1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3 /*
4 * BTF-to-C type converter.
5 *
6 * Copyright (c) 2019 Facebook
7 */
8
9 #include <stdbool.h>
10 #include <stddef.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <ctype.h>
14 #include <endian.h>
15 #include <errno.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <linux/kernel.h>
19 #include "btf.h"
20 #include "hashmap.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23
24 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
25 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
26
pfx(int lvl)27 static const char *pfx(int lvl)
28 {
29 return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
30 }
31
32 enum btf_dump_type_order_state {
33 NOT_ORDERED,
34 ORDERING,
35 ORDERED,
36 };
37
38 enum btf_dump_type_emit_state {
39 NOT_EMITTED,
40 EMITTING,
41 EMITTED,
42 };
43
44 /* per-type auxiliary state */
45 struct btf_dump_type_aux_state {
46 /* topological sorting state */
47 enum btf_dump_type_order_state order_state: 2;
48 /* emitting state used to determine the need for forward declaration */
49 enum btf_dump_type_emit_state emit_state: 2;
50 /* whether forward declaration was already emitted */
51 __u8 fwd_emitted: 1;
52 /* whether unique non-duplicate name was already assigned */
53 __u8 name_resolved: 1;
54 /* whether type is referenced from any other type */
55 __u8 referenced: 1;
56 };
57
58 /* indent string length; one indent string is added for each indent level */
59 #define BTF_DATA_INDENT_STR_LEN 32
60
61 /*
62 * Common internal data for BTF type data dump operations.
63 */
64 struct btf_dump_data {
65 const void *data_end; /* end of valid data to show */
66 bool compact;
67 bool skip_names;
68 bool emit_zeroes;
69 __u8 indent_lvl; /* base indent level */
70 char indent_str[BTF_DATA_INDENT_STR_LEN];
71 /* below are used during iteration */
72 int depth;
73 bool is_array_member;
74 bool is_array_terminated;
75 bool is_array_char;
76 };
77
78 struct btf_dump {
79 const struct btf *btf;
80 const struct btf_ext *btf_ext;
81 btf_dump_printf_fn_t printf_fn;
82 struct btf_dump_opts opts;
83 int ptr_sz;
84 bool strip_mods;
85 bool skip_anon_defs;
86 int last_id;
87
88 /* per-type auxiliary state */
89 struct btf_dump_type_aux_state *type_states;
90 size_t type_states_cap;
91 /* per-type optional cached unique name, must be freed, if present */
92 const char **cached_names;
93 size_t cached_names_cap;
94
95 /* topo-sorted list of dependent type definitions */
96 __u32 *emit_queue;
97 int emit_queue_cap;
98 int emit_queue_cnt;
99
100 /*
101 * stack of type declarations (e.g., chain of modifiers, arrays,
102 * funcs, etc)
103 */
104 __u32 *decl_stack;
105 int decl_stack_cap;
106 int decl_stack_cnt;
107
108 /* maps struct/union/enum name to a number of name occurrences */
109 struct hashmap *type_names;
110 /*
111 * maps typedef identifiers and enum value names to a number of such
112 * name occurrences
113 */
114 struct hashmap *ident_names;
115 /*
116 * data for typed display; allocated if needed.
117 */
118 struct btf_dump_data *typed_dump;
119 };
120
str_hash_fn(const void * key,void * ctx)121 static size_t str_hash_fn(const void *key, void *ctx)
122 {
123 return str_hash(key);
124 }
125
str_equal_fn(const void * a,const void * b,void * ctx)126 static bool str_equal_fn(const void *a, const void *b, void *ctx)
127 {
128 return strcmp(a, b) == 0;
129 }
130
btf_name_of(const struct btf_dump * d,__u32 name_off)131 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
132 {
133 return btf__name_by_offset(d->btf, name_off);
134 }
135
btf_dump_printf(const struct btf_dump * d,const char * fmt,...)136 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
137 {
138 va_list args;
139
140 va_start(args, fmt);
141 d->printf_fn(d->opts.ctx, fmt, args);
142 va_end(args);
143 }
144
145 static int btf_dump_mark_referenced(struct btf_dump *d);
146 static int btf_dump_resize(struct btf_dump *d);
147
btf_dump__new(const struct btf * btf,const struct btf_ext * btf_ext,const struct btf_dump_opts * opts,btf_dump_printf_fn_t printf_fn)148 struct btf_dump *btf_dump__new(const struct btf *btf,
149 const struct btf_ext *btf_ext,
150 const struct btf_dump_opts *opts,
151 btf_dump_printf_fn_t printf_fn)
152 {
153 struct btf_dump *d;
154 int err;
155
156 d = calloc(1, sizeof(struct btf_dump));
157 if (!d)
158 return libbpf_err_ptr(-ENOMEM);
159
160 d->btf = btf;
161 d->btf_ext = btf_ext;
162 d->printf_fn = printf_fn;
163 d->opts.ctx = opts ? opts->ctx : NULL;
164 d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
165
166 d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
167 if (IS_ERR(d->type_names)) {
168 err = PTR_ERR(d->type_names);
169 d->type_names = NULL;
170 goto err;
171 }
172 d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
173 if (IS_ERR(d->ident_names)) {
174 err = PTR_ERR(d->ident_names);
175 d->ident_names = NULL;
176 goto err;
177 }
178
179 err = btf_dump_resize(d);
180 if (err)
181 goto err;
182
