1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/readahead.c - address_space-level file readahead.
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 09Apr2002 Andrew Morton
8 * Initial version.
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/export.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
18 #include <linux/pagemap.h>
19 #include <linux/syscalls.h>
20 #include <linux/file.h>
21 #include <linux/mm_inline.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/fadvise.h>
24 #include <linux/sched/mm.h>
25
26 #include "internal.h"
27
28 /*
29 * Initialise a struct file's readahead state. Assumes that the caller has
30 * memset *ra to zero.
31 */
32 void
file_ra_state_init(struct file_ra_state * ra,struct address_space * mapping)33 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
34 {
35 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
36 ra->prev_pos = -1;
37 }
38 EXPORT_SYMBOL_GPL(file_ra_state_init);
39
40 /*
41 * see if a page needs releasing upon read_cache_pages() failure
42 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
43 * before calling, such as the NFS fs marking pages that are cached locally
44 * on disk, thus we need to give the fs a chance to clean up in the event of
45 * an error
46 */
read_cache_pages_invalidate_page(struct address_space * mapping,struct page * page)47 static void read_cache_pages_invalidate_page(struct address_space *mapping,
48 struct page *page)
49 {
50 if (page_has_private(page)) {
51 if (!trylock_page(page))
52 BUG();
53 page->mapping = mapping;
54 do_invalidatepage(page, 0, PAGE_SIZE);
55 page->mapping = NULL;
56 unlock_page(page);
57 }
58 put_page(page);
59 }
60
61 /*
62 * release a list of pages, invalidating them first if need be
63 */
read_cache_pages_invalidate_pages(struct address_space * mapping,struct list_head * pages)64 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
65 struct list_head *pages)
66 {
67 struct page *victim;
68
69 while (!list_empty(pages)) {
70 victim = lru_to_page(pages);
71 list_del(&victim->lru);
72 read_cache_pages_invalidate_page(mapping, victim);
73 }
74 }
75
76 /**
77 * read_cache_pages - populate an address space with some pages & start reads against them
78 * @mapping: the address_space
79 * @pages: The address of a list_head which contains the target pages. These
80 * pages have their ->index populated and are otherwise uninitialised.
81 * @filler: callback routine for filling a single page.
82 * @data: private data for the callback routine.
83 *
84 * Hides the details of the LRU cache etc from the filesystems.
85 *
86 * Returns: %0 on success, error return by @filler otherwise
87 */
read_cache_pages(struct address_space * mapping,struct list_head * pages,int (* filler)(void *,struct page *),void * data)88 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
89 int (*filler)(void *, struct page *), void *data)
90 {
91 struct page *page;
92 int ret = 0;
93
94 while (!list_empty(pages)) {
95 page = lru_to_page(pages);
96 list_del(&page->lru);
97 if (add_to_page_cache_lru(page, mapping, page->index,
98 readahead_gfp_mask(mapping))) {
99 read_cache_pages_invalidate_page(mapping, page);
100 continue;
101 }
102 put_page(page);
103
104 ret = filler(data, page);
105 if (unlikely(ret)) {
106 read_cache_pages_invalidate_pages(mapping, pages);
107 break;
108 }
109 task_io_account_read(PAGE_SIZE);
110 }
111 return ret;
112 }
113
114 EXPORT_SYMBOL(read_cache_pages);
115
read_pages(struct readahead_control * rac,struct list_head * pages,bool skip_page)116 static void read_pages(struct readahead_control *rac, struct list_head *pages,
117 bool skip_page)
118 {
119 const struct address_space_operations *aops = rac->mapping->a_ops;
120 struct page *page;
121 struct blk_plug plug;
122
123 if (!readahead_count(rac))
124 goto out;
125
126 blk_start_plug(&plug);
127
128 if (aops->readahead) {
129 aops->readahead(rac);
130 /* Clean up the remaining pages */
131 while ((page = readahead_page(rac))) {
132 unlock_page(page);
133 put_page(page);
134 }
135 } else if (aops->readpages) {
136 aops->readpages(rac->file, rac->mapping, pages,
137 readahead_count(rac));
138 /* Clean up the remaining pages */
139 put_pages_list(pages);
140 rac->_index += rac->_nr_pages;
141 rac->_nr_pages = 0;
142 } else {
143 while ((page = readahead_page(rac))) {
144 aops->readpage(rac->file, page);
145 put_page(page);
146 }
147 }
148
149 blk_finish_plug(&plug);
150
151 BUG_ON(!list_empty(pages));
152 BUG_ON(readahead_count(rac));
153
154 out:
155 if (skip_page)
156 rac->_index++;
157 }
158
159 /**
160 * page_cache_ra_unbounded - Start unchecked readahead.
