it since then.
2277 */
2278 if (slot == &ksm_mm_head)
2279 return NULL;
2280 next_mm:
2281 ksm_scan.address = 0;
2282 ksm_scan.rmap_list = &slot->rmap_list;
2283 }
2284
2285 mm = slot->mm;
2286 mmap_read_lock(mm);
2287 if (ksm_test_exit(mm))
2288 vma = NULL;
2289 else
2290 vma = find_vma(mm, ksm_scan.address);
2291
2292 for (; vma; vma = vma->vm_next) {
2293 if (!(vma->vm_flags & VM_MERGEABLE))
2294 continue;
2295 if (ksm_scan.address < vma->vm_start)
2296 ksm_scan.address = vma->vm_start;
2297 if (!vma->anon_vma)
2298 ksm_scan.address = vma->vm_end;
2299
2300 while (ksm_scan.address < vma->vm_end) {
2301 if (ksm_test_exit(mm))
2302 break;
2303 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2304 if (IS_ERR_OR_NULL(*page)) {
2305 ksm_scan.address += PAGE_SIZE;
2306 cond_resched();
2307 continue;
2308 }
2309 if (PageAnon(*page)) {
2310 flush_anon_page(vma, *page, ksm_scan.address);
2311 flush_dcache_page(*page);
2312 rmap_item = get_next_rmap_item(slot,
2313 ksm_scan.rmap_list, ksm_scan.address);
2314 if (rmap_item) {
2315 ksm_scan.rmap_list =
2316 &rmap_item->rmap_list;
2317 ksm_scan.address += PAGE_SIZE;
2318 } else
2319 put_page(*page);
2320 mmap_read_unlock(mm);
2321 return rmap_item;
2322 }
2323 put_page(*page);
2324 ksm_scan.address += PAGE_SIZE;
2325 cond_resched();
2326 }
2327 }
2328
2329 if (ksm_test_exit(mm)) {
2330 ksm_scan.address = 0;
2331 ksm_scan.rmap_list = &slot->rmap_list;
2332 }
2333 /*
2334 * Nuke all the rmap_items that are above this current rmap:
2335 * because there were no VM_MERGEABLE vmas with such addresses.
2336 */
2337 remove_trailing_rmap_items(ksm_scan.rmap_list);
2338
2339 spin_lock(&ksm_mmlist_lock);
2340 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2341 struct mm_slot, mm_list);
2342 if (ksm_scan.address == 0) {
2343 /*
2344 * We've completed a full scan of all vmas, holding mmap_lock
2345 * throughout, and found no VM_MERGEABLE: so do the same as
2346 * __ksm_exit does to remove this mm from all our lists now.
2347 * This applies either when cleaning up after __ksm_exit
2348 * (but beware: we can reach here even before __ksm_exit),
2349 * or when all VM_MERGEABLE areas have been unmapped (and
2350 * mmap_lock then protects against race with MADV_MERGEABLE).
2351 */
2352 hash_del(&slot->link);
2353 list_del(&slot->mm_list);
2354 spin_unlock(&ksm_mmlist_lock);
2355
2356 free_mm_slot(slot);
2357 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2358 mmap_read_unlock(mm);
2359 mmdrop(mm);
2360 } else {
2361 mmap_read_unlock(mm);
2362 /*
2363 * mmap_read_unlock(mm) first because after
2364 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2365 * already have been freed under us by __ksm_exit()
2366 * because the "mm_slot" is still hashed and
2367 * ksm_scan.mm_slot doesn't point to it anymore.
2368 */
2369 spin_unlock(&ksm_mmlist_lock);
2370 }
2371
2372 /* Repeat until we've completed scanning the whole list */
2373 slot = ksm_scan.mm_slot;
2374 if (slot != &ksm_mm_head)
2375 goto next_mm;
2376
2377 ksm_scan.seqnr++;
2378 return NULL;
2379 }
2380
2381 /**
2382 * ksm_do_scan - the ksm scanner main worker function.
2383 * @scan_npages: number of pages we want to scan before we return.
