1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 /* Bluetooth HCI sockets. */
26 #include <linux/compat.h>
27 #include <linux/export.h>
28 #include <linux/utsname.h>
29 #include <linux/sched.h>
30 #include <asm/unaligned.h>
31
32 #include <net/bluetooth/bluetooth.h>
33 #include <net/bluetooth/hci_core.h>
34 #include <net/bluetooth/hci_mon.h>
35 #include <net/bluetooth/mgmt.h>
36
37 #include "mgmt_util.h"
38
39 static LIST_HEAD(mgmt_chan_list);
40 static DEFINE_MUTEX(mgmt_chan_list_lock);
41
42 static DEFINE_IDA(sock_cookie_ida);
43
44 static atomic_t monitor_promisc = ATOMIC_INIT(0);
45
46 /* ----- HCI socket interface ----- */
47
48 /* Socket info */
49 #define hci_pi(sk) ((struct hci_pinfo *) sk)
50
51 struct hci_pinfo {
52 struct bt_sock bt;
53 struct hci_dev *hdev;
54 struct hci_filter filter;
55 __u8 cmsg_mask;
56 unsigned short channel;
57 unsigned long flags;
58 __u32 cookie;
59 char comm[TASK_COMM_LEN];
60 __u16 mtu;
61 };
62
hci_hdev_from_sock(struct sock * sk)63 static struct hci_dev *hci_hdev_from_sock(struct sock *sk)
64 {
65 struct hci_dev *hdev = hci_pi(sk)->hdev;
66
67 if (!hdev)
68 return ERR_PTR(-EBADFD);
69 if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
70 return ERR_PTR(-EPIPE);
71 return hdev;
72 }
73
hci_sock_set_flag(struct sock * sk,int nr)74 void hci_sock_set_flag(struct sock *sk, int nr)
75 {
76 set_bit(nr, &hci_pi(sk)->flags);
77 }
78
hci_sock_clear_flag(struct sock * sk,int nr)79 void hci_sock_clear_flag(struct sock *sk, int nr)
80 {
81 clear_bit(nr, &hci_pi(sk)->flags);
82 }
83
hci_sock_test_flag(struct sock * sk,int nr)84 int hci_sock_test_flag(struct sock *sk, int nr)
85 {
86 return test_bit(nr, &hci_pi(sk)->flags);
87 }
88
hci_sock_get_channel(struct sock * sk)89 unsigned short hci_sock_get_channel(struct sock *sk)
90 {
91 return hci_pi(sk)->channel;
92 }
93
hci_sock_get_cookie(struct sock * sk)94 u32 hci_sock_get_cookie(struct sock *sk)
95 {
96 return hci_pi(sk)->cookie;
97 }
98
hci_sock_gen_cookie(struct sock * sk)99 static bool hci_sock_gen_cookie(struct sock *sk)
100 {
101 int id = hci_pi(sk)->cookie;
102
103 if (!id) {
104 id = ida_simple_get(&sock_cookie_ida, 1, 0, GFP_KERNEL);
105 if (id < 0)
106 id = 0xffffffff;
107
108 hci_pi(sk)->cookie = id;
109 get_task_comm(hci_pi(sk)->comm, current);
110 return true;
111 }
112
113 return false;
114 }
115
hci_sock_free_cookie(struct sock * sk)116 static void hci_sock_free_cookie(struct sock *sk)
117 {
118 int id = hci_pi(sk)->cookie;
119
120 if (id) {
121 hci_pi(sk)->cookie = 0xffffffff;
122 ida_simple_remove(&sock_cookie_ida, id);
123 }
124 }
125
hci_test_bit(int nr,const void * addr)126 static inline int hci_test_bit(int nr, const void *addr)
127 {
128 return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31));
129 }
130
131 /* Security filter */
132 #define HCI_SFLT_MAX_OGF 5
133
134 struct hci_sec_filter {
135 __u32 type_mask;
136 __u32 event_mask[2];
137 __u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
138 };
139
140 static const struct hci_sec_filter hci_sec_filter = {
141 /* Packet types */
142 0x10,
143 /* Events */
144 { 0x1000d9fe, 0x0000b00c },
145 /* Commands */
146 {
147 { 0x0 },
148 /* OGF_LINK_CTL */
149 { 0xbe000006, 0x00000001, 0x00000000, 0x00 },
150 /* OGF_LINK_POLICY */
151 { 0x00005200, 0x00000000, 0x00000000, 0x00 },
152 /* OGF_HOST_CTL */
153 { 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 },
154 /* OGF_INFO_PARAM */
155 { 0x000002be, 0x00000000, 0x00000000, 0x00 },
156 /* OGF_STATUS_PARAM */
157 { 0x000000ea, 0x00000000, 0x00000000, 0x00 }
158 }
159 };
160
161 static struct bt_sock_list hci_sk_list = {
162 .lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock)
163 };
164
is_filtered_packet(struct sock * sk,struct sk_buff * skb)165 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb)
166 {
167 struct hci_filter *flt;
168 int flt_type, flt_event;
169
170 /* Apply filter */
171 flt = &hci_pi(sk)->filter;
172
173 flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS;
174
175 if (!test_bit(flt_type, &flt->type_mask))
176 return true;
177
178 /* Extra filter for event packets only */
179 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT)
180 return false;
181
182 flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS);
183
184 if (!hci_test_bit(flt_event, &flt->event_mask))
185 return true;
186
187 /* Check filter only when opcode is set */
188 if (!flt->opcode)
189 return false;
190
191 if (flt_event == HCI_EV_CMD_COMPLETE &&
192 flt->opcode != get_unaligned((__le16 *)(skb->data + 3)))
193 return true;
194
195 if (flt_event == HCI_EV_CMD_STATUS &&
196 flt->opcode != get_unaligned((__le16 *)(skb->data + 4)))
197 return true;
198
199 return false;
200 }
201
202 /* Send frame to RAW socket */
hci_send_to_sock(struct hci_dev * hdev,struct sk_buff * skb)203 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb)
204 {
205 struct sock *sk;
206 struct sk_buff *skb_copy = NULL;
207
208 BT_DBG("hdev %p len %d", hdev, skb->len);
209
210 read_lock(&hci_sk_list.lock);
211
212 sk_for_each(sk, &hci_sk_list.head) {
213 struct sk_buff *nskb;
214
215 if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev)
216 continue;
217
218 /* Don't send frame to the socket it came from */
219 if (skb->sk == sk)
220 continue;
221
222 if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) {
223 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
224 hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
225 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
226 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
227 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT)
228 continue;
229 if (is_filtered_packet(sk, skb))
230 continue;
231 } else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
232 if (!bt_cb(skb)->incoming)
233 continue;
234 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
235 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
236 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
237 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT)
238 continue;
239 } else {
240 /* Don't send frame to other channel types */
241 continue;
242 }
243
244 if (!skb_copy) {
245 /* Create a private copy with headroom */
246 skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true);
247 if (!skb_copy)
248 continue;
249
250 /* Put type byte before the data */
251 memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1);
252 }
253
254 nskb = skb_clone(skb_copy, GFP_ATOMIC);
255 if (!nskb)
256 continue;
257
258 if (sock_queue_rcv_skb(sk, nskb))
259 kfree_skb(nskb);
260 }
261
262 read_unlock(&hci_sk_list.lock);
263
264 kfree_skb(skb_copy);
265 }
266
267 /* Send frame to sockets with specific channel */
__hci_send_to_channel(unsigned short channel,struct sk_buff * skb,int flag,struct sock * skip_sk)268 static void __hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
269 int flag, struct sock *skip_sk)
270 {
271 struct sock *sk;
272
273 BT_DBG("channel %u len %d", channel, skb->len);
274
275 sk_for_each(sk, &hci_sk_list.head) {
276 struct sk_buff *nskb;
277
278 /* Ignore socket without the flag set */
279 if (!hci_sock_test_flag(sk, flag))
280 continue;
281
282 /* Skip the original socket */
283 if (sk == skip_sk)
284 continue;
285
286 if (sk->sk_state != BT_BOUND)
287 continue;
288
289 if (hci_pi(sk)->channel != channel)
290 continue;
291
292 nskb = skb_clone(skb, GFP_ATOMIC);
293 if (!nskb)
294 continue;
295
296 if (sock_queue_rcv_skb(sk, nskb))
297 kfree_skb(nskb);
298 }
299
300 }
301
hci_send_to_channel(unsigned short channel,struct sk_buff * skb,int flag,struct sock * skip_sk)302 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
303 int flag, struct sock *skip_sk)
304 {
305 read_lock(&hci_sk_list.lock);
306 __hci_send_to_channel(channel, skb, flag, skip_sk);
307 read_unlock(&hci_sk_list.lock);
308 }
309
310 /* Send frame to monitor socket */
hci_send_to_monitor(struct hci_dev * hdev,struct sk_buff * skb)311 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb)
312 {
313 struct sk_buff *skb_copy = NULL;
314 struct hci_mon_hdr *hdr;
315 __le16 opcode;
316
317 if (!atomic_read(&monitor_promisc))
318 return;
319
320 BT_DBG("hdev %p len %d", hdev, skb->len);
321
322 switch (hci_skb_pkt_type(skb)) {