183 return d;
184 err:
185 btf_dump__free(d);
186 return libbpf_err_ptr(err);
187 }
188
btf_dump_resize(struct btf_dump * d)189 static int btf_dump_resize(struct btf_dump *d)
190 {
191 int err, last_id = btf__type_cnt(d->btf) - 1;
192
193 if (last_id <= d->last_id)
194 return 0;
195
196 if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
197 sizeof(*d->type_states), last_id + 1))
198 return -ENOMEM;
199 if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
200 sizeof(*d->cached_names), last_id + 1))
201 return -ENOMEM;
202
203 if (d->last_id == 0) {
204 /* VOID is special */
205 d->type_states[0].order_state = ORDERED;
206 d->type_states[0].emit_state = EMITTED;
207 }
208
209 /* eagerly determine referenced types for anon enums */
210 err = btf_dump_mark_referenced(d);
211 if (err)
212 return err;
213
214 d->last_id = last_id;
215 return 0;
216 }
217
btf_dump__free(struct btf_dump * d)218 void btf_dump__free(struct btf_dump *d)
219 {
220 int i;
221
222 if (IS_ERR_OR_NULL(d))
223 return;
224
225 free(d->type_states);
226 if (d->cached_names) {
227 /* any set cached name is owned by us and should be freed */
228 for (i = 0; i <= d->last_id; i++) {
229 if (d->cached_names[i])
230 free((void *)d->cached_names[i]);
231 }
232 }
233 free(d->cached_names);
234 free(d->emit_queue);
235 free(d->decl_stack);
236 hashmap__free(d->type_names);
237 hashmap__free(d->ident_names);
238
239 free(d);
240 }
241
242 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
243 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
244
245 /*
246 * Dump BTF type in a compilable C syntax, including all the necessary
247 * dependent types, necessary for compilation. If some of the dependent types
248 * were already emitted as part of previous btf_dump__dump_type() invocation
249 * for another type, they won't be emitted again. This API allows callers to
250 * filter out BTF types according to user-defined criterias and emitted only
251 * minimal subset of types, necessary to compile everything. Full struct/union
252 * definitions will still be emitted, even if the only usage is through
253 * pointer and could be satisfied with just a forward declaration.
254 *
255 * Dumping is done in two high-level passes:
256 * 1. Topologically sort type definitions to satisfy C rules of compilation.
257 * 2. Emit type definitions in C syntax.
258 *
259 * Returns 0 on success; <0, otherwise.
260 */
btf_dump__dump_type(struct btf_dump * d,__u32 id)261 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
262 {
263 int err, i;
264
265 if (id >= btf__type_cnt(d->btf))
266 return libbpf_err(-EINVAL);
267
268 err = btf_dump_resize(d);
269 if (err)
270 return libbpf_err(err);
271
272 d->emit_queue_cnt = 0;
273 err = btf_dump_order_type(d, id, false);
274 if (err < 0)
275 return libbpf_err(err);
276
277 for (i = 0; i < d->emit_queue_cnt; i++)
278 btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
279
280 return 0;
281 }
282
283 /*
284 * Mark all types that are referenced from any other type. This is used to
285 * determine top-level anonymous enums that need to be emitted as an
286 * independent type declarations.
287 * Anonymous enums come in two flavors: either embedded in a struct's field
288 * definition, in which case they have to be declared inline as part of field
289 * type declaration; or as a top-level anonymous enum, typically used for
290 * declaring global constants. It's impossible to distinguish between two
291 * without knowning whether given enum type was referenced from other type:
292 * top-level anonymous enum won't be referenced by anything, while embedded
293 * one will.
294 */
btf_dump_mark_referenced(struct btf_dump * d)295 static int btf_dump_mark_referenced(struct btf_dump *d)
296 {
297 int i, j, n = btf__type_cnt(d->btf);
298 const struct btf_type *t;
299 __u16 vlen;
300
301 for (i = d->last_id + 1; i < n; i++) {
302 t = btf__type_by_id(d->btf, i);
303 vlen = btf_vlen(t);
304
305 switch (btf_kind(t)) {
306 case BTF_KIND_INT:
307 case BTF_KIND_ENUM:
308 case BTF_KIND_FWD:
309 case BTF_KIND_FLOAT:
310 break;
311
312 case BTF_KIND_VOLATILE:
313 case BTF_KIND_CONST:
314 case BTF_KIND_RESTRICT:
315 case BTF_KIND_PTR:
316 case BTF_KIND_TYPEDEF:
317 case BTF_KIND_FUNC:
318 case BTF_KIND_VAR:
319 case BTF_KIND_DECL_TAG:
320 d->type_states[t->type].referenced = 1;
321 break;
322
323 case BTF_KIND_ARRAY: {
324 const struct btf_array *a = btf_array(t);
325
326 d->type_states[a->index_type].referenced = 1;
327 d->type_states[a->type].referenced = 1;
328 break;
329 }
330 case BTF_KIND_STRUCT:
331 case BTF_KIND_UNION: {
332 const struct btf_member *m = btf_members(t);
333
334 for (j = 0; j < vlen; j++, m++)
335 d->type_states[m->type].referenced = 1;
336 break;
337 }
338 case BTF_KIND_FUNC_PROTO: {
339 const struct btf_param *p = btf_params(t);
340
341 for (j = 0; j < vlen; j++, p++)
342 d->type_states[p->type].referenced = 1;
343 break;
344 }
345 case BTF_KIND_DATASEC: {
346 const struct btf_var_secinfo *v = btf_var_secinfos(t);