2384 */
ksm_do_scan(unsigned int scan_npages)2385 static void ksm_do_scan(unsigned int scan_npages)
2386 {
2387 struct rmap_item *rmap_item;
2388 struct page *page;
2389
2390 while (scan_npages-- && likely(!freezing(current))) {
2391 cond_resched();
2392 rmap_item = scan_get_next_rmap_item(&page);
2393 if (!rmap_item)
2394 return;
2395 cmp_and_merge_page(page, rmap_item);
2396 put_page(page);
2397 }
2398 }
2399
ksmd_should_run(void)2400 static int ksmd_should_run(void)
2401 {
2402 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2403 }
2404
ksm_scan_thread(void * nothing)2405 static int ksm_scan_thread(void *nothing)
2406 {
2407 unsigned int sleep_ms;
2408
2409 set_freezable();
2410 set_user_nice(current, 5);
2411
2412 while (!kthread_should_stop()) {
2413 mutex_lock(&ksm_thread_mutex);
2414 wait_while_offlining();
2415 if (ksmd_should_run())
2416 ksm_do_scan(ksm_thread_pages_to_scan);
2417 mutex_unlock(&ksm_thread_mutex);
2418
2419 try_to_freeze();
2420
2421 if (ksmd_should_run()) {
2422 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2423 wait_event_interruptible_timeout(ksm_iter_wait,
2424 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2425 msecs_to_jiffies(sleep_ms));
2426 } else {
2427 wait_event_freezable(ksm_thread_wait,
2428 ksmd_should_run() || kthread_should_stop());
2429 }
2430 }
2431 return 0;
2432 }
2433
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,unsigned long * vm_flags)2434 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2435 unsigned long end, int advice, unsigned long *vm_flags)
2436 {
2437 struct mm_struct *mm = vma->vm_mm;
2438 int err;
2439
2440 switch (advice) {
2441 case MADV_MERGEABLE:
2442 /*
2443 * Be somewhat over-protective for now!
2444 */
2445 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2446 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2447 VM_HUGETLB | VM_MIXEDMAP))
2448 return 0; /* just ignore the advice */
2449
2450 if (vma_is_dax(vma))
2451 return 0;
2452
2453 #ifdef VM_SAO
2454 if (*vm_flags & VM_SAO)
2455 return 0;
2456 #endif
2457 #ifdef VM_SPARC_ADI
2458 if (*vm_flags & VM_SPARC_ADI)
2459 return 0;
2460 #endif
2461
2462 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2463 err = __ksm_enter(mm);
2464 if (err)
2465 return err;
2466 }
2467
2468 *vm_flags |= VM_MERGEABLE;
2469 break;
2470
2471 case MADV_UNMERGEABLE:
2472 if (!(*vm_flags & VM_MERGEABLE))
2473 return 0; /* just ignore the advice */
2474
2475 if (vma->anon_vma) {
2476 err = unmerge_ksm_pages(vma, start, end);
2477 if (err)
2478 return err;
2479 }
2480
2481 *vm_flags &= ~VM_MERGEABLE;
2482 break;
2483 }
2484
2485 return 0;
2486 }
2487 EXPORT_SYMBOL_GPL(ksm_madvise);
2488
__ksm_enter(struct mm_struct * mm)2489 int __ksm_enter(struct mm_struct *mm)
2490 {
2491 struct mm_slot *mm_slot;
2492 int needs_wakeup;
2493
2494 mm_slot = alloc_mm_slot();
2495 if (!mm_slot)
2496 return -ENOMEM;
2497
2498 /* Check ksm_run too? Would need tighter locking */
2499 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2500
2501 spin_lock(&ksm_mmlist_lock);
2502 insert_to_mm_slots_hash(mm, mm_slot);
2503 /*
2504 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2505 * insert just behind the scanning cursor, to let the area settle
2506 * down a little; when fork is followed by immediate exec, we don't
2507 * want ksmd to waste time setting up and tearing down an rmap_list.
2508 *
2509 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2510 * scanning cursor, otherwise KSM pages in newly forked mms will be
2511 * missed: then we might as well insert at the end of the list.
2512 */
2513 if (ksm_run & KSM_RUN_UNMERGE)
2514 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2515 else
2516 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2517 spin_unlock(&ksm_mmlist_lock);
2518
2519 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2520 mmgrab(mm);
2521
2522 if (needs_wakeup)
2523 wake_up_interruptible(&ksm_thread_wait);
2524
2525 return 0;
2526 }
2527
__ksm_exit(struct mm_struct * mm)2528 void __ksm_exit(struct mm_struct *mm)
2529 {
2530 struct mm_slot *mm_slot;
2531 int easy_to_free = 0;
2532
2533 /*
2534 * This process is exiting: if it's straightforward (as is the
2535 * case when ksmd was never running), free mm_slot immediately.