323 case HCI_COMMAND_PKT:
324 opcode = cpu_to_le16(HCI_MON_COMMAND_PKT);
325 break;
326 case HCI_EVENT_PKT:
327 opcode = cpu_to_le16(HCI_MON_EVENT_PKT);
328 break;
329 case HCI_ACLDATA_PKT:
330 if (bt_cb(skb)->incoming)
331 opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT);
332 else
333 opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT);
334 break;
335 case HCI_SCODATA_PKT:
336 if (bt_cb(skb)->incoming)
337 opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT);
338 else
339 opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT);
340 break;
341 case HCI_ISODATA_PKT:
342 if (bt_cb(skb)->incoming)
343 opcode = cpu_to_le16(HCI_MON_ISO_RX_PKT);
344 else
345 opcode = cpu_to_le16(HCI_MON_ISO_TX_PKT);
346 break;
347 case HCI_DIAG_PKT:
348 opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG);
349 break;
350 default:
351 return;
352 }
353
354 /* Create a private copy with headroom */
355 skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true);
356 if (!skb_copy)
357 return;
358
359 /* Put header before the data */
360 hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE);
361 hdr->opcode = opcode;
362 hdr->index = cpu_to_le16(hdev->id);
363 hdr->len = cpu_to_le16(skb->len);
364
365 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy,
366 HCI_SOCK_TRUSTED, NULL);
367 kfree_skb(skb_copy);
368 }
369
hci_send_monitor_ctrl_event(struct hci_dev * hdev,u16 event,void * data,u16 data_len,ktime_t tstamp,int flag,struct sock * skip_sk)370 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event,
371 void *data, u16 data_len, ktime_t tstamp,
372 int flag, struct sock *skip_sk)
373 {
374 struct sock *sk;
375 __le16 index;
376
377 if (hdev)
378 index = cpu_to_le16(hdev->id);
379 else
380 index = cpu_to_le16(MGMT_INDEX_NONE);
381
382 read_lock(&hci_sk_list.lock);
383
384 sk_for_each(sk, &hci_sk_list.head) {
385 struct hci_mon_hdr *hdr;
386 struct sk_buff *skb;
387
388 if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL)
389 continue;
390
391 /* Ignore socket without the flag set */
392 if (!hci_sock_test_flag(sk, flag))
393 continue;
394
395 /* Skip the original socket */
396 if (sk == skip_sk)
397 continue;
398
399 skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC);
400 if (!skb)
401 continue;
402
403 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
404 put_unaligned_le16(event, skb_put(skb, 2));
405
406 if (data)
407 skb_put_data(skb, data, data_len);
408
409 skb->tstamp = tstamp;
410
411 hdr = skb_push(skb, HCI_MON_HDR_SIZE);
412 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT);
413 hdr->index = index;
414 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
415
416 __hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
417 HCI_SOCK_TRUSTED, NULL);
418 kfree_skb(skb);
419 }
420
421 read_unlock(&hci_sk_list.lock);
422 }
423
create_monitor_event(struct hci_dev * hdev,int event)424 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event)
425 {
426 struct hci_mon_hdr *hdr;
427 struct hci_mon_new_index *ni;
428 struct hci_mon_index_info *ii;
429 struct sk_buff *skb;
430 __le16 opcode;
431
432 switch (event) {
433 case HCI_DEV_REG:
434 skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC);
435 if (!skb)
436 return NULL;
437
438 ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE);
439 ni->type = hdev->dev_type;
440 ni->bus = hdev->bus;
441 bacpy(&ni->bdaddr, &hdev->bdaddr);
442 memcpy(ni->name, hdev->name, 8);
443
444 opcode = cpu_to_le16(HCI_MON_NEW_INDEX);
445 break;
446
447 case HCI_DEV_UNREG:
448 skb = bt_skb_alloc(0, GFP_ATOMIC);
449 if (!skb)
450 return NULL;
451
452 opcode = cpu_to_le16(HCI_MON_DEL_INDEX);
453 break;
454
455 case HCI_DEV_SETUP:
456 if (hdev->manufacturer == 0xffff)
457 return NULL;
458 fallthrough;
459
460 case HCI_DEV_UP:
461 skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC);
462 if (!skb)
463 return NULL;
464
465 ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE);
466 bacpy(&ii->bdaddr, &hdev->bdaddr);
467 ii->manufacturer = cpu_to_le16(hdev->manufacturer);
468
469 opcode = cpu_to_le16(HCI_MON_INDEX_INFO);
470 break;
471
472 case HCI_DEV_OPEN:
473 skb = bt_skb_alloc(0, GFP_ATOMIC);
474 if (!skb)
475 return NULL;
476
477 opcode = cpu_to_le16(HCI_MON_OPEN_INDEX);
478 break;
479
480 case HCI_DEV_CLOSE:
481 skb = bt_skb_alloc(0, GFP_ATOMIC);
482 if (!skb)
483 return NULL;
484
485 opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX);
486 break;
487
488 default:
489 return NULL;
490 }
491
492 __net_timestamp(skb);
493
494 hdr = skb_push(skb, HCI_MON_HDR_SIZE);
495 hdr->opcode = opcode;
496 hdr->index = cpu_to_le16(hdev->id);
497 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
498
499 return skb;
500 }
501
create_monitor_ctrl_open(struct sock * sk)502 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk)
503 {
504 struct hci_mon_hdr *hdr;
505 struct sk_buff *skb;
506 u16 format;
507 u8 ver[3];
508 u32 flags;
509
510 /* No message needed when cookie is not present */
511 if (!hci_pi(sk)->cookie)
512 return NULL;
513
514 switch (hci_pi(sk)->channel) {
515 case HCI_CHANNEL_RAW:
516 format = 0x0000;
517 ver[0] = BT_SUBSYS_VERSION;
518 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
519 break;
520 case HCI_CHANNEL_USER:
521 format = 0x0001;
522 ver[0] = BT_SUBSYS_VERSION;
523 put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
524 break;
525 case HCI_CHANNEL_CONTROL:
526 format = 0x0002;
527 mgmt_fill_version_info(ver);
528 break;
529 default:
530 /* No message for unsupported format */
531 return NULL;
532 }
533
534 skb = bt_skb_alloc(14 + TASK_COMM_LEN , GFP_ATOMIC);
535 if (!skb)
536 return NULL;
537
538 flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0;
539
540 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
541 put_unaligned_le16(format, skb_put(skb, 2));
542 skb_put_data(skb, ver, sizeof(ver));
543 put_unaligned_le32(flags, skb_put(skb, 4));
544 skb_put_u8(skb, TASK_COMM_LEN);
545 skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN);
546
547 __net_timestamp(skb);
548
549 hdr = skb_push(skb, HCI_MON_HDR_SIZE);
550 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN);
551 if (hci_pi(sk)->hdev)
552 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
553 else
554 hdr->index = cpu_to_le16(HCI_DEV_NONE);
555 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
556
557 return skb;
558 }
559
create_monitor_ctrl_close(struct sock * sk)560 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk)
561 {
562 struct hci_mon_hdr *hdr;
563 struct sk_buff *skb;
564
565 /* No message needed when cookie is not present */
566 if (!hci_pi(sk)->cookie)
567 return NULL;
568
569 switch (hci_pi(sk)->channel) {
570 case HCI_CHANNEL_RAW:
571 case HCI_CHANNEL_USER:
572 case HCI_CHANNEL_CONTROL:
573 break;
574 default:
575 /* No message for unsupported format */
576 return NULL;
577 }
578
579 skb = bt_skb_alloc(4, GFP_ATOMIC);
580 if (!skb)
581 return NULL;
582
583 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
584
585 __net_timestamp(skb);
586
587 hdr = skb_push(skb, HCI_MON_HDR_SIZE);
588 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE);
589 if (hci_pi(sk)->hdev)
590 hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
591 else
592 hdr->index = cpu_to_le16(HCI_DEV_NONE);
593 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
594
595 return skb;
596 }
597
create_monitor_ctrl_command(struct sock * sk,u16 index,u16 opcode,u16 len,const void * buf)598 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index,
599 u16 opcode, u16 len,
600 const void *buf)
601 {
602 struct hci_mon_hdr *hdr;
603 struct sk_buff *skb;
604
605 skb = bt_skb_alloc(6 + len, GFP_ATOMIC);
606 if (!skb)
607 return NULL;
608
609 put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
610 put_unaligned_le16(opcode, skb_put(skb, 2));
611
612 if (buf)
613 skb_put_data(skb, buf, len);
614
615 __net_timestamp(skb);
616
617 hdr = skb_push(skb, HCI_MON_HDR_SIZE);
618 hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND);
619 hdr->index = cpu_to_le16(index);
620 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
621
622 return skb;
623 }
624
625 static void __printf(2, 3)
send_monitor_note(struct sock * sk,const char * fmt,...)626 send_monitor_note(struct sock *sk, const char *fmt, ...)