161 * @ractl: Readahead control.
162 * @nr_to_read: The number of pages to read.
163 * @lookahead_size: Where to start the next readahead.
164 *
165 * This function is for filesystems to call when they want to start
166 * readahead beyond a file's stated i_size. This is almost certainly
167 * not the function you want to call. Use page_cache_async_readahead()
168 * or page_cache_sync_readahead() instead.
169 *
170 * Context: File is referenced by caller. Mutexes may be held by caller.
171 * May sleep, but will not reenter filesystem to reclaim memory.
172 */
page_cache_ra_unbounded(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)173 void page_cache_ra_unbounded(struct readahead_control *ractl,
174 unsigned long nr_to_read, unsigned long lookahead_size)
175 {
176 struct address_space *mapping = ractl->mapping;
177 unsigned long index = readahead_index(ractl);
178 LIST_HEAD(page_pool);
179 gfp_t gfp_mask = readahead_gfp_mask(mapping);
180 unsigned long i;
181
182 /*
183 * Partway through the readahead operation, we will have added
184 * locked pages to the page cache, but will not yet have submitted
185 * them for I/O. Adding another page may need to allocate memory,
186 * which can trigger memory reclaim. Telling the VM we're in
187 * the middle of a filesystem operation will cause it to not
188 * touch file-backed pages, preventing a deadlock. Most (all?)
189 * filesystems already specify __GFP_NOFS in their mapping's
190 * gfp_mask, but let's be explicit here.
191 */
192 unsigned int nofs = memalloc_nofs_save();
193
194 filemap_invalidate_lock_shared(mapping);
195 /*
196 * Preallocate as many pages as we will need.
197 */
198 for (i = 0; i < nr_to_read; i++) {
199 struct page *page = xa_load(&mapping->i_pages, index + i);
200
201 if (page && !xa_is_value(page)) {
202 /*
203 * Page already present? Kick off the current batch
204 * of contiguous pages before continuing with the
205 * next batch. This page may be the one we would
206 * have intended to mark as Readahead, but we don't
207 * have a stable reference to this page, and it's
208 * not worth getting one just for that.
209 */
210 read_pages(ractl, &page_pool, true);
211 i = ractl->_index + ractl->_nr_pages - index - 1;
212 continue;
213 }
214
215 page = __page_cache_alloc(gfp_mask);
216 if (!page)
217 break;
218 if (mapping->a_ops->readpages) {
219 page->index = index + i;
220 list_add(&page->lru, &page_pool);
221 } else if (add_to_page_cache_lru(page, mapping, index + i,
222 gfp_mask) < 0) {
223 put_page(page);
224 read_pages(ractl, &page_pool, true);
225 i = ractl->_index + ractl->_nr_pages - index - 1;
226 continue;
227 }
228 if (i == nr_to_read - lookahead_size)
229 SetPageReadahead(page);
230 ractl->_nr_pages++;
231 }
232
233 /*
234 * Now start the IO. We ignore I/O errors - if the page is not
235 * uptodate then the caller will launch readpage again, and
236 * will then handle the error.
237 */
238 read_pages(ractl, &page_pool, false);
239 filemap_invalidate_unlock_shared(mapping);
240 memalloc_nofs_restore(nofs);
241 }
242 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
243
244 /*
245 * do_page_cache_ra() actually reads a chunk of disk. It allocates
246 * the pages first, then submits them for I/O. This avoids the very bad
247 * behaviour which would occur if page allocations are causing VM writeback.
248 * We really don't want to intermingle reads and writes like that.
249 */
do_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read,unsigned long lookahead_size)250 void do_page_cache_ra(struct readahead_control *ractl,
251 unsigned long nr_to_read, unsigned long lookahead_size)
252 {
253 struct inode *inode = ractl->mapping->host;
254 unsigned long index = readahead_index(ractl);
255 loff_t isize = i_size_read(inode);
256 pgoff_t end_index; /* The last page we want to read */
257
258 if (isize == 0)
259 return;
260
261 end_index = (isize - 1) >> PAGE_SHIFT;
262 if (index > end_index)
263 return;
264 /* Don't read past the page containing the last byte of the file */
265 if (nr_to_read > end_index - index)
266 nr_to_read = end_index - index + 1;
267
268 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
269 }
270
271 /*
272 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
273 * memory at once.