347
348 for (j = 0; j < vlen; j++, v++)
349 d->type_states[v->type].referenced = 1;
350 break;
351 }
352 default:
353 return -EINVAL;
354 }
355 }
356 return 0;
357 }
358
btf_dump_add_emit_queue_id(struct btf_dump * d,__u32 id)359 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
360 {
361 __u32 *new_queue;
362 size_t new_cap;
363
364 if (d->emit_queue_cnt >= d->emit_queue_cap) {
365 new_cap = max(16, d->emit_queue_cap * 3 / 2);
366 new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
367 if (!new_queue)
368 return -ENOMEM;
369 d->emit_queue = new_queue;
370 d->emit_queue_cap = new_cap;
371 }
372
373 d->emit_queue[d->emit_queue_cnt++] = id;
374 return 0;
375 }
376
377 /*
378 * Determine order of emitting dependent types and specified type to satisfy
379 * C compilation rules. This is done through topological sorting with an
380 * additional complication which comes from C rules. The main idea for C is
381 * that if some type is "embedded" into a struct/union, it's size needs to be
382 * known at the time of definition of containing type. E.g., for:
383 *
384 * struct A {};
385 * struct B { struct A x; }
386 *
387 * struct A *HAS* to be defined before struct B, because it's "embedded",
388 * i.e., it is part of struct B layout. But in the following case:
389 *
390 * struct A;
391 * struct B { struct A *x; }
392 * struct A {};
393 *
394 * it's enough to just have a forward declaration of struct A at the time of
395 * struct B definition, as struct B has a pointer to struct A, so the size of
396 * field x is known without knowing struct A size: it's sizeof(void *).
397 *
398 * Unfortunately, there are some trickier cases we need to handle, e.g.:
399 *
400 * struct A {}; // if this was forward-declaration: compilation error
401 * struct B {
402 * struct { // anonymous struct
403 * struct A y;
404 * } *x;
405 * };
406 *
407 * In this case, struct B's field x is a pointer, so it's size is known
408 * regardless of the size of (anonymous) struct it points to. But because this
409 * struct is anonymous and thus defined inline inside struct B, *and* it
410 * embeds struct A, compiler requires full definition of struct A to be known
411 * before struct B can be defined. This creates a transitive dependency
412 * between struct A and struct B. If struct A was forward-declared before
413 * struct B definition and fully defined after struct B definition, that would
414 * trigger compilation error.
415 *
416 * All this means that while we are doing topological sorting on BTF type
417 * graph, we need to determine relationships between different types (graph
418 * nodes):
419 * - weak link (relationship) between X and Y, if Y *CAN* be
420 * forward-declared at the point of X definition;
421 * - strong link, if Y *HAS* to be fully-defined before X can be defined.
422 *
423 * The rule is as follows. Given a chain of BTF types from X to Y, if there is
424 * BTF_KIND_PTR type in the chain and at least one non-anonymous type
425 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
426 * Weak/strong relationship is determined recursively during DFS traversal and
427 * is returned as a result from btf_dump_order_type().
428 *
429 * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
430 * but it is not guaranteeing that no extraneous forward declarations will be
431 * emitted.
432 *
433 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
434 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
435 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
436 * entire graph path, so depending where from one came to that BTF type, it
437 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
438 * once they are processed, there is no need to do it again, so they are
439 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
440 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
441 * in any case, once those are processed, no need to do it again, as the
442 * result won't change.
443 *
444 * Returns:
445 * - 1, if type is part of strong link (so there is strong topological
446 * ordering requirements);
447 * - 0, if type is part of weak link (so can be satisfied through forward
448 * declaration);
449 * - <0, on error (e.g., unsatisfiable type loop detected).
450 */
btf_dump_order_type(struct btf_dump * d,__u32 id,bool through_ptr)451 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
452 {
453 /*
454 * Order state is used to detect strong link cycles, but only for BTF
455 * kinds that are or could be an independent definition (i.e.,
456 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
457 * func_protos, modifiers are just means to get to these definitions.
458 * Int/void don't need definitions, they are assumed to be always
459 * properly defined. We also ignore datasec, var, and funcs for now.
460 * So for all non-defining kinds, we never even set ordering state,
461 * for defining kinds we set ORDERING and subsequently ORDERED if it
462 * forms a strong link.