627 {
628 size_t len;
629 struct hci_mon_hdr *hdr;
630 struct sk_buff *skb;
631 va_list args;
632
633 va_start(args, fmt);
634 len = vsnprintf(NULL, 0, fmt, args);
635 va_end(args);
636
637 skb = bt_skb_alloc(len + 1, GFP_ATOMIC);
638 if (!skb)
639 return;
640
641 va_start(args, fmt);
642 vsprintf(skb_put(skb, len), fmt, args);
643 *(u8 *)skb_put(skb, 1) = 0;
644 va_end(args);
645
646 __net_timestamp(skb);
647
648 hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE);
649 hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE);
650 hdr->index = cpu_to_le16(HCI_DEV_NONE);
651 hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
652
653 if (sock_queue_rcv_skb(sk, skb))
654 kfree_skb(skb);
655 }
656
send_monitor_replay(struct sock * sk)657 static void send_monitor_replay(struct sock *sk)
658 {
659 struct hci_dev *hdev;
660
661 read_lock(&hci_dev_list_lock);
662
663 list_for_each_entry(hdev, &hci_dev_list, list) {
664 struct sk_buff *skb;
665
666 skb = create_monitor_event(hdev, HCI_DEV_REG);
667 if (!skb)
668 continue;
669
670 if (sock_queue_rcv_skb(sk, skb))
671 kfree_skb(skb);
672
673 if (!test_bit(HCI_RUNNING, &hdev->flags))
674 continue;
675
676 skb = create_monitor_event(hdev, HCI_DEV_OPEN);
677 if (!skb)
678 continue;
679
680 if (sock_queue_rcv_skb(sk, skb))
681 kfree_skb(skb);
682
683 if (test_bit(HCI_UP, &hdev->flags))
684 skb = create_monitor_event(hdev, HCI_DEV_UP);
685 else if (hci_dev_test_flag(hdev, HCI_SETUP))
686 skb = create_monitor_event(hdev, HCI_DEV_SETUP);
687 else
688 skb = NULL;
689
690 if (skb) {
691 if (sock_queue_rcv_skb(sk, skb))
692 kfree_skb(skb);
693 }
694 }
695
696 read_unlock(&hci_dev_list_lock);
697 }
698
send_monitor_control_replay(struct sock * mon_sk)699 static void send_monitor_control_replay(struct sock *mon_sk)
700 {
701 struct sock *sk;
702
703 read_lock(&hci_sk_list.lock);
704
705 sk_for_each(sk, &hci_sk_list.head) {
706 struct sk_buff *skb;
707
708 skb = create_monitor_ctrl_open(sk);
709 if (!skb)
710 continue;
711
712 if (sock_queue_rcv_skb(mon_sk, skb))
713 kfree_skb(skb);
714 }
715
716 read_unlock(&hci_sk_list.lock);
717 }
718
719 /* Generate internal stack event */
hci_si_event(struct hci_dev * hdev,int type,int dlen,void * data)720 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data)
721 {
722 struct hci_event_hdr *hdr;
723 struct hci_ev_stack_internal *ev;
724 struct sk_buff *skb;
725
726 skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC);
727 if (!skb)
728 return;
729
730 hdr = skb_put(skb, HCI_EVENT_HDR_SIZE);
731 hdr->evt = HCI_EV_STACK_INTERNAL;
732 hdr->plen = sizeof(*ev) + dlen;
733
734 ev = skb_put(skb, sizeof(*ev) + dlen);
735 ev->type = type;
736 memcpy(ev->data, data, dlen);
737
738 bt_cb(skb)->incoming = 1;
739 __net_timestamp(skb);
740
741 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
742 hci_send_to_sock(hdev, skb);
743 kfree_skb(skb);
744 }
745
hci_sock_dev_event(struct hci_dev * hdev,int event)746 void hci_sock_dev_event(struct hci_dev *hdev, int event)
747 {
748 BT_DBG("hdev %s event %d", hdev->name, event);
749
750 if (atomic_read(&monitor_promisc)) {
751 struct sk_buff *skb;
752
753 /* Send event to monitor */
754 skb = create_monitor_event(hdev, event);
755 if (skb) {
756 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
757 HCI_SOCK_TRUSTED, NULL);
758 kfree_skb(skb);
759 }
760 }
761
762 if (event <= HCI_DEV_DOWN) {
763 struct hci_ev_si_device ev;
764
765 /* Send event to sockets */
766 ev.event = event;
767 ev.dev_id = hdev->id;
768 hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev);
769 }
770
771 if (event == HCI_DEV_UNREG) {
772 struct sock *sk;
773
774 /* Wake up sockets using this dead device */
775 read_lock(&hci_sk_list.lock);
776 sk_for_each(sk, &hci_sk_list.head) {
777 if (hci_pi(sk)->hdev == hdev) {
778 sk->sk_err = EPIPE;
779 sk->sk_state_change(sk);
780 }
781 }
782 read_unlock(&hci_sk_list.lock);
783 }
784 }
785
__hci_mgmt_chan_find(unsigned short channel)786 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel)
787 {
788 struct hci_mgmt_chan *c;
789
790 list_for_each_entry(c, &mgmt_chan_list, list) {
791 if (c->channel == channel)
792 return c;
793 }
794
795 return NULL;
796 }
797
hci_mgmt_chan_find(unsigned short channel)798 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel)
799 {
800 struct hci_mgmt_chan *c;
801
802 mutex_lock(&mgmt_chan_list_lock);
803 c = __hci_mgmt_chan_find(channel);
804 mutex_unlock(&mgmt_chan_list_lock);
805
806 return c;
807 }
808
hci_mgmt_chan_register(struct hci_mgmt_chan * c)809 int hci_mgmt_chan_register(struct hci_mgmt_chan *c)
810 {
811 if (c->channel < HCI_CHANNEL_CONTROL)
812 return -EINVAL;
813
814 mutex_lock(&mgmt_chan_list_lock);
815 if (__hci_mgmt_chan_find(c->channel)) {
816 mutex_unlock(&mgmt_chan_list_lock);
817 return -EALREADY;
818 }
819
820 list_add_tail(&c->list, &mgmt_chan_list);
821
822 mutex_unlock(&mgmt_chan_list_lock);
823
824 return 0;
825 }
826 EXPORT_SYMBOL(hci_mgmt_chan_register);
827
hci_mgmt_chan_unregister(struct hci_mgmt_chan * c)828 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c)
829 {
830 mutex_lock(&mgmt_chan_list_lock);
831 list_del(&c->list);
832 mutex_unlock(&mgmt_chan_list_lock);
833 }
834 EXPORT_SYMBOL(hci_mgmt_chan_unregister);
835
hci_sock_release(struct socket * sock)836 static int hci_sock_release(struct socket *sock)
837 {
838 struct sock *sk = sock->sk;
839 struct hci_dev *hdev;
840 struct sk_buff *skb;
841
842 BT_DBG("sock %p sk %p", sock, sk);
843
844 if (!sk)
845 return 0;
846
847 lock_sock(sk);
848
849 switch (hci_pi(sk)->channel) {
850 case HCI_CHANNEL_MONITOR:
851 atomic_dec(&monitor_promisc);
852 break;
853 case HCI_CHANNEL_RAW:
854 case HCI_CHANNEL_USER:
855 case HCI_CHANNEL_CONTROL:
856 /* Send event to monitor */
857 skb = create_monitor_ctrl_close(sk);
858 if (skb) {
859 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
860 HCI_SOCK_TRUSTED, NULL);
861 kfree_skb(skb);
862 }
863
864 hci_sock_free_cookie(sk);
865 break;
866 }
867
868 bt_sock_unlink(&hci_sk_list, sk);
869
870 hdev = hci_pi(sk)->hdev;
871 if (hdev) {
872 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
873 /* When releasing a user channel exclusive access,
874 * call hci_dev_do_close directly instead of calling
875 * hci_dev_close to ensure the exclusive access will
876 * be released and the controller brought back down.