2536 * But if it's at the cursor or has rmap_items linked to it, use
2537 * mmap_lock to synchronize with any break_cows before pagetables
2538 * are freed, and leave the mm_slot on the list for ksmd to free.
2539 * Beware: ksm may already have noticed it exiting and freed the slot.
2540 */
2541
2542 spin_lock(&ksm_mmlist_lock);
2543 mm_slot = get_mm_slot(mm);
2544 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2545 if (!mm_slot->rmap_list) {
2546 hash_del(&mm_slot->link);
2547 list_del(&mm_slot->mm_list);
2548 easy_to_free = 1;
2549 } else {
2550 list_move(&mm_slot->mm_list,
2551 &ksm_scan.mm_slot->mm_list);
2552 }
2553 }
2554 spin_unlock(&ksm_mmlist_lock);
2555
2556 if (easy_to_free) {
2557 free_mm_slot(mm_slot);
2558 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2559 mmdrop(mm);
2560 } else if (mm_slot) {
2561 mmap_write_lock(mm);
2562 mmap_write_unlock(mm);
2563 }
2564 }
2565
ksm_might_need_to_copy(struct page * page,struct vm_area_struct * vma,unsigned long address)2566 struct page *ksm_might_need_to_copy(struct page *page,
2567 struct vm_area_struct *vma, unsigned long address)
2568 {
2569 struct anon_vma *anon_vma = page_anon_vma(page);
2570 struct page *new_page;
2571
2572 if (PageKsm(page)) {
2573 if (page_stable_node(page) &&
2574 !(ksm_run & KSM_RUN_UNMERGE))
2575 return page; /* no need to copy it */
2576 } else if (!anon_vma) {
2577 return page; /* no need to copy it */
2578 } else if (anon_vma->root == vma->anon_vma->root &&
2579 page->index == linear_page_index(vma, address)) {
2580 return page; /* still no need to copy it */
2581 }
2582 if (!PageUptodate(page))
2583 return page; /* let do_swap_page report the error */
2584
2585 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2586 if (new_page &&
2587 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2588 put_page(new_page);
2589 new_page = NULL;
2590 }
2591 if (new_page) {
2592 copy_user_highpage(new_page, page, address, vma);
2593
2594 SetPageDirty(new_page);
2595 __SetPageUptodate(new_page);
2596 __SetPageLocked(new_page);
2597 }
2598
2599 return new_page;
2600 }
2601
rmap_walk_ksm(struct page * page,struct rmap_walk_control * rwc)2602 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2603 {
2604 struct stable_node *stable_node;
2605 struct rmap_item *rmap_item;
2606 int search_new_forks = 0;
2607
2608 VM_BUG_ON_PAGE(!PageKsm(page), page);
2609
2610 /*
2611 * Rely on the page lock to protect against concurrent modifications
2612 * to that page's node of the stable tree.
2613 */
2614 VM_BUG_ON_PAGE(!PageLocked(page), page);
2615
2616 stable_node = page_stable_node(page);
2617 if (!stable_node)
2618 return;
2619 again:
2620 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2621 struct anon_vma *anon_vma = rmap_item->anon_vma;
2622 struct anon_vma_chain *vmac;
2623 struct vm_area_struct *vma;
2624
2625 cond_resched();
2626 anon_vma_lock_read(anon_vma);
2627 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2628 0, ULONG_MAX) {
2629 unsigned long addr;
2630
2631 cond_resched();
2632 vma = vmac->vma;
2633
2634 /* Ignore the stable/unstable/sqnr flags */
2635 addr = rmap_item->address & PAGE_MASK;
2636
2637 if (addr < vma->vm_start || addr >= vma->vm_end)
2638 continue;
2639 /*
2640 * Initially we examine only the vma which covers this
2641 * rmap_item; but later, if there is still work to do,
2642 * we examine covering vmas in other mms: in case they
2643 * were forked from the original since ksmd passed.