463 */
464 struct btf_dump_type_aux_state *tstate = &d->type_states[id];
465 const struct btf_type *t;
466 __u16 vlen;
467 int err, i;
468
469 /* return true, letting typedefs know that it's ok to be emitted */
470 if (tstate->order_state == ORDERED)
471 return 1;
472
473 t = btf__type_by_id(d->btf, id);
474
475 if (tstate->order_state == ORDERING) {
476 /* type loop, but resolvable through fwd declaration */
477 if (btf_is_composite(t) && through_ptr && t->name_off != 0)
478 return 0;
479 pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
480 return -ELOOP;
481 }
482
483 switch (btf_kind(t)) {
484 case BTF_KIND_INT:
485 case BTF_KIND_FLOAT:
486 tstate->order_state = ORDERED;
487 return 0;
488
489 case BTF_KIND_PTR:
490 err = btf_dump_order_type(d, t->type, true);
491 tstate->order_state = ORDERED;
492 return err;
493
494 case BTF_KIND_ARRAY:
495 return btf_dump_order_type(d, btf_array(t)->type, false);
496
497 case BTF_KIND_STRUCT:
498 case BTF_KIND_UNION: {
499 const struct btf_member *m = btf_members(t);
500 /*
501 * struct/union is part of strong link, only if it's embedded
502 * (so no ptr in a path) or it's anonymous (so has to be
503 * defined inline, even if declared through ptr)
504 */
505 if (through_ptr && t->name_off != 0)
506 return 0;
507
508 tstate->order_state = ORDERING;
509
510 vlen = btf_vlen(t);
511 for (i = 0; i < vlen; i++, m++) {
512 err = btf_dump_order_type(d, m->type, false);
513 if (err < 0)
514 return err;
515 }
516
517 if (t->name_off != 0) {
518 err = btf_dump_add_emit_queue_id(d, id);
519 if (err < 0)
520 return err;
521 }
522
523 tstate->order_state = ORDERED;
524 return 1;
525 }
526 case BTF_KIND_ENUM:
527 case BTF_KIND_FWD:
528 /*
529 * non-anonymous or non-referenced enums are top-level
530 * declarations and should be emitted. Same logic can be
531 * applied to FWDs, it won't hurt anyways.
532 */
533 if (t->name_off != 0 || !tstate->referenced) {
534 err = btf_dump_add_emit_queue_id(d, id);
535 if (err)
536 return err;
537 }
538 tstate->order_state = ORDERED;
539 return 1;
540
541 case BTF_KIND_TYPEDEF: {
542 int is_strong;
543
544 is_strong = btf_dump_order_type(d, t->type, through_ptr);
545 if (is_strong < 0)
546 return is_strong;
547
548 /* typedef is similar to struct/union w.r.t. fwd-decls */
549 if (through_ptr && !is_strong)
550 return 0;
551
552 /* typedef is always a named definition */
553 err = btf_dump_add_emit_queue_id(d, id);
554 if (err)
555 return err;
556
557 d->type_states[id].order_state = ORDERED;
558 return 1;
559 }
560 case BTF_KIND_VOLATILE:
561 case BTF_KIND_CONST:
562 case BTF_KIND_RESTRICT:
563 return btf_dump_order_type(d, t->type, through_ptr);
564
565 case BTF_KIND_FUNC_PROTO: {
566 const struct btf_param *p = btf_params(t);
567 bool is_strong;
568
569 err = btf_dump_order_type(d, t->type, through_ptr);
570 if (err < 0)
571 return err;
572 is_strong = err > 0;
573
574 vlen = btf_vlen(t);
575 for (i = 0; i < vlen; i++, p++) {
576 err = btf_dump_order_type(d, p->type, through_ptr);
577 if (err < 0)
578 return err;
579 if (err > 0)
580 is_strong = true;
581 }
582 return is_strong;
583 }
584 case BTF_KIND_FUNC:
585 case BTF_KIND_VAR:
586 case BTF_KIND_DATASEC:
587 case BTF_KIND_DECL_TAG:
588 d->type_states[id].order_state = ORDERED;
589 return 0;
590
591 default:
592 return -EINVAL;
593 }
594 }
595
596 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
597 const struct btf_type *t);
598
599 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
600 const struct btf_type *t);
601 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
602 const struct btf_type *t, int lvl);
603
604 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
605 const struct btf_type *t);
606 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
607 const struct btf_type *t, int lvl);
608
609 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
610 const struct btf_type *t);
611
612 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
613 const struct btf_type *t, int lvl);
614
615 /* a local view into a shared stack */
616 struct id_stack {
617 const __u32 *ids;
618 int cnt;
619 };
620
621 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
622 const char *fname, int lvl);
623 static void btf_dump_emit_type_chain(struct btf_dump *d,
624 struct id_stack *decl_stack,
625 const char *fname, int lvl);
626
627 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
628 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
629 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
630 const char *orig_name);
631
btf_dump_is_blacklisted(struct btf_dump * d,__u32 id)632 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
633 {
634 const struct btf_type *t = btf__type_by_id(d->btf, id);
635
636 /* __builtin_va_list is a compiler built-in, which causes compilation
637 * errors, when compiling w/ different compiler, then used to compile
638 * original code (e.g., GCC to compile kernel, Clang to use generated
639 * C header from BTF). As it is built-in, it should be already defined
640 * properly internally in compiler.
641 */
642 if (t->name_off == 0)
643 return false;
644 return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
645 }
646
647 /*
648 * Emit C-syntax definitions of types from chains of BTF types.
649 *
650 * High-level handling of determining necessary forward declarations are handled
651 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
652 * declarations/definitions in C syntax are handled by a combo of
653 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
654 * corresponding btf_dump_emit_*_{def,fwd}() functions.
655 *
656 * We also keep track of "containing struct/union type ID" to determine when
657 * we reference it from inside and thus can avoid emitting unnecessary forward
658 * declaration.
659 *
660 * This algorithm is designed in such a way, that even if some error occurs
661 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
662 * that doesn't comply to C rules completely), algorithm will try to proceed
663 * and produce as much meaningful output as possible.