877 *
878 * The checking of HCI_AUTO_OFF is not needed in this
879 * case since it will have been cleared already when
880 * opening the user channel.
881 */
882 hci_dev_do_close(hdev);
883 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
884 mgmt_index_added(hdev);
885 }
886
887 atomic_dec(&hdev->promisc);
888 hci_dev_put(hdev);
889 }
890
891 sock_orphan(sk);
892
893 skb_queue_purge(&sk->sk_receive_queue);
894 skb_queue_purge(&sk->sk_write_queue);
895
896 release_sock(sk);
897 sock_put(sk);
898 return 0;
899 }
900
hci_sock_reject_list_add(struct hci_dev * hdev,void __user * arg)901 static int hci_sock_reject_list_add(struct hci_dev *hdev, void __user *arg)
902 {
903 bdaddr_t bdaddr;
904 int err;
905
906 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
907 return -EFAULT;
908
909 hci_dev_lock(hdev);
910
911 err = hci_bdaddr_list_add(&hdev->reject_list, &bdaddr, BDADDR_BREDR);
912
913 hci_dev_unlock(hdev);
914
915 return err;
916 }
917
hci_sock_reject_list_del(struct hci_dev * hdev,void __user * arg)918 static int hci_sock_reject_list_del(struct hci_dev *hdev, void __user *arg)
919 {
920 bdaddr_t bdaddr;
921 int err;
922
923 if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
924 return -EFAULT;
925
926 hci_dev_lock(hdev);
927
928 err = hci_bdaddr_list_del(&hdev->reject_list, &bdaddr, BDADDR_BREDR);
929
930 hci_dev_unlock(hdev);
931
932 return err;
933 }
934
935 /* Ioctls that require bound socket */
hci_sock_bound_ioctl(struct sock * sk,unsigned int cmd,unsigned long arg)936 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd,
937 unsigned long arg)
938 {
939 struct hci_dev *hdev = hci_hdev_from_sock(sk);
940
941 if (IS_ERR(hdev))
942 return PTR_ERR(hdev);
943
944 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
945 return -EBUSY;
946
947 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
948 return -EOPNOTSUPP;
949
950 if (hdev->dev_type != HCI_PRIMARY)
951 return -EOPNOTSUPP;
952
953 switch (cmd) {
954 case HCISETRAW:
955 if (!capable(CAP_NET_ADMIN))
956 return -EPERM;
957 return -EOPNOTSUPP;
958
959 case HCIGETCONNINFO:
960 return hci_get_conn_info(hdev, (void __user *)arg);
961
962 case HCIGETAUTHINFO:
963 return hci_get_auth_info(hdev, (void __user *)arg);
964
965 case HCIBLOCKADDR:
966 if (!capable(CAP_NET_ADMIN))
967 return -EPERM;
968 return hci_sock_reject_list_add(hdev, (void __user *)arg);
969
970 case HCIUNBLOCKADDR:
971 if (!capable(CAP_NET_ADMIN))
972 return -EPERM;
973 return hci_sock_reject_list_del(hdev, (void __user *)arg);
974 }
975
976 return -ENOIOCTLCMD;
977 }
978
hci_sock_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)979 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd,
980 unsigned long arg)
981 {
982 void __user *argp = (void __user *)arg;
983 struct sock *sk = sock->sk;
984 int err;
985
986 BT_DBG("cmd %x arg %lx", cmd, arg);
987
988 lock_sock(sk);
989
990 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
991 err = -EBADFD;
992 goto done;
993 }
994
995 /* When calling an ioctl on an unbound raw socket, then ensure
996 * that the monitor gets informed. Ensure that the resulting event
997 * is only send once by checking if the cookie exists or not. The
998 * socket cookie will be only ever generated once for the lifetime
999 * of a given socket.
1000 */
1001 if (hci_sock_gen_cookie(sk)) {
1002 struct sk_buff *skb;
1003
1004 if (capable(CAP_NET_ADMIN))
1005 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1006
1007 /* Send event to monitor */
1008 skb = create_monitor_ctrl_open(sk);
1009 if (skb) {
1010 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1011 HCI_SOCK_TRUSTED, NULL);
1012 kfree_skb(skb);
1013 }
1014 }
1015
1016 release_sock(sk);
1017
1018 switch (cmd) {
1019 case HCIGETDEVLIST:
1020 return hci_get_dev_list(argp);
1021
1022 case HCIGETDEVINFO:
1023 return hci_get_dev_info(argp);
1024
1025 case HCIGETCONNLIST:
1026 return hci_get_conn_list(argp);
1027
1028 case HCIDEVUP:
1029 if (!capable(CAP_NET_ADMIN))
1030 return -EPERM;
1031 return hci_dev_open(arg);
1032
1033 case HCIDEVDOWN:
1034 if (!capable(CAP_NET_ADMIN))
1035 return -EPERM;
1036 return hci_dev_close(arg);
1037
1038 case HCIDEVRESET:
1039 if (!capable(CAP_NET_ADMIN))
1040 return -EPERM;
1041 return hci_dev_reset(arg);
1042
1043 case HCIDEVRESTAT:
1044 if (!capable(CAP_NET_ADMIN))
1045 return -EPERM;
1046 return hci_dev_reset_stat(arg);
1047
1048 case HCISETSCAN:
1049 case HCISETAUTH:
1050 case HCISETENCRYPT:
1051 case HCISETPTYPE:
1052 case HCISETLINKPOL:
1053 case HCISETLINKMODE:
1054 case HCISETACLMTU:
1055 case HCISETSCOMTU:
1056 if (!capable(CAP_NET_ADMIN))
1057 return -EPERM;
1058 return hci_dev_cmd(cmd, argp);
1059
1060 case HCIINQUIRY:
1061 return hci_inquiry(argp);
1062 }
1063
1064 lock_sock(sk);
1065
1066 err = hci_sock_bound_ioctl(sk, cmd, arg);
1067
1068 done:
1069 release_sock(sk);
1070 return err;
1071 }
1072
1073 #ifdef CONFIG_COMPAT
hci_sock_compat_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)1074 static int hci_sock_compat_ioctl(struct socket *sock, unsigned int cmd,
1075 unsigned long arg)
1076 {
1077 switch (cmd) {
1078 case HCIDEVUP:
1079 case HCIDEVDOWN:
1080 case HCIDEVRESET:
1081 case HCIDEVRESTAT:
1082 return hci_sock_ioctl(sock, cmd, arg);
1083 }
1084
1085 return hci_sock_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
1086 }
1087 #endif
1088
hci_sock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)1089 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr,
1090 int addr_len)
1091 {
1092 struct sockaddr_hci haddr;
1093 struct sock *sk = sock->sk;
1094 struct hci_dev *hdev = NULL;
1095 struct sk_buff *skb;
1096 int len, err = 0;
1097
1098 BT_DBG("sock %p sk %p", sock, sk);
1099
1100 if (!addr)
1101 return -EINVAL;
1102
1103 memset(&haddr, 0, sizeof(haddr));
1104 len = min_t(unsigned int, sizeof(haddr), addr_len);
1105 memcpy(&haddr, addr, len);
1106
1107 if (haddr.hci_family != AF_BLUETOOTH)
1108 return -EINVAL;
1109
1110 lock_sock(sk);
1111
1112 /* Allow detaching from dead device and attaching to alive device, if
1113 * the caller wants to re-bind (instead of close) this socket in
1114 * response to hci_sock_dev_event(HCI_DEV_UNREG) notification.