2644 */
2645 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2646 continue;
2647
2648 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2649 continue;
2650
2651 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2652 anon_vma_unlock_read(anon_vma);
2653 return;
2654 }
2655 if (rwc->done && rwc->done(page)) {
2656 anon_vma_unlock_read(anon_vma);
2657 return;
2658 }
2659 }
2660 anon_vma_unlock_read(anon_vma);
2661 }
2662 if (!search_new_forks++)
2663 goto again;
2664 }
2665
2666 #ifdef CONFIG_MIGRATION
folio_migrate_ksm(struct folio * newfolio,struct folio * folio)2667 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2668 {
2669 struct stable_node *stable_node;
2670
2671 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2672 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2673 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2674
2675 stable_node = folio_stable_node(folio);
2676 if (stable_node) {
2677 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2678 stable_node->kpfn = folio_pfn(newfolio);
2679 /*
2680 * newfolio->mapping was set in advance; now we need smp_wmb()
2681 * to make sure that the new stable_node->kpfn is visible
2682 * to get_ksm_page() before it can see that folio->mapping
2683 * has gone stale (or that folio_test_swapcache has been cleared).
2684 */
2685 smp_wmb();
2686 set_page_stable_node(&folio->page, NULL);
2687 }
2688 }
2689 #endif /* CONFIG_MIGRATION */
2690
2691 #ifdef CONFIG_MEMORY_HOTREMOVE
wait_while_offlining(void)2692 static void wait_while_offlining(void)
2693 {
2694 while (ksm_run & KSM_RUN_OFFLINE) {
2695 mutex_unlock(&ksm_thread_mutex);
2696 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2697 TASK_UNINTERRUPTIBLE);
2698 mutex_lock(&ksm_thread_mutex);
2699 }
2700 }
2701
stable_node_dup_remove_range(struct stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn)2702 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2703 unsigned long start_pfn,
2704 unsigned long end_pfn)
2705 {
2706 if (stable_node->kpfn >= start_pfn &&
2707 stable_node->kpfn < end_pfn) {
2708 /*
2709 * Don't get_ksm_page, page has already gone:
2710 * which is why we keep kpfn instead of page*
2711 */
2712 remove_node_from_stable_tree(stable_node);
2713 return true;
2714 }
2715 return false;
2716 }
2717
stable_node_chain_remove_range(struct stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn,struct rb_root * root)2718 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2719 unsigned long start_pfn,
2720 unsigned long end_pfn,
2721 struct rb_root *root)
2722 {
2723 struct stable_node *dup;
2724 struct hlist_node *hlist_safe;
2725
2726 if (!is_stable_node_chain(stable_node)) {
2727 VM_BUG_ON(is_stable_node_dup(stable_node));
2728 return stable_node_dup_remove_range(stable_node, start_pfn,
2729 end_pfn);
2730 }
2731
2732 hlist_for_each_entry_safe(dup, hlist_safe,
2733 &stable_node->hlist, hlist_dup) {
2734 VM_BUG_ON(!is_stable_node_dup(dup));
2735 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2736 }
2737 if (hlist_empty(&stable_node->hlist)) {
2738 free_stable_node_chain(stable_node, root);
2739 return true; /* notify caller that tree was rebalanced */
2740 } else
2741 return false;
2742 }
2743
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)2744 static void ksm_check_stable_tree(unsigned long start_pfn,
2745 unsigned long end_pfn)
2746 {
2747 struct stable_node *stable_node, *next;
2748 struct rb_node *node;
2749 int nid;
2750
2751 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2752 node = rb_first(root_stable_tree + nid);
2753 while (node) {
2754 stable_node = rb_entry(node, struct stable_node, node);
2755 if (stable_node_chain_remove_range(stable_node,
2756 start_pfn, end_pfn,
2757 root_stable_tree +
2758 nid))
2759 node = rb_first(root_stable_tree + nid);
2760 else
2761 node = rb_next(node);
2762 cond_resched();
2763 }
2764 }
2765 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2766 if (stable_node->kpfn >= start_pfn &&
2767 stable_node->kpfn < end_pfn)
2768 remove_node_from_stable_tree(stable_node);
2769 cond_resched();
2770 }
2771 }
2772
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)2773 static int ksm_memory_callback(struct notifier_block *self,
2774 unsigned long action, void *arg)
2775 {
2776 struct memory_notify *mn = arg;
2777
2778 switch (action) {
2779 case MEM_GOING_OFFLINE:
2780 /*
2781 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2782 * and remove_all_stable_nodes() while memory is going offline:
2783 * it is unsafe for them to touch the stable tree at this time.
2784 * But unmerge_ksm_pages(), rmap lookups and other entry points
2785 * which do not need the ksm_thread_mutex are all safe.