664 */
btf_dump_emit_type(struct btf_dump * d,__u32 id,__u32 cont_id)665 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
666 {
667 struct btf_dump_type_aux_state *tstate = &d->type_states[id];
668 bool top_level_def = cont_id == 0;
669 const struct btf_type *t;
670 __u16 kind;
671
672 if (tstate->emit_state == EMITTED)
673 return;
674
675 t = btf__type_by_id(d->btf, id);
676 kind = btf_kind(t);
677
678 if (tstate->emit_state == EMITTING) {
679 if (tstate->fwd_emitted)
680 return;
681
682 switch (kind) {
683 case BTF_KIND_STRUCT:
684 case BTF_KIND_UNION:
685 /*
686 * if we are referencing a struct/union that we are
687 * part of - then no need for fwd declaration
688 */
689 if (id == cont_id)
690 return;
691 if (t->name_off == 0) {
692 pr_warn("anonymous struct/union loop, id:[%u]\n",
693 id);
694 return;
695 }
696 btf_dump_emit_struct_fwd(d, id, t);
697 btf_dump_printf(d, ";\n\n");
698 tstate->fwd_emitted = 1;
699 break;
700 case BTF_KIND_TYPEDEF:
701 /*
702 * for typedef fwd_emitted means typedef definition
703 * was emitted, but it can be used only for "weak"
704 * references through pointer only, not for embedding
705 */
706 if (!btf_dump_is_blacklisted(d, id)) {
707 btf_dump_emit_typedef_def(d, id, t, 0);
708 btf_dump_printf(d, ";\n\n");
709 }
710 tstate->fwd_emitted = 1;
711 break;
712 default:
713 break;
714 }
715
716 return;
717 }
718
719 switch (kind) {
720 case BTF_KIND_INT:
721 /* Emit type alias definitions if necessary */
722 btf_dump_emit_missing_aliases(d, id, t);
723
724 tstate->emit_state = EMITTED;
725 break;
726 case BTF_KIND_ENUM:
727 if (top_level_def) {
728 btf_dump_emit_enum_def(d, id, t, 0);
729 btf_dump_printf(d, ";\n\n");
730 }
731 tstate->emit_state = EMITTED;
732 break;
733 case BTF_KIND_PTR:
734 case BTF_KIND_VOLATILE:
735 case BTF_KIND_CONST:
736 case BTF_KIND_RESTRICT:
737 btf_dump_emit_type(d, t->type, cont_id);
738 break;
739 case BTF_KIND_ARRAY:
740 btf_dump_emit_type(d, btf_array(t)->type, cont_id);
741 break;
742 case BTF_KIND_FWD:
743 btf_dump_emit_fwd_def(d, id, t);
744 btf_dump_printf(d, ";\n\n");
745 tstate->emit_state = EMITTED;
746 break;
747 case BTF_KIND_TYPEDEF:
748 tstate->emit_state = EMITTING;
749 btf_dump_emit_type(d, t->type, id);
750 /*
751 * typedef can server as both definition and forward
752 * declaration; at this stage someone depends on
753 * typedef as a forward declaration (refers to it
754 * through pointer), so unless we already did it,
755 * emit typedef as a forward declaration
756 */
757 if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
758 btf_dump_emit_typedef_def(d, id, t, 0);
759 btf_dump_printf(d, ";\n\n");
760 }
761 tstate->emit_state = EMITTED;
762 break;
763 case BTF_KIND_STRUCT:
764 case BTF_KIND_UNION:
765 tstate->emit_state = EMITTING;
766 /* if it's a top-level struct/union definition or struct/union
767 * is anonymous, then in C we'll be emitting all fields and
768 * their types (as opposed to just `struct X`), so we need to
769 * make sure that all types, referenced from struct/union
770 * members have necessary forward-declarations, where
771 * applicable
772 */
773 if (top_level_def || t->name_off == 0) {
774 const struct btf_member *m = btf_members(t);
775 __u16 vlen = btf_vlen(t);
776 int i, new_cont_id;
777
778 new_cont_id = t->name_off == 0 ? cont_id : id;
779 for (i = 0; i < vlen; i++, m++)
780 btf_dump_emit_type(d, m->type, new_cont_id);
781 } else if (!tstate->fwd_emitted && id != cont_id) {
782 btf_dump_emit_struct_fwd(d, id, t);
783 btf_dump_printf(d, ";\n\n");
784 tstate->fwd_emitted = 1;
785 }
786
787 if (top_level_def) {
788 btf_dump_emit_struct_def(d, id, t, 0);
789 btf_dump_printf(d, ";\n\n");
790 tstate->emit_state = EMITTED;
791 } else {
792 tstate->emit_state = NOT_EMITTED;
793 }
794 break;
795 case BTF_KIND_FUNC_PROTO: {
796 const struct btf_param *p = btf_params(t);
797 __u16 n = btf_vlen(t);
798 int i;
799
800 btf_dump_emit_type(d, t->type, cont_id);
801 for (i = 0; i < n; i++, p++)
802 btf_dump_emit_type(d, p->type, cont_id);
803
804 break;
805 }
806 default:
807 break;
808 }
809 }
810