1115 */
1116 hdev = hci_pi(sk)->hdev;
1117 if (hdev && hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1118 hci_pi(sk)->hdev = NULL;
1119 sk->sk_state = BT_OPEN;
1120 hci_dev_put(hdev);
1121 }
1122 hdev = NULL;
1123
1124 if (sk->sk_state == BT_BOUND) {
1125 err = -EALREADY;
1126 goto done;
1127 }
1128
1129 switch (haddr.hci_channel) {
1130 case HCI_CHANNEL_RAW:
1131 if (hci_pi(sk)->hdev) {
1132 err = -EALREADY;
1133 goto done;
1134 }
1135
1136 if (haddr.hci_dev != HCI_DEV_NONE) {
1137 hdev = hci_dev_get(haddr.hci_dev);
1138 if (!hdev) {
1139 err = -ENODEV;
1140 goto done;
1141 }
1142
1143 atomic_inc(&hdev->promisc);
1144 }
1145
1146 hci_pi(sk)->channel = haddr.hci_channel;
1147
1148 if (!hci_sock_gen_cookie(sk)) {
1149 /* In the case when a cookie has already been assigned,
1150 * then there has been already an ioctl issued against
1151 * an unbound socket and with that triggered an open
1152 * notification. Send a close notification first to
1153 * allow the state transition to bounded.
1154 */
1155 skb = create_monitor_ctrl_close(sk);
1156 if (skb) {
1157 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1158 HCI_SOCK_TRUSTED, NULL);
1159 kfree_skb(skb);
1160 }
1161 }
1162
1163 if (capable(CAP_NET_ADMIN))
1164 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1165
1166 hci_pi(sk)->hdev = hdev;
1167
1168 /* Send event to monitor */
1169 skb = create_monitor_ctrl_open(sk);
1170 if (skb) {
1171 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1172 HCI_SOCK_TRUSTED, NULL);
1173 kfree_skb(skb);
1174 }
1175 break;
1176
1177 case HCI_CHANNEL_USER:
1178 if (hci_pi(sk)->hdev) {
1179 err = -EALREADY;
1180 goto done;
1181 }
1182
1183 if (haddr.hci_dev == HCI_DEV_NONE) {
1184 err = -EINVAL;
1185 goto done;
1186 }
1187
1188 if (!capable(CAP_NET_ADMIN)) {
1189 err = -EPERM;
1190 goto done;
1191 }
1192
1193 hdev = hci_dev_get(haddr.hci_dev);
1194 if (!hdev) {
1195 err = -ENODEV;
1196 goto done;
1197 }
1198
1199 if (test_bit(HCI_INIT, &hdev->flags) ||
1200 hci_dev_test_flag(hdev, HCI_SETUP) ||
1201 hci_dev_test_flag(hdev, HCI_CONFIG) ||
1202 (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) &&
1203 test_bit(HCI_UP, &hdev->flags))) {
1204 err = -EBUSY;
1205 hci_dev_put(hdev);
1206 goto done;
1207 }
1208
1209 if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) {
1210 err = -EUSERS;
1211 hci_dev_put(hdev);
1212 goto done;
1213 }
1214
1215 mgmt_index_removed(hdev);
1216
1217 err = hci_dev_open(hdev->id);
1218 if (err) {
1219 if (err == -EALREADY) {
1220 /* In case the transport is already up and
1221 * running, clear the error here.
1222 *
1223 * This can happen when opening a user
1224 * channel and HCI_AUTO_OFF grace period
1225 * is still active.
1226 */
1227 err = 0;
1228 } else {
1229 hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
1230 mgmt_index_added(hdev);
1231 hci_dev_put(hdev);
1232 goto done;
1233 }
1234 }
1235
1236 hci_pi(sk)->channel = haddr.hci_channel;
1237
1238 if (!hci_sock_gen_cookie(sk)) {
1239 /* In the case when a cookie has already been assigned,
1240 * this socket will transition from a raw socket into
1241 * a user channel socket. For a clean transition, send
1242 * the close notification first.
1243 */
1244 skb = create_monitor_ctrl_close(sk);
1245 if (skb) {
1246 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1247 HCI_SOCK_TRUSTED, NULL);
1248 kfree_skb(skb);
1249 }
1250 }
1251
1252 /* The user channel is restricted to CAP_NET_ADMIN
1253 * capabilities and with that implicitly trusted.
1254 */
1255 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1256
1257 hci_pi(sk)->hdev = hdev;
1258
1259 /* Send event to monitor */
1260 skb = create_monitor_ctrl_open(sk);
1261 if (skb) {
1262 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1263 HCI_SOCK_TRUSTED, NULL);
1264 kfree_skb(skb);
1265 }
1266
1267 atomic_inc(&hdev->promisc);
1268 break;
1269
1270 case HCI_CHANNEL_MONITOR:
1271 if (haddr.hci_dev != HCI_DEV_NONE) {
1272 err = -EINVAL;
1273 goto done;
1274 }
1275
1276 if (!capable(CAP_NET_RAW)) {
1277 err = -EPERM;
1278 goto done;
1279 }
1280
1281 hci_pi(sk)->channel = haddr.hci_channel;
1282
1283 /* The monitor interface is restricted to CAP_NET_RAW
1284 * capabilities and with that implicitly trusted.
1285 */
1286 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1287
1288 send_monitor_note(sk, "Linux version %s (%s)",
1289 init_utsname()->release,
1290 init_utsname()->machine);
1291 send_monitor_note(sk, "Bluetooth subsystem version %u.%u",
1292 BT_SUBSYS_VERSION, BT_SUBSYS_REVISION);
1293 send_monitor_replay(sk);
1294 send_monitor_control_replay(sk);
1295
1296 atomic_inc(&monitor_promisc);
1297 break;
1298
1299 case HCI_CHANNEL_LOGGING:
1300 if (haddr.hci_dev != HCI_DEV_NONE) {
1301 err = -EINVAL;
1302 goto done;
1303 }
1304
1305 if (!capable(CAP_NET_ADMIN)) {
1306 err = -EPERM;
1307 goto done;
1308 }
1309
1310 hci_pi(sk)->channel = haddr.hci_channel;
1311 break;
1312
1313 default:
1314 if (!hci_mgmt_chan_find(haddr.hci_channel)) {
1315 err = -EINVAL;
1316 goto done;
1317 }
1318
1319 if (haddr.hci_dev != HCI_DEV_NONE) {
1320 err = -EINVAL;
1321 goto done;
1322 }
1323
1324 /* Users with CAP_NET_ADMIN capabilities are allowed
1325 * access to all management commands and events. For
1326 * untrusted users the interface is restricted and
1327 * also only untrusted events are sent.
1328 */
1329 if (capable(CAP_NET_ADMIN))
1330 hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1331
1332 hci_pi(sk)->channel = haddr.hci_channel;
1333
1334 /* At the moment the index and unconfigured index events
1335 * are enabled unconditionally. Setting them on each
1336 * socket when binding keeps this functionality. They
1337 * however might be cleared later and then sending of these
1338 * events will be disabled, but that is then intentional.
1339 *
1340 * This also enables generic events that are safe to be
1341 * received by untrusted users. Example for such events
1342 * are changes to settings, class of device, name etc.
1343 */
1344 if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) {
1345 if (!hci_sock_gen_cookie(sk)) {
1346 /* In the case when a cookie has already been
1347 * assigned, this socket will transition from
1348 * a raw socket into a control socket. To
1349 * allow for a clean transition, send the
1350 * close notification first.