2786 */
2787 mutex_lock(&ksm_thread_mutex);
2788 ksm_run |= KSM_RUN_OFFLINE;
2789 mutex_unlock(&ksm_thread_mutex);
2790 break;
2791
2792 case MEM_OFFLINE:
2793 /*
2794 * Most of the work is done by page migration; but there might
2795 * be a few stable_nodes left over, still pointing to struct
2796 * pages which have been offlined: prune those from the tree,
2797 * otherwise get_ksm_page() might later try to access a
2798 * non-existent struct page.
2799 */
2800 ksm_check_stable_tree(mn->start_pfn,
2801 mn->start_pfn + mn->nr_pages);
2802 fallthrough;
2803 case MEM_CANCEL_OFFLINE:
2804 mutex_lock(&ksm_thread_mutex);
2805 ksm_run &= ~KSM_RUN_OFFLINE;
2806 mutex_unlock(&ksm_thread_mutex);
2807
2808 smp_mb(); /* wake_up_bit advises this */
2809 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2810 break;
2811 }
2812 return NOTIFY_OK;
2813 }
2814 #else
wait_while_offlining(void)2815 static void wait_while_offlining(void)
2816 {
2817 }
2818 #endif /* CONFIG_MEMORY_HOTREMOVE */
2819
2820 #ifdef CONFIG_SYSFS
2821 /*
2822 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2823 */
2824
2825 #define KSM_ATTR_RO(_name) \
2826 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2827 #define KSM_ATTR(_name) \
2828 static struct kobj_attribute _name##_attr = \
2829 __ATTR(_name, 0644, _name##_show, _name##_store)
2830
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2831 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2832 struct kobj_attribute *attr, char *buf)
2833 {
2834 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2835 }
2836
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2837 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2838 struct kobj_attribute *attr,
2839 const char *buf, size_t count)
2840 {
2841 unsigned int msecs;
2842 int err;
2843
2844 err = kstrtouint(buf, 10, &msecs);
2845 if (err)
2846 return -EINVAL;
2847
2848 ksm_thread_sleep_millisecs = msecs;
2849 wake_up_interruptible(&ksm_iter_wait);
2850
2851 return count;
2852 }
2853 KSM_ATTR(sleep_millisecs);
2854
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2855 static ssize_t pages_to_scan_show(struct kobject *kobj,
2856 struct kobj_attribute *attr, char *buf)
2857 {
2858 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2859 }
2860
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2861 static ssize_t pages_to_scan_store(struct kobject *kobj,
2862 struct kobj_attribute *attr,
2863 const char *buf, size_t count)
2864 {
2865 unsigned int nr_pages;
2866 int err;
2867
2868 err = kstrtouint(buf, 10, &nr_pages);
2869 if (err)
2870 return -EINVAL;
2871
2872 ksm_thread_pages_to_scan = nr_pages;
2873
2874 return count;
2875 }
2876 KSM_ATTR(pages_to_scan);
2877
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2878 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2879 char *buf)
2880 {
2881 return sysfs_emit(buf, "%lu\n", ksm_run);
2882 }
2883
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2884 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2885 const char *buf, size_t count)
2886 {
2887 unsigned int flags;
2888 int err;
2889
2890 err = kstrtouint(buf, 10, &flags);
2891 if (err)
2892 return -EINVAL;
2893 if (flags > KSM_RUN_UNMERGE)
2894 return -EINVAL;
2895
2896 /*
2897 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2898 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2899 * breaking COW to free the pages_shared (but leaves mm_slots
2900 * on the list for when ksmd may be set running again).
2901 */
2902
2903 mutex_lock(&ksm_thread_mutex);
2904 wait_while_offlining();
2905 if (ksm_run != flags) {
2906 ksm_run = flags;
2907 if (flags & KSM_RUN_UNMERGE) {
2908 set_current_oom_origin();
2909 err = unmerge_and_remove_all_rmap_items();
2910 clear_current_oom_origin();
2911 if (err) {
2912 ksm_run = KSM_RUN_STOP;
2913 count = err;
2914 }
2915 }
2916 }
2917 mutex_unlock(&ksm_thread_mutex);
2918
2919 if (flags & KSM_RUN_MERGE)
2920 wake_up_interruptible(&ksm_thread_wait);
2921
2922 return count;
2923 }
2924 KSM_ATTR(run);
2925
2926 #ifdef CONFIG_NUMA
merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2927 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2928 struct kobj_attribute *attr, char *buf)
2929 {
2930 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2931 }
2932
merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2933 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2934 struct kobj_attribute *attr,
2935 const char *buf, size_t count)
2936 {
2937 int err;
2938 unsigned long knob;
2939
2940 err = kstrtoul(buf, 10, &knob);
2941 if (err)
2942 return err;
2943 if (knob > 1)
2944 return -EINVAL;
2945
2946 mutex_lock(&ksm_thread_mutex);
2947 wait_while_offlining();
2948 if (ksm_merge_across_nodes != knob) {
2949 if (ksm_pages_shared || remove_all_stable_nodes())
2950 err = -EBUSY;
2951 else if (root_stable_tree == one_stable_tree) {
2952 struct rb_root *buf;
2953 /*
2954 * This is the first time that we switch away from the
2955 * default of merging across nodes: must now allocate
2956 * a buffer to hold as many roots as may be needed.