btf_is_struct_packed(const struct btf * btf,__u32 id,const struct btf_type * t)811 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
812 const struct btf_type *t)
813 {
814 const struct btf_member *m;
815 int align, i, bit_sz;
816 __u16 vlen;
817
818 align = btf__align_of(btf, id);
819 /* size of a non-packed struct has to be a multiple of its alignment*/
820 if (align && t->size % align)
821 return true;
822
823 m = btf_members(t);
824 vlen = btf_vlen(t);
825 /* all non-bitfield fields have to be naturally aligned */
826 for (i = 0; i < vlen; i++, m++) {
827 align = btf__align_of(btf, m->type);
828 bit_sz = btf_member_bitfield_size(t, i);
829 if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
830 return true;
831 }
832
833 /*
834 * if original struct was marked as packed, but its layout is
835 * naturally aligned, we'll detect that it's not packed
836 */
837 return false;
838 }
839
chip_away_bits(int total,int at_most)840 static int chip_away_bits(int total, int at_most)
841 {
842 return total % at_most ? : at_most;
843 }
844
btf_dump_emit_bit_padding(const struct btf_dump * d,int cur_off,int m_off,int m_bit_sz,int align,int lvl)845 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
846 int cur_off, int m_off, int m_bit_sz,
847 int align, int lvl)
848 {
849 int off_diff = m_off - cur_off;
850 int ptr_bits = d->ptr_sz * 8;
851
852 if (off_diff <= 0)
853 /* no gap */
854 return;
855 if (m_bit_sz == 0 && off_diff < align * 8)
856 /* natural padding will take care of a gap */
857 return;
858
859 while (off_diff > 0) {
860 const char *pad_type;
861 int pad_bits;
862
863 if (ptr_bits > 32 && off_diff > 32) {
864 pad_type = "long";
865 pad_bits = chip_away_bits(off_diff, ptr_bits);
866 } else if (off_diff > 16) {
867 pad_type = "int";
868 pad_bits = chip_away_bits(off_diff, 32);
869 } else if (off_diff > 8) {
870 pad_type = "short";
871 pad_bits = chip_away_bits(off_diff, 16);
872 } else {
873 pad_type = "char";
874 pad_bits = chip_away_bits(off_diff, 8);
875 }
876 btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
877 off_diff -= pad_bits;
878 }
879 }
880
btf_dump_emit_struct_fwd(struct btf_dump * d,__u32 id,const struct btf_type * t)881 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
882 const struct btf_type *t)
883 {
884 btf_dump_printf(d, "%s%s%s",
885 btf_is_struct(t) ? "struct" : "union",
886 t->name_off ? " " : "",
887 btf_dump_type_name(d, id));
888 }
889
btf_dump_emit_struct_def(struct btf_dump * d,__u32 id,const struct btf_type * t,int lvl)890 static void btf_dump_emit_struct_def(struct btf_dump *d,
891 __u32 id,
892 const struct btf_type *t,
893 int lvl)
894 {
895 const struct btf_member *m = btf_members(t);
896 bool is_struct = btf_is_struct(t);
897 int align, i, packed, off = 0;
898 __u16 vlen = btf_vlen(t);
899
900 packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
901
902 btf_dump_printf(d, "%s%s%s {",
903 is_struct ? "struct" : "union",
904 t->name_off ? " " : "",
905 btf_dump_type_name(d, id));
906
907 for (i = 0; i < vlen; i++, m++) {
908 const char *fname;
909 int m_off, m_sz;
910
911 fname = btf_name_of(d, m->name_off);
912 m_sz = btf_member_bitfield_size(t, i);
913 m_off = btf_member_bit_offset(t, i);
914 align = packed ? 1 : btf__align_of(d->btf, m->type);
915
916 btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
917 btf_dump_printf(d, "\n%s", pfx(lvl + 1));
918 btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
919
920 if (m_sz) {
921 btf_dump_printf(d, ": %d", m_sz);
922 off = m_off + m_sz;
923 } else {
924 m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
925 off = m_off + m_sz * 8;
926 }
927 btf_dump_printf(d, ";");
928 }
929
930 /* pad at the end, if necessary */
931 if (is_struct) {
932 align = packed ? 1 : btf__align_of(d->btf, id);
933 btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
934 lvl + 1);
935 }
936
937 if (vlen)
938 btf_dump_printf(d, "\n");
939 btf_dump_printf(d, "%s}", pfx(lvl));
940 if (packed)
941 btf_dump_printf(d, " __attribute__((packed))");
942 }
943
944 static const char *missing_base_types[][2] = {
945 /*
946 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
947 * SIMD intrinsics. Alias them to standard base types.