1351 */
1352 skb = create_monitor_ctrl_close(sk);
1353 if (skb) {
1354 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1355 HCI_SOCK_TRUSTED, NULL);
1356 kfree_skb(skb);
1357 }
1358 }
1359
1360 /* Send event to monitor */
1361 skb = create_monitor_ctrl_open(sk);
1362 if (skb) {
1363 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1364 HCI_SOCK_TRUSTED, NULL);
1365 kfree_skb(skb);
1366 }
1367
1368 hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS);
1369 hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS);
1370 hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS);
1371 hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS);
1372 hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS);
1373 hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS);
1374 }
1375 break;
1376 }
1377
1378 /* Default MTU to HCI_MAX_FRAME_SIZE if not set */
1379 if (!hci_pi(sk)->mtu)
1380 hci_pi(sk)->mtu = HCI_MAX_FRAME_SIZE;
1381
1382 sk->sk_state = BT_BOUND;
1383
1384 done:
1385 release_sock(sk);
1386 return err;
1387 }
1388
hci_sock_getname(struct socket * sock,struct sockaddr * addr,int peer)1389 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr,
1390 int peer)
1391 {
1392 struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr;
1393 struct sock *sk = sock->sk;
1394 struct hci_dev *hdev;
1395 int err = 0;
1396
1397 BT_DBG("sock %p sk %p", sock, sk);
1398
1399 if (peer)
1400 return -EOPNOTSUPP;
1401
1402 lock_sock(sk);
1403
1404 hdev = hci_hdev_from_sock(sk);
1405 if (IS_ERR(hdev)) {
1406 err = PTR_ERR(hdev);
1407 goto done;
1408 }
1409
1410 haddr->hci_family = AF_BLUETOOTH;
1411 haddr->hci_dev = hdev->id;
1412 haddr->hci_channel= hci_pi(sk)->channel;
1413 err = sizeof(*haddr);
1414
1415 done:
1416 release_sock(sk);
1417 return err;
1418 }
1419
hci_sock_cmsg(struct sock * sk,struct msghdr * msg,struct sk_buff * skb)1420 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg,
1421 struct sk_buff *skb)
1422 {
1423 __u8 mask = hci_pi(sk)->cmsg_mask;
1424
1425 if (mask & HCI_CMSG_DIR) {
1426 int incoming = bt_cb(skb)->incoming;
1427 put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming),
1428 &incoming);
1429 }
1430
1431 if (mask & HCI_CMSG_TSTAMP) {
1432 #ifdef CONFIG_COMPAT
1433 struct old_timeval32 ctv;
1434 #endif
1435 struct __kernel_old_timeval tv;
1436 void *data;
1437 int len;
1438
1439 skb_get_timestamp(skb, &tv);
1440
1441 data = &tv;
1442 len = sizeof(tv);
1443 #ifdef CONFIG_COMPAT
1444 if (!COMPAT_USE_64BIT_TIME &&
1445 (msg->msg_flags & MSG_CMSG_COMPAT)) {
1446 ctv.tv_sec = tv.tv_sec;
1447 ctv.tv_usec = tv.tv_usec;
1448 data = &ctv;
1449 len = sizeof(ctv);
1450 }
1451 #endif
1452
1453 put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data);
1454 }
1455 }
1456
hci_sock_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1457 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg,
1458 size_t len, int flags)
1459 {
1460 int noblock = flags & MSG_DONTWAIT;
1461 struct sock *sk = sock->sk;
1462 struct sk_buff *skb;
1463 int copied, err;
1464 unsigned int skblen;
1465
1466 BT_DBG("sock %p, sk %p", sock, sk);
1467
1468 if (flags & MSG_OOB)
1469 return -EOPNOTSUPP;
1470
1471 if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING)
1472 return -EOPNOTSUPP;
1473
1474 if (sk->sk_state == BT_CLOSED)
1475 return 0;
1476
1477 skb = skb_recv_datagram(sk, flags, noblock, &err);
1478 if (!skb)
1479 return err;
1480
1481 skblen = skb->len;
1482 copied = skb->len;
1483 if (len < copied) {
1484 msg->msg_flags |= MSG_TRUNC;
1485 copied = len;
1486 }
1487
1488 skb_reset_transport_header(skb);
1489 err = skb_copy_datagram_msg(skb, 0, msg, copied);
1490
1491 switch (hci_pi(sk)->channel) {
1492 case HCI_CHANNEL_RAW:
1493 hci_sock_cmsg(sk, msg, skb);
1494 break;
1495 case HCI_CHANNEL_USER:
1496 case HCI_CHANNEL_MONITOR:
1497 sock_recv_timestamp(msg, sk, skb);
1498 break;
1499 default:
1500 if (hci_mgmt_chan_find(hci_pi(sk)->channel))
1501 sock_recv_timestamp(msg, sk, skb);
1502 break;
1503 }
1504
1505 skb_free_datagram(sk, skb);
1506
1507 if (flags & MSG_TRUNC)
1508 copied = skblen;
1509
1510 return err ? : copied;
1511 }
1512
hci_mgmt_cmd(struct hci_mgmt_chan * chan,struct sock * sk,struct sk_buff * skb)1513 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk,
1514 struct sk_buff *skb)
1515 {
1516 u8 *cp;
1517 struct mgmt_hdr *hdr;
1518 u16 opcode, index, len;
1519 struct hci_dev *hdev = NULL;
1520 const struct hci_mgmt_handler *handler;
1521 bool var_len, no_hdev;
1522 int err;
1523
1524 BT_DBG("got %d bytes", skb->len);
1525
1526 if (skb->len < sizeof(*hdr))
1527 return -EINVAL;
1528
1529 hdr = (void *)skb->data;
1530 opcode = __le16_to_cpu(hdr->opcode);
1531 index = __le16_to_cpu(hdr->index);
1532 len = __le16_to_cpu(hdr->len);
1533
1534 if (len != skb->len - sizeof(*hdr)) {
1535 err = -EINVAL;
1536 goto done;
1537 }
1538
1539 if (chan->channel == HCI_CHANNEL_CONTROL) {
1540 struct sk_buff *cmd;
1541
1542 /* Send event to monitor */
1543 cmd = create_monitor_ctrl_command(sk, index, opcode, len,
1544 skb->data + sizeof(*hdr));
1545 if (cmd) {
1546 hci_send_to_channel(HCI_CHANNEL_MONITOR, cmd,
1547 HCI_SOCK_TRUSTED, NULL);
1548 kfree_skb(cmd);
1549 }
1550 }
1551
1552 if (opcode >= chan->handler_count ||
1553 chan->handlers[opcode].func == NULL) {
1554 BT_DBG("Unknown op %u", opcode);
1555 err = mgmt_cmd_status(sk, index, opcode,
1556 MGMT_STATUS_UNKNOWN_COMMAND);
1557 goto done;
1558 }
1559
1560 handler = &chan->handlers[opcode];
1561
1562 if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) &&
1563 !(handler->flags & HCI_MGMT_UNTRUSTED)) {
1564 err = mgmt_cmd_status(sk, index, opcode,
1565 MGMT_STATUS_PERMISSION_DENIED);
1566 goto done;
1567 }
1568
1569 if (index != MGMT_INDEX_NONE) {
1570 hdev = hci_dev_get(index);
1571 if (!hdev) {
1572 err = mgmt_cmd_status(sk, index, opcode,
1573 MGMT_STATUS_INVALID_INDEX);
1574 goto done;
1575 }
1576
1577 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1578 hci_dev_test_flag(hdev, HCI_CONFIG) ||
1579 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1580 err = mgmt_cmd_status(sk, index, opcode,
1581 MGMT_STATUS_INVALID_INDEX);
1582 goto done;
1583 }
1584
1585 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1586 !(handler->flags & HCI_MGMT_UNCONFIGURED)) {
1587 err = mgmt_cmd_status(sk, index, opcode,
1588 MGMT_STATUS_INVALID_INDEX);
1589 goto done;
1590 }
1591 }
1592
1593 if (!(handler->flags & HCI_MGMT_HDEV_OPTIONAL)) {
1594 no_hdev = (handler->flags & HCI_MGMT_NO_HDEV);
1595 if (no_hdev != !hdev) {
1596 err = mgmt_cmd_status(sk, index, opcode,
1597 MGMT_STATUS_INVALID_INDEX);
1598 goto done;
1599 }
1600 }
1601
1602 var_len = (handler->flags & HCI_MGMT_VAR_LEN);
1603 if ((var_len && len < handler->data_len) ||
1604 (!var_len && len != handler->data_len)) {
1605 err = mgmt_cmd_status(sk, index, opcode,
1606 MGMT_STATUS_INVALID_PARAMS);
1607 goto done;
1608 }
1609
1610 if (hdev && chan->hdev_init)
1611 chan->hdev_init(sk, hdev);
1612
1613 cp = skb->data + sizeof(*hdr);
1614
1615 err = handler->func(sk, hdev, cp, len);
1616 if (err < 0)
1617 goto done;
1618
1619 err = skb->len;
1620
1621 done:
1622 if (hdev)
1623 hci_dev_put(hdev);
1624
1625 return err;
1626 }
1627
hci_logging_frame(struct sock * sk,struct sk_buff * skb,unsigned int flags)1628 static int hci_logging_frame(struct sock *sk, struct sk_buff *skb,
1629 unsigned int flags)
1630 {
1631 struct hci_mon_hdr *hdr;
1632 struct hci_dev *hdev;
1633 u16 index;
1634 int err;
1635
1636 /* The logging frame consists at minimum of the standard header,
1637 * the priority byte, the ident length byte and at least one string
1638 * terminator NUL byte. Anything shorter are invalid packets.