2957 * Allocate stable and unstable together:
2958 * MAXSMP NODES_SHIFT 10 will use 16kB.
2959 */
2960 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2961 GFP_KERNEL);
2962 /* Let us assume that RB_ROOT is NULL is zero */
2963 if (!buf)
2964 err = -ENOMEM;
2965 else {
2966 root_stable_tree = buf;
2967 root_unstable_tree = buf + nr_node_ids;
2968 /* Stable tree is empty but not the unstable */
2969 root_unstable_tree[0] = one_unstable_tree[0];
2970 }
2971 }
2972 if (!err) {
2973 ksm_merge_across_nodes = knob;
2974 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2975 }
2976 }
2977 mutex_unlock(&ksm_thread_mutex);
2978
2979 return err ? err : count;
2980 }
2981 KSM_ATTR(merge_across_nodes);
2982 #endif
2983
use_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2984 static ssize_t use_zero_pages_show(struct kobject *kobj,
2985 struct kobj_attribute *attr, char *buf)
2986 {
2987 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2988 }
use_zero_pages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2989 static ssize_t use_zero_pages_store(struct kobject *kobj,
2990 struct kobj_attribute *attr,
2991 const char *buf, size_t count)
2992 {
2993 int err;
2994 bool value;
2995
2996 err = kstrtobool(buf, &value);
2997 if (err)
2998 return -EINVAL;
2999
3000 ksm_use_zero_pages = value;
3001
3002 return count;
3003 }
3004 KSM_ATTR(use_zero_pages);
3005
max_page_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3006 static ssize_t max_page_sharing_show(struct kobject *kobj,
3007 struct kobj_attribute *attr, char *buf)
3008 {
3009 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3010 }
3011
max_page_sharing_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3012 static ssize_t max_page_sharing_store(struct kobject *kobj,
3013 struct kobj_attribute *attr,
3014 const char *buf, size_t count)
3015 {
3016 int err;
3017 int knob;
3018
3019 err = kstrtoint(buf, 10, &knob);
3020 if (err)
3021 return err;
3022 /*
3023 * When a KSM page is created it is shared by 2 mappings. This
3024 * being a signed comparison, it implicitly verifies it's not
3025 * negative.
3026 */
3027 if (knob < 2)
3028 return -EINVAL;
3029
3030 if (READ_ONCE(ksm_max_page_sharing) == knob)
3031 return count;
3032
3033 mutex_lock(&ksm_thread_mutex);
3034 wait_while_offlining();
3035 if (ksm_max_page_sharing != knob) {
3036 if (ksm_pages_shared || remove_all_stable_nodes())
3037 err = -EBUSY;
3038 else
3039 ksm_max_page_sharing = knob;
3040 }
3041 mutex_unlock(&ksm_thread_mutex);
3042
3043 return err ? err : count;
3044 }
3045 KSM_ATTR(max_page_sharing);
3046
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3047 static ssize_t pages_shared_show(struct kobject *kobj,
3048 struct kobj_attribute *attr, char *buf)
3049 {
3050 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3051 }
3052 KSM_ATTR_RO(pages_shared);
3053
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3054 static ssize_t pages_sharing_show(struct kobject *kobj,
3055 struct kobj_attribute *attr, char *buf)
3056 {
3057 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3058 }
3059 KSM_ATTR_RO(pages_sharing);
3060
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3061 static ssize_t pages_unshared_show(struct kobject *kobj,
3062 struct kobj_attribute *attr, char *buf)
3063 {
3064 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3065 }
3066 KSM_ATTR_RO(pages_unshared);
3067
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3068 static ssize_t pages_volatile_show(struct kobject *kobj,
3069 struct kobj_attribute *attr, char *buf)
3070 {
3071 long ksm_pages_volatile;
3072
3073 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3074 - ksm_pages_sharing - ksm_pages_unshared;
3075 /*
3076 * It was not worth any locking to calculate that statistic,
3077 * but it might therefore sometimes be negative: conceal that.