948 */
949 { "__Poly8_t", "unsigned char" },
950 { "__Poly16_t", "unsigned short" },
951 { "__Poly64_t", "unsigned long long" },
952 { "__Poly128_t", "unsigned __int128" },
953 };
954
btf_dump_emit_missing_aliases(struct btf_dump * d,__u32 id,const struct btf_type * t)955 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
956 const struct btf_type *t)
957 {
958 const char *name = btf_dump_type_name(d, id);
959 int i;
960
961 for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
962 if (strcmp(name, missing_base_types[i][0]) == 0) {
963 btf_dump_printf(d, "typedef %s %s;\n\n",
964 missing_base_types[i][1], name);
965 break;
966 }
967 }
968 }
969
btf_dump_emit_enum_fwd(struct btf_dump * d,__u32 id,const struct btf_type * t)970 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
971 const struct btf_type *t)
972 {
973 btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
974 }
975
btf_dump_emit_enum_def(struct btf_dump * d,__u32 id,const struct btf_type * t,int lvl)976 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
977 const struct btf_type *t,
978 int lvl)
979 {
980 const struct btf_enum *v = btf_enum(t);
981 __u16 vlen = btf_vlen(t);
982 const char *name;
983 size_t dup_cnt;
984 int i;
985
986 btf_dump_printf(d, "enum%s%s",
987 t->name_off ? " " : "",
988 btf_dump_type_name(d, id));
989
990 if (vlen) {
991 btf_dump_printf(d, " {");
992 for (i = 0; i < vlen; i++, v++) {
993 name = btf_name_of(d, v->name_off);
994 /* enumerators share namespace with typedef idents */
995 dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
996 if (dup_cnt > 1) {
997 btf_dump_printf(d, "\n%s%s___%zu = %u,",
998 pfx(lvl + 1), name, dup_cnt,
999 (__u32)v->val);
1000 } else {
1001 btf_dump_printf(d, "\n%s%s = %u,",
1002 pfx(lvl + 1), name,
1003 (__u32)v->val);
1004 }
1005 }
1006 btf_dump_printf(d, "\n%s}", pfx(lvl));
1007 }
1008 }
1009
btf_dump_emit_fwd_def(struct btf_dump * d,__u32 id,const struct btf_type * t)1010 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
1011 const struct btf_type *t)
1012 {
1013 const char *name = btf_dump_type_name(d, id);
1014
1015 if (btf_kflag(t))
1016 btf_dump_printf(d, "union %s", name);
1017 else
1018 btf_dump_printf(d, "struct %s", name);
1019 }
1020
btf_dump_emit_typedef_def(struct btf_dump * d,__u32 id,const struct btf_type * t,int lvl)1021 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
1022 const struct btf_type *t, int lvl)
1023 {
1024 const char *name = btf_dump_ident_name(d, id);
1025
1026 /*
1027 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
1028 * pointing to VOID. This generates warnings from btf_dump() and
1029 * results in uncompilable header file, so we are fixing it up here
1030 * with valid typedef into __builtin_va_list.
1031 */
1032 if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
1033 btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
1034 return;
1035 }
1036
1037 btf_dump_printf(d, "typedef ");
1038 btf_dump_emit_type_decl(d, t->type, name, lvl);
1039 }
1040
btf_dump_push_decl_stack_id(struct btf_dump * d,__u32 id)1041 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1042 {
1043 __u32 *new_stack;
1044 size_t new_cap;
1045
1046 if (d->decl_stack_cnt >= d->decl_stack_cap) {
1047 new_cap = max(16, d->decl_stack_cap * 3 / 2);
1048 new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
1049 if (!new_stack)
1050 return -ENOMEM;
1051 d->decl_stack = new_stack;
1052 d->decl_stack_cap = new_cap;
1053 }
1054
1055 d->decl_stack[d->decl_stack_cnt++] = id;
1056
1057 return 0;
1058 }
1059
1060 /*
1061 * Emit type declaration (e.g., field type declaration in a struct or argument
1062 * declaration in function prototype) in correct C syntax.
1063 *
1064 * For most types it's trivial, but there are few quirky type declaration
1065 * cases worth mentioning:
1066 * - function prototypes (especially nesting of function prototypes);
1067 * - arrays;
1068 * - const/volatile/restrict for pointers vs other types.
1069 *
1070 * For a good discussion of *PARSING* C syntax (as a human), see
1071 * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1072 * Ch.3 "Unscrambling Declarations in C".
1073 *
1074 * It won't help with BTF to C conversion much, though, as it's an opposite
1075 * problem. So we came up with this algorithm in reverse to van der Linden's
1076 * parsing algorithm. It goes from structured BTF representation of type
1077 * declaration to a valid compilable C syntax.
1078 *
1079 * For instance, consider this C typedef:
1080 * typedef const int * const * arr[10] arr_t;
1081 * It will be represented in BTF with this chain of BTF types:
1082 * [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1083 *
1084 * Notice how [const] modifier always goes before type it modifies in BTF type
1085 * graph, but in C syntax, const/volatile/restrict modifiers are written to
1086 * the right of pointers, but to the left of other types. There are also other
1087 * quirks, like function pointers, arrays of them, functions returning other
1088 * functions, etc.
1089 *
1090 * We handle that by pushing all the types to a stack, until we hit "terminal"
1091 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1092 * top of a stack, modifiers are handled differently. Array/function pointers
1093 * have also wildly different syntax and how nesting of them are done. See
1094 * code for authoritative definition.
1095 *
1096 * To avoid allocating new stack for each independent chain of BTF types, we
1097 * share one bigger stack, with each chain working only on its own local view
1098 * of a stack frame. Some care is required to "pop" stack frames after
1099 * processing type declaration chain.