274 */
force_page_cache_ra(struct readahead_control * ractl,unsigned long nr_to_read)275 void force_page_cache_ra(struct readahead_control *ractl,
276 unsigned long nr_to_read)
277 {
278 struct address_space *mapping = ractl->mapping;
279 struct file_ra_state *ra = ractl->ra;
280 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
281 unsigned long max_pages, index;
282
283 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
284 !mapping->a_ops->readahead))
285 return;
286
287 /*
288 * If the request exceeds the readahead window, allow the read to
289 * be up to the optimal hardware IO size
290 */
291 index = readahead_index(ractl);
292 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
293 nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
294 while (nr_to_read) {
295 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
296
297 if (this_chunk > nr_to_read)
298 this_chunk = nr_to_read;
299 ractl->_index = index;
300 do_page_cache_ra(ractl, this_chunk, 0);
301
302 index += this_chunk;
303 nr_to_read -= this_chunk;
304 }
305 }
306
307 /*
308 * Set the initial window size, round to next power of 2 and square
309 * for small size, x 4 for medium, and x 2 for large
310 * for 128k (32 page) max ra
311 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
312 */
get_init_ra_size(unsigned long size,unsigned long max)313 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
314 {
315 unsigned long newsize = roundup_pow_of_two(size);
316
317 if (newsize <= max / 32)
318 newsize = newsize * 4;
319 else if (newsize <= max / 4)
320 newsize = newsize * 2;
321 else
322 newsize = max;
323
324 return newsize;
325 }
326
327 /*
328 * Get the previous window size, ramp it up, and
329 * return it as the new window size.
330 */
get_next_ra_size(struct file_ra_state * ra,unsigned long max)331 static unsigned long get_next_ra_size(struct file_ra_state *ra,
332 unsigned long max)
333 {
334 unsigned long cur = ra->size;
335
336 if (cur < max / 16)
337 return 4 * cur;
338 if (cur <= max / 2)
339 return 2 * cur;
340 return max;
341 }
342
343 /*
344 * On-demand readahead design.
345 *
346 * The fields in struct file_ra_state represent the most-recently-executed
347 * readahead attempt:
348 *
349 * |<----- async_size ---------|
350 * |------------------- size -------------------->|
351 * |==================#===========================|
352 * ^start ^page marked with PG_readahead
353 *
354 * To overlap application thinking time and disk I/O time, we do
355 * `readahead pipelining': Do not wait until the application consumed all
356 * readahead pages and stalled on the missing page at readahead_index;
357 * Instead, submit an asynchronous readahead I/O as soon as there are
358 * only async_size pages left in the readahead window. Normally async_size
359 * will be equal to size, for maximum pipelining.
360 *
361 * In interleaved sequential reads, concurrent streams on the same fd can
362 * be invalidating each other's readahead state. So we flag the new readahead
363 * page at (start+size-async_size) with PG_readahead, and use it as readahead
364 * indicator. The flag won't be set on already cached pages, to avoid the
365 * readahead-for-nothing fuss, saving pointless page cache lookups.
366 *
367 * prev_pos tracks the last visited byte in the _previous_ read request.
368 * It should be maintained by the caller, and will be used for detecting
369 * small random reads. Note that the readahead algorithm checks loosely
370 * for sequential patterns. Hence interleaved reads might be served as
371 * sequential ones.
372 *
373 * There is a special-case: if the first page which the application tries to
374 * read happens to be the first page of the file, it is assumed that a linear
375 * read is about to happen and the window is immediately set to the initial size
376 * based on I/O request size and the max_readahead.
377 *
378 * The code ramps up the readahead size aggressively at first, but slow down as
379 * it approaches max_readhead.
380 */
381
382 /*
383 * Count contiguously cached pages from @index-1 to @index-@max,
384 * this count is a conservative estimation of
385 * - length of the sequential read sequence, or
386 * - thrashing threshold in memory tight systems
387 */
count_history_pages(struct address_space * mapping,pgoff_t index,unsigned long max)388 static pgoff_t count_history_pages(struct address_space *mapping,
389 pgoff_t index, unsigned long max)
390 {
391 pgoff_t head;
392
393 rcu_read_lock();
394 head = page_cache_prev_miss(mapping, index - 1, max);
395 rcu_read_unlock();
396
397 return index - 1 - head;
398 }
399
400 /*
401 * page cache context based read-ahead
402 */
try_context_readahead(struct address_space * mapping,struct file_ra_state * ra,pgoff_t index,unsigned long req_size,unsigned long max)403 static int try_context_readahead(struct address_space *mapping,
404 struct file_ra_state *ra,
405 pgoff_t index,
406 unsigned long req_size,
407 unsigned long max)
408 {
409 pgoff_t size;
410
411 size = count_history_pages(mapping, index, max);
412
413 /*
414 * not enough history pages:
415 * it could be a random read
416 */
417 if (size <= req_size)
418 return 0;
419
420 /*
421 * starts from beginning of file:
422 * it is a strong indication of long-run stream (or whole-file-read)
423 */
424 if (size >= index)
425 size *= 2;
426
427 ra->start = index;
428 ra->size = min(size + req_size, max);
429 ra->async_size = 1;
430
431 return 1;
432 }
433
434 /*
435 * A minimal readahead algorithm for trivial sequential/random reads.