3078 */
3079 if (ksm_pages_volatile < 0)
3080 ksm_pages_volatile = 0;
3081 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3082 }
3083 KSM_ATTR_RO(pages_volatile);
3084
stable_node_dups_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3085 static ssize_t stable_node_dups_show(struct kobject *kobj,
3086 struct kobj_attribute *attr, char *buf)
3087 {
3088 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3089 }
3090 KSM_ATTR_RO(stable_node_dups);
3091
stable_node_chains_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3092 static ssize_t stable_node_chains_show(struct kobject *kobj,
3093 struct kobj_attribute *attr, char *buf)
3094 {
3095 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3096 }
3097 KSM_ATTR_RO(stable_node_chains);
3098
3099 static ssize_t
stable_node_chains_prune_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3100 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3101 struct kobj_attribute *attr,
3102 char *buf)
3103 {
3104 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3105 }
3106
3107 static ssize_t
stable_node_chains_prune_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3108 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3109 struct kobj_attribute *attr,
3110 const char *buf, size_t count)
3111 {
3112 unsigned int msecs;
3113 int err;
3114
3115 err = kstrtouint(buf, 10, &msecs);
3116 if (err)
3117 return -EINVAL;
3118
3119 ksm_stable_node_chains_prune_millisecs = msecs;
3120
3121 return count;
3122 }
3123 KSM_ATTR(stable_node_chains_prune_millisecs);
3124
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3125 static ssize_t full_scans_show(struct kobject *kobj,
3126 struct kobj_attribute *attr, char *buf)
3127 {
3128 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3129 }
3130 KSM_ATTR_RO(full_scans);
3131
3132 static struct attribute *ksm_attrs[] = {
3133 &sleep_millisecs_attr.attr,
3134 &pages_to_scan_attr.attr,
3135 &run_attr.attr,
3136 &pages_shared_attr.attr,
3137 &pages_sharing_attr.attr,
3138 &pages_unshared_attr.attr,
3139 &pages_volatile_attr.attr,
3140 &full_scans_attr.attr,
3141 #ifdef CONFIG_NUMA
3142 &merge_across_nodes_attr.attr,
3143 #endif
3144 &max_page_sharing_attr.attr,
3145 &stable_node_chains_attr.attr,
3146 &stable_node_dups_attr.attr,
3147 &stable_node_chains_prune_millisecs_attr.attr,
3148 &use_zero_pages_attr.attr,
3149 NULL,
3150 };
3151
3152 static const struct attribute_group ksm_attr_group = {
3153 .attrs = ksm_attrs,
3154 .name = "ksm",
3155 };
3156 #endif /* CONFIG_SYSFS */
3157
ksm_init(void)3158 static int __init ksm_init(void)
3159 {
3160 struct task_struct *ksm_thread;
3161 int err;
3162
3163 /* The correct value depends on page size and endianness */
3164 zero_checksum = calc_checksum(ZERO_PAGE(0));
3165 /* Default to false for backwards compatibility */
3166 ksm_use_zero_pages = false;
3167
3168 err = ksm_slab_init();
3169 if (err)
3170 goto out;
3171
3172 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3173 if (IS_ERR(ksm_thread)) {
3174 pr_err("ksm: creating kthread failed\n");
3175 err = PTR_ERR(ksm_thread);
3176 goto out_free;
3177 }
3178
3179 #ifdef CONFIG_SYSFS
3180 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3181 if (err) {
3182 pr_err("ksm: register sysfs failed\n");
3183 kthread_stop(ksm_thread);
3184 goto out_free;
3185 }
3186 #else
3187 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3188
3189 #endif /* CONFIG_SYSFS */
3190
3191 #ifdef CONFIG_MEMORY_HOTREMOVE
3192 /* There is no significance to this priority 100 */
3193 hotplug_memory_notifier(ksm_memory_callback, 100);
3194 #endif
3195 return 0;
3196
3197 out_free:
3198 ksm_slab_free();
3199 out:
3200 return err;
3201 }
3202 subsys_initcall(ksm_init);
3203