1639 */
1640 if (skb->len < sizeof(*hdr) + 3)
1641 return -EINVAL;
1642
1643 hdr = (void *)skb->data;
1644
1645 if (__le16_to_cpu(hdr->len) != skb->len - sizeof(*hdr))
1646 return -EINVAL;
1647
1648 if (__le16_to_cpu(hdr->opcode) == 0x0000) {
1649 __u8 priority = skb->data[sizeof(*hdr)];
1650 __u8 ident_len = skb->data[sizeof(*hdr) + 1];
1651
1652 /* Only the priorities 0-7 are valid and with that any other
1653 * value results in an invalid packet.
1654 *
1655 * The priority byte is followed by an ident length byte and
1656 * the NUL terminated ident string. Check that the ident
1657 * length is not overflowing the packet and also that the
1658 * ident string itself is NUL terminated. In case the ident
1659 * length is zero, the length value actually doubles as NUL
1660 * terminator identifier.
1661 *
1662 * The message follows the ident string (if present) and
1663 * must be NUL terminated. Otherwise it is not a valid packet.
1664 */
1665 if (priority > 7 || skb->data[skb->len - 1] != 0x00 ||
1666 ident_len > skb->len - sizeof(*hdr) - 3 ||
1667 skb->data[sizeof(*hdr) + ident_len + 1] != 0x00)
1668 return -EINVAL;
1669 } else {
1670 return -EINVAL;
1671 }
1672
1673 index = __le16_to_cpu(hdr->index);
1674
1675 if (index != MGMT_INDEX_NONE) {
1676 hdev = hci_dev_get(index);
1677 if (!hdev)
1678 return -ENODEV;
1679 } else {
1680 hdev = NULL;
1681 }
1682
1683 hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING);
1684
1685 hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL);
1686 err = skb->len;
1687
1688 if (hdev)
1689 hci_dev_put(hdev);
1690
1691 return err;
1692 }
1693
hci_sock_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1694 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg,
1695 size_t len)
1696 {
1697 struct sock *sk = sock->sk;
1698 struct hci_mgmt_chan *chan;
1699 struct hci_dev *hdev;
1700 struct sk_buff *skb;
1701 int err;
1702 const unsigned int flags = msg->msg_flags;
1703
1704 BT_DBG("sock %p sk %p", sock, sk);
1705
1706 if (flags & MSG_OOB)
1707 return -EOPNOTSUPP;
1708
1709 if (flags & ~(MSG_DONTWAIT | MSG_NOSIGNAL | MSG_ERRQUEUE | MSG_CMSG_COMPAT))
1710 return -EINVAL;
1711
1712 if (len < 4 || len > hci_pi(sk)->mtu)
1713 return -EINVAL;
1714
1715 skb = bt_skb_sendmsg(sk, msg, len, len, 0, 0);
1716 if (IS_ERR(skb))
1717 return PTR_ERR(skb);
1718
1719 lock_sock(sk);
1720
1721 switch (hci_pi(sk)->channel) {
1722 case HCI_CHANNEL_RAW:
1723 case HCI_CHANNEL_USER:
1724 break;
1725 case HCI_CHANNEL_MONITOR:
1726 err = -EOPNOTSUPP;
1727 goto drop;
1728 case HCI_CHANNEL_LOGGING:
1729 err = hci_logging_frame(sk, skb, flags);
1730 goto drop;
1731 default:
1732 mutex_lock(&mgmt_chan_list_lock);
1733 chan = __hci_mgmt_chan_find(hci_pi(sk)->channel);
1734 if (chan)
1735 err = hci_mgmt_cmd(chan, sk, skb);
1736 else
1737 err = -EINVAL;
1738
1739 mutex_unlock(&mgmt_chan_list_lock);
1740 goto drop;
1741 }
1742
1743 hdev = hci_hdev_from_sock(sk);
1744 if (IS_ERR(hdev)) {
1745 err = PTR_ERR(hdev);
1746 goto drop;
1747 }
1748
1749 if (!test_bit(HCI_UP, &hdev->flags)) {
1750 err = -ENETDOWN;
1751 goto drop;
1752 }
1753
1754 hci_skb_pkt_type(skb) = skb->data[0];
1755 skb_pull(skb, 1);
1756
1757 if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
1758 /* No permission check is needed for user channel
1759 * since that gets enforced when binding the socket.
1760 *
1761 * However check that the packet type is valid.
1762 */
1763 if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
1764 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1765 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
1766 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
1767 err = -EINVAL;
1768 goto drop;
1769 }
1770
1771 skb_queue_tail(&hdev->raw_q, skb);
1772 queue_work(hdev->workqueue, &hdev->tx_work);
1773 } else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) {
1774 u16 opcode = get_unaligned_le16(skb->data);
1775 u16 ogf = hci_opcode_ogf(opcode);
1776 u16 ocf = hci_opcode_ocf(opcode);
1777
1778 if (((ogf > HCI_SFLT_MAX_OGF) ||
1779 !hci_test_bit(ocf & HCI_FLT_OCF_BITS,
1780 &hci_sec_filter.ocf_mask[ogf])) &&
1781 !capable(CAP_NET_RAW)) {
1782 err = -EPERM;
1783 goto drop;
1784 }
1785
1786 /* Since the opcode has already been extracted here, store
1787 * a copy of the value for later use by the drivers.
1788 */
1789 hci_skb_opcode(skb) = opcode;
1790
1791 if (ogf == 0x3f) {
1792 skb_queue_tail(&hdev->raw_q, skb);
1793 queue_work(hdev->workqueue, &hdev->tx_work);
1794 } else {
1795 /* Stand-alone HCI commands must be flagged as
1796 * single-command requests.
1797 */
1798 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
1799
1800 skb_queue_tail(&hdev->cmd_q, skb);
1801 queue_work(hdev->workqueue, &hdev->cmd_work);
1802 }
1803 } else {
1804 if (!capable(CAP_NET_RAW)) {
1805 err = -EPERM;
1806 goto drop;
1807 }
1808
1809 if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1810 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
1811 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
1812 err = -EINVAL;
1813 goto drop;
1814 }
1815
1816 skb_queue_tail(&hdev->raw_q, skb);
1817 queue_work(hdev->workqueue, &hdev->tx_work);
1818 }
1819
1820 err = len;
1821
1822 done:
1823 release_sock(sk);
1824 return err;
1825
1826 drop:
1827 kfree_skb(skb);
1828 goto done;
1829 }
1830
hci_sock_setsockopt_old(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int len)1831 static int hci_sock_setsockopt_old(struct socket *sock, int level, int optname,
1832 sockptr_t optval, unsigned int len)
1833 {
1834 struct hci_ufilter uf = { .opcode = 0 };
1835 struct sock *sk = sock->sk;
1836 int err = 0, opt = 0;
1837
1838 BT_DBG("sk %p, opt %d", sk, optname);
1839
1840 lock_sock(sk);
1841
1842 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1843 err = -EBADFD;
1844 goto done;
1845 }
1846
1847 switch (optname) {
1848 case HCI_DATA_DIR:
1849 if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1850 err = -EFAULT;
1851 break;
1852 }
1853
1854 if (opt)
1855 hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR;
1856 else
1857 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR;
1858 break;
1859
1860 case HCI_TIME_STAMP:
1861 if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1862 err = -EFAULT;
1863 break;
1864 }
1865
1866 if (opt)
1867 hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP;
1868 else
1869 hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP;
1870 break;
1871
1872 case HCI_FILTER:
1873 {
1874 struct hci_filter *f = &hci_pi(sk)->filter;
1875
1876 uf.type_mask = f->type_mask;
1877 uf.opcode = f->opcode;
1878 uf.event_mask[0] = *((u32 *) f->event_mask + 0);
1879 uf.event_mask[1] = *((u32 *) f->event_mask + 1);
1880 }
1881
1882 len = min_t(unsigned int, len, sizeof(uf));
1883 if (copy_from_sockptr(&uf, optval, len)) {
1884 err = -EFAULT;
1885 break;
1886 }
1887
1888 if (!capable(CAP_NET_RAW)) {
1889 uf.type_mask &= hci_sec_filter.type_mask;
1890 uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0);
1891 uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1);
1892 }
1893
1894 {
1895 struct hci_filter *f = &hci_pi(sk)->filter;
1896
1897 f->type_mask = uf.type_mask;
1898 f->opcode = uf.opcode;
1899 *((u32 *) f->event_mask + 0) = uf.event_mask[0];
1900 *((u32 *) f->event_mask + 1) = uf.event_mask[1];
1901 }
1902 break;
1903
1904 default:
1905 err = -ENOPROTOOPT;
1906 break;
1907 }
1908
1909 done:
1910 release_sock(sk);
1911 return err;
1912 }
1913
hci_sock_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int len)1914 static int hci_sock_setsockopt(struct socket *sock, int level, int optname,
1915 sockptr_t optval, unsigned int len)
1916 {
1917 struct sock *sk = sock->sk;
1918 int err = 0, opt = 0;
1919
1920 BT_DBG("sk %p, opt %d", sk, optname);
1921
1922 if (level == SOL_HCI)
1923 return hci_sock_setsockopt_old(sock, level, optname, optval,
1924 len);
1925
1926 if (level != SOL_BLUETOOTH)
1927 return -ENOPROTOOPT;
1928
1929 lock_sock(sk);
1930
1931 switch (optname) {
1932 case BT_SNDMTU:
1933 case BT_RCVMTU:
1934 switch (hci_pi(sk)->channel) {
1935 /* Don't allow changing MTU for channels that are meant for HCI
1936 * traffic only.