436 */
ondemand_readahead(struct readahead_control * ractl,bool hit_readahead_marker,unsigned long req_size)437 static void ondemand_readahead(struct readahead_control *ractl,
438 bool hit_readahead_marker, unsigned long req_size)
439 {
440 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
441 struct file_ra_state *ra = ractl->ra;
442 unsigned long max_pages = ra->ra_pages;
443 unsigned long add_pages;
444 unsigned long index = readahead_index(ractl);
445 pgoff_t prev_index;
446
447 /*
448 * If the request exceeds the readahead window, allow the read to
449 * be up to the optimal hardware IO size
450 */
451 if (req_size > max_pages && bdi->io_pages > max_pages)
452 max_pages = min(req_size, bdi->io_pages);
453
454 /*
455 * start of file
456 */
457 if (!index)
458 goto initial_readahead;
459
460 /*
461 * It's the expected callback index, assume sequential access.
462 * Ramp up sizes, and push forward the readahead window.
463 */
464 if ((index == (ra->start + ra->size - ra->async_size) ||
465 index == (ra->start + ra->size))) {
466 ra->start += ra->size;
467 ra->size = get_next_ra_size(ra, max_pages);
468 ra->async_size = ra->size;
469 goto readit;
470 }
471
472 /*
473 * Hit a marked page without valid readahead state.
474 * E.g. interleaved reads.
475 * Query the pagecache for async_size, which normally equals to
476 * readahead size. Ramp it up and use it as the new readahead size.
477 */
478 if (hit_readahead_marker) {
479 pgoff_t start;
480
481 rcu_read_lock();
482 start = page_cache_next_miss(ractl->mapping, index + 1,
483 max_pages);
484 rcu_read_unlock();
485
486 if (!start || start - index > max_pages)
487 return;
488
489 ra->start = start;
490 ra->size = start - index; /* old async_size */
491 ra->size += req_size;
492 ra->size = get_next_ra_size(ra, max_pages);
493 ra->async_size = ra->size;
494 goto readit;
495 }
496
497 /*
498 * oversize read
499 */
500 if (req_size > max_pages)
501 goto initial_readahead;
502
503 /*
504 * sequential cache miss
505 * trivial case: (index - prev_index) == 1
506 * unaligned reads: (index - prev_index) == 0
507 */
508 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
509 if (index - prev_index <= 1UL)
510 goto initial_readahead;
511
512 /*
513 * Query the page cache and look for the traces(cached history pages)
514 * that a sequential stream would leave behind.
515 */
516 if (try_context_readahead(ractl->mapping, ra, index, req_size,
517 max_pages))
518 goto readit;
519
520 /*
521 * standalone, small random read
522 * Read as is, and do not pollute the readahead state.
523 */
524 do_page_cache_ra(ractl, req_size, 0);
525 return;
526
527 initial_readahead:
528 ra->start = index;
529 ra->size = get_init_ra_size(req_size, max_pages);
530 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
531
532 readit:
533 /*
534 * Will this read hit the readahead marker made by itself?
535 * If so, trigger the readahead marker hit now, and merge
536 * the resulted next readahead window into the current one.
537 * Take care of maximum IO pages as above.
538 */
539 if (index == ra->start && ra->size == ra->async_size) {
540 add_pages = get_next_ra_size(ra, max_pages);
541 if (ra->size + add_pages <= max_pages) {
542 ra->async_size = add_pages;
543 ra->size += add_pages;
544 } else {
545 ra->size = max_pages;
546 ra->async_size = max_pages >> 1;
547 }
548 }
549
550 ractl->_index = ra->start;
551 do_page_cache_ra(ractl, ra->size, ra->async_size);
552 }
553
page_cache_sync_ra(struct readahead_control * ractl,unsigned long req_count)554 void page_cache_sync_ra(struct readahead_control *ractl,
555 unsigned long req_count)
556 {
557 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
558
559 /*
560 * Even if read-ahead is disabled, issue this request as read-ahead
561 * as we'll need it to satisfy the requested range. The forced
562 * read-ahead will do the right thing and limit the read to just the
563 * requested range, which we'll set to 1 page for this case.
564 */
565 if (!ractl->ra->ra_pages || blk_cgroup_congested()) {
566 if (!ractl->file)
567 return;
568 req_count = 1;
569 do_forced_ra = true;
570 }
571
572 /* be dumb */
573 if (do_forced_ra) {
574 force_page_cache_ra(ractl, req_count);
575 return;
576 }
577
578 /* do read-ahead */
579 ondemand_readahead(ractl, false, req_count);
580 }
581 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
582
page_cache_async_ra(struct readahead_control * ractl,struct page * page,unsigned long req_count)583 void page_cache_async_ra(struct readahead_control *ractl,
584 struct page *page, unsigned long req_count)
585 {
586 /* no read-ahead */
587 if (!ractl->ra->ra_pages)
588 return;
589
590 /*
591 * Same bit is used for PG_readahead and PG_reclaim.
592 */
593 if (PageWriteback(page))
594 return;
595
596 ClearPageReadahead(page);
597
598 /*
599 * Defer asynchronous read-ahead on IO congestion.
600 */
601 if (inode_read_congested(ractl->mapping->host))
602 return;
603
604 if (blk_cgroup_congested())
605 return;
606
607 /* do read-ahead */
608 ondemand_readahead(ractl, true, req_count);
609 }
610 EXPORT_SYMBOL_GPL(page_cache_async_ra);
611
ksys_readahead(int fd,loff_t offset,size_t count)612 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
613 {
614 ssize_t ret;
615 struct fd f;
616
617 ret = -EBADF;
618 f = fdget(fd);
619 if (!f.file || !(f.file->f_mode & FMODE_READ))
620 goto out;
621
622 /*
623 * The readahead() syscall is intended to run only on files
624 * that can execute readahead. If readahead is not possible
625 * on this file, then we must return -EINVAL.
626 */
627 ret = -EINVAL;
628 if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
629 !S_ISREG(file_inode(f.file)->i_mode))
630 goto out;
631
632 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
633 out:
634 fdput(f);
635 return ret;
636 }
637
SYSCALL_DEFINE3(readahead,int,fd,loff_t,offset,size_t,count)638 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
639 {
640 return ksys_readahead(fd, offset, count);
641 }
642
643 /**
644 * readahead_expand - Expand a readahead request
645 * @ractl: The request to be expanded
646 * @new_start: The revised start
647 * @new_len: The revised size of the request
648 *
649 * Attempt to expand a readahead request outwards from the current size to the
650 * specified size by inserting locked pages before and after the current window
651 * to increase the size to the new window. This may involve the insertion of
652 * THPs, in which case the window may get expanded even beyond what was
653 * requested.
654 *
655 * The algorithm will stop if it encounters a conflicting page already in the
656 * pagecache and leave a smaller expansion than requested.
657 *
658 * The caller must check for this by examining the revised @ractl object for a
659 * different expansion than was requested.
660 */
readahead_expand(struct readahead_control * ractl,loff_t new_start,size_t new_len)661 void readahead_expand(struct readahead_control *ractl,
662 loff_t new_start, size_t new_len)
663 {
664 struct address_space *mapping = ractl->mapping;
665 struct file_ra_state *ra = ractl->ra;
666 pgoff_t new_index, new_nr_pages;
667 gfp_t gfp_mask = readahead_gfp_mask(mapping);
668
669 new_index = new_start / PAGE_SIZE;
670
671 /* Expand the leading edge downwards */
672 while (ractl->_index > new_index) {
673 unsigned long index = ractl->_index - 1;
674 struct page *page = xa_load(&mapping->i_pages, index);
675
676 if (page && !xa_is_value(page))
677 return; /* Page apparently present */
678
679 page = __page_cache_alloc(gfp_mask);
680 if (!page)
681 return;
682 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
683 put_page(page);
684 return;
685 }
686
687 ractl->_nr_pages++;
688 ractl->_index = page->index;
689 }
690
691 new_len += new_start - readahead_pos(ractl);
692 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
693
694 /* Expand the trailing edge upwards */
695 while (ractl->_nr_pages < new_nr_pages) {
696 unsigned long index = ractl->_index + ractl->_nr_pages;
697 struct page *page = xa_load(&mapping->i_pages, index);
698
699 if (page && !xa_is_value(page))
700 return; /* Page apparently present */
701
702 page = __page_cache_alloc(gfp_mask);
703 if (!page)
704 return;
705 if (add_to_page_cache_lru(page, mapping, index, gfp_mask) < 0) {
706 put_page(page);
707 return;
708 }
709 ractl->_nr_pages++;
710 if (ra) {
711 ra->size++;
712 ra->async_size++;
713 }
714 }
715 }
716 EXPORT_SYMBOL(readahead_expand);
717