1937 */
1938 case HCI_CHANNEL_RAW:
1939 case HCI_CHANNEL_USER:
1940 err = -ENOPROTOOPT;
1941 goto done;
1942 }
1943
1944 if (copy_from_sockptr(&opt, optval, sizeof(u16))) {
1945 err = -EFAULT;
1946 break;
1947 }
1948
1949 hci_pi(sk)->mtu = opt;
1950 break;
1951
1952 default:
1953 err = -ENOPROTOOPT;
1954 break;
1955 }
1956
1957 done:
1958 release_sock(sk);
1959 return err;
1960 }
1961
hci_sock_getsockopt_old(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1962 static int hci_sock_getsockopt_old(struct socket *sock, int level, int optname,
1963 char __user *optval, int __user *optlen)
1964 {
1965 struct hci_ufilter uf;
1966 struct sock *sk = sock->sk;
1967 int len, opt, err = 0;
1968
1969 BT_DBG("sk %p, opt %d", sk, optname);
1970
1971 if (get_user(len, optlen))
1972 return -EFAULT;
1973
1974 lock_sock(sk);
1975
1976 if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1977 err = -EBADFD;
1978 goto done;
1979 }
1980
1981 switch (optname) {
1982 case HCI_DATA_DIR:
1983 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR)
1984 opt = 1;
1985 else
1986 opt = 0;
1987
1988 if (put_user(opt, optval))
1989 err = -EFAULT;
1990 break;
1991
1992 case HCI_TIME_STAMP:
1993 if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP)
1994 opt = 1;
1995 else
1996 opt = 0;
1997
1998 if (put_user(opt, optval))
1999 err = -EFAULT;
2000 break;
2001
2002 case HCI_FILTER:
2003 {
2004 struct hci_filter *f = &hci_pi(sk)->filter;
2005
2006 memset(&uf, 0, sizeof(uf));
2007 uf.type_mask = f->type_mask;
2008 uf.opcode = f->opcode;
2009 uf.event_mask[0] = *((u32 *) f->event_mask + 0);
2010 uf.event_mask[1] = *((u32 *) f->event_mask + 1);
2011 }
2012
2013 len = min_t(unsigned int, len, sizeof(uf));
2014 if (copy_to_user(optval, &uf, len))
2015 err = -EFAULT;
2016 break;
2017
2018 default:
2019 err = -ENOPROTOOPT;
2020 break;
2021 }
2022
2023 done:
2024 release_sock(sk);
2025 return err;
2026 }
2027
hci_sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2028 static int hci_sock_getsockopt(struct socket *sock, int level, int optname,
2029 char __user *optval, int __user *optlen)
2030 {
2031 struct sock *sk = sock->sk;
2032 int err = 0;
2033
2034 BT_DBG("sk %p, opt %d", sk, optname);
2035
2036 if (level == SOL_HCI)
2037 return hci_sock_getsockopt_old(sock, level, optname, optval,
2038 optlen);
2039
2040 if (level != SOL_BLUETOOTH)
2041 return -ENOPROTOOPT;
2042
2043 lock_sock(sk);
2044
2045 switch (optname) {
2046 case BT_SNDMTU:
2047 case BT_RCVMTU:
2048 if (put_user(hci_pi(sk)->mtu, (u16 __user *)optval))
2049 err = -EFAULT;
2050 break;
2051
2052 default:
2053 err = -ENOPROTOOPT;
2054 break;
2055 }
2056
2057 release_sock(sk);
2058 return err;
2059 }
2060
2061 static const struct proto_ops hci_sock_ops = {
2062 .family = PF_BLUETOOTH,
2063 .owner = THIS_MODULE,
2064 .release = hci_sock_release,
2065 .bind = hci_sock_bind,
2066 .getname = hci_sock_getname,
2067 .sendmsg = hci_sock_sendmsg,
2068 .recvmsg = hci_sock_recvmsg,
2069 .ioctl = hci_sock_ioctl,
2070 #ifdef CONFIG_COMPAT
2071 .compat_ioctl = hci_sock_compat_ioctl,
2072 #endif
2073 .poll = datagram_poll,
2074 .listen = sock_no_listen,
2075 .shutdown = sock_no_shutdown,
2076 .setsockopt = hci_sock_setsockopt,
2077 .getsockopt = hci_sock_getsockopt,
2078 .connect = sock_no_connect,
2079 .socketpair = sock_no_socketpair,
2080 .accept = sock_no_accept,
2081 .mmap = sock_no_mmap
2082 };
2083
2084 static struct proto hci_sk_proto = {
2085 .name = "HCI",
2086 .owner = THIS_MODULE,
2087 .obj_size = sizeof(struct hci_pinfo)
2088 };
2089
hci_sock_create(struct net * net,struct socket * sock,int protocol,int kern)2090 static int hci_sock_create(struct net *net, struct socket *sock, int protocol,
2091 int kern)
2092 {
2093 struct sock *sk;
2094
2095 BT_DBG("sock %p", sock);
2096
2097 if (sock->type != SOCK_RAW)
2098 return -ESOCKTNOSUPPORT;
2099
2100 sock->ops = &hci_sock_ops;
2101
2102 sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern);
2103 if (!sk)
2104 return -ENOMEM;
2105
2106 sock_init_data(sock, sk);
2107
2108 sock_reset_flag(sk, SOCK_ZAPPED);
2109
2110 sk->sk_protocol = protocol;
2111
2112 sock->state = SS_UNCONNECTED;
2113 sk->sk_state = BT_OPEN;
2114
2115 bt_sock_link(&hci_sk_list, sk);
2116 return 0;
2117 }
2118
2119 static const struct net_proto_family hci_sock_family_ops = {
2120 .family = PF_BLUETOOTH,
2121 .owner = THIS_MODULE,
2122 .create = hci_sock_create,
2123 };
2124
hci_sock_init(void)2125 int __init hci_sock_init(void)
2126 {
2127 int err;
2128
2129 BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr));
2130
2131 err = proto_register(&hci_sk_proto, 0);
2132 if (err < 0)
2133 return err;
2134
2135 err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops);
2136 if (err < 0) {
2137 BT_ERR("HCI socket registration failed");
2138 goto error;
2139 }
2140
2141 err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL);
2142 if (err < 0) {
2143 BT_ERR("Failed to create HCI proc file");
2144 bt_sock_unregister(BTPROTO_HCI);
2145 goto error;
2146 }
2147
2148 BT_INFO("HCI socket layer initialized");
2149
2150 return 0;
2151
2152 error:
2153 proto_unregister(&hci_sk_proto);
2154 return err;
2155 }
2156
hci_sock_cleanup(void)2157 void hci_sock_cleanup(void)
2158 {
2159 bt_procfs_cleanup(&init_net, "hci");
2160 bt_sock_unregister(BTPROTO_HCI);
2161 proto_unregister(&hci_sk_proto);
2162 }
2163