1100 */
btf_dump__emit_type_decl(struct btf_dump * d,__u32 id,const struct btf_dump_emit_type_decl_opts * opts)1101 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1102 const struct btf_dump_emit_type_decl_opts *opts)
1103 {
1104 const char *fname;
1105 int lvl, err;
1106
1107 if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1108 return libbpf_err(-EINVAL);
1109
1110 err = btf_dump_resize(d);
1111 if (err)
1112 return libbpf_err(err);
1113
1114 fname = OPTS_GET(opts, field_name, "");
1115 lvl = OPTS_GET(opts, indent_level, 0);
1116 d->strip_mods = OPTS_GET(opts, strip_mods, false);
1117 btf_dump_emit_type_decl(d, id, fname, lvl);
1118 d->strip_mods = false;
1119 return 0;
1120 }
1121
btf_dump_emit_type_decl(struct btf_dump * d,__u32 id,const char * fname,int lvl)1122 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1123 const char *fname, int lvl)
1124 {
1125 struct id_stack decl_stack;
1126 const struct btf_type *t;
1127 int err, stack_start;
1128
1129 stack_start = d->decl_stack_cnt;
1130 for (;;) {
1131 t = btf__type_by_id(d->btf, id);
1132 if (d->strip_mods && btf_is_mod(t))
1133 goto skip_mod;
1134
1135 err = btf_dump_push_decl_stack_id(d, id);
1136 if (err < 0) {
1137 /*
1138 * if we don't have enough memory for entire type decl
1139 * chain, restore stack, emit warning, and try to
1140 * proceed nevertheless
1141 */
1142 pr_warn("not enough memory for decl stack:%d", err);
1143 d->decl_stack_cnt = stack_start;
1144 return;
1145 }
1146 skip_mod:
1147 /* VOID */
1148 if (id == 0)
1149 break;
1150
1151 switch (btf_kind(t)) {
1152 case BTF_KIND_PTR:
1153 case BTF_KIND_VOLATILE:
1154 case BTF_KIND_CONST:
1155 case BTF_KIND_RESTRICT:
1156 case BTF_KIND_FUNC_PROTO:
1157 id = t->type;
1158 break;
1159 case BTF_KIND_ARRAY:
1160 id = btf_array(t)->type;
1161 break;
1162 case BTF_KIND_INT:
1163 case BTF_KIND_ENUM:
1164 case BTF_KIND_FWD:
1165 case BTF_KIND_STRUCT:
1166 case BTF_KIND_UNION:
1167 case BTF_KIND_TYPEDEF:
1168 case BTF_KIND_FLOAT:
1169 goto done;
1170 default:
1171 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1172 btf_kind(t), id);
1173 goto done;
1174 }
1175 }
1176 done:
1177 /*
1178 * We might be inside a chain of declarations (e.g., array of function
1179 * pointers returning anonymous (so inlined) structs, having another
1180 * array field). Each of those needs its own "stack frame" to handle
1181 * emitting of declarations. Those stack frames are non-overlapping
1182 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1183 * handle this set of nested stacks, we create a view corresponding to
1184 * our own "stack frame" and work with it as an independent stack.
1185 * We'll need to clean up after emit_type_chain() returns, though.
1186 */
1187 decl_stack.ids = d->decl_stack + stack_start;
1188 decl_stack.cnt = d->decl_stack_cnt - stack_start;
1189 btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1190 /*
1191 * emit_type_chain() guarantees that it will pop its entire decl_stack
1192 * frame before returning. But it works with a read-only view into
1193 * decl_stack, so it doesn't actually pop anything from the
1194 * perspective of shared btf_dump->decl_stack, per se. We need to
1195 * reset decl_stack state to how it was before us to avoid it growing
1196 * all the time.
1197 */
1198 d->decl_stack_cnt = stack_start;
1199 }
1200
btf_dump_emit_mods(struct btf_dump * d,struct id_stack * decl_stack)1201 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1202 {
1203 const struct btf_type *t;
1204 __u32 id;
1205
1206 while (decl_stack->cnt) {
1207 id = decl_stack->ids[decl_stack->cnt - 1];
1208 t = btf__type_by_id(d->btf, id);
1209
1210 switch (btf_kind(t)) {
1211 case BTF_KIND_VOLATILE:
1212 btf_dump_printf(d, "volatile ");
1213 break;
1214 case BTF_KIND_CONST:
1215 btf_dump_printf(d, "const ");
1216 break;
1217 case BTF_KIND_RESTRICT:
1218 btf_dump_printf(d, "restrict ");
1219 break;
1220 default:
1221 return;
1222 }
1223 decl_stack->cnt--;
1224 }
1225 }
1226
btf_dump_drop_mods(struct btf_dump * d,struct id_stack * decl_stack)1227 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1228 {
1229 const struct btf_type *t;
1230 __u32 id;
1231
1232 while (decl_stack->cnt) {
1233 id = decl_stack->ids[decl_stack->cnt - 1];
1234 t = btf__type_by_id(d->btf, id);
1235 if (!btf_is_mod(t))
1236 return;
1237 decl_stack->cnt--;
1238 }
1239 }
1240
btf_dump_emit_name(const struct btf_dump * d,const char * name,bool last_was_ptr)1241 static void btf_dump_emit_name(const struct btf_dump *d,
1242 const char *name, bool last_was_ptr)
1243 {
1244 bool separate = name[0] && !last_was_ptr;
1245
1246 btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1247 }
1248
btf_dump_emit_type_chain(struct btf_dump * d,struct id_stack * decls,const char * fname,int lvl)1249 static void btf_dump_emit_type_chain(struct btf_dump *d,
1250 struct id_stack *decls,
1251 const char *fname, int lvl)
1252 {
1253 /*
1254 * last_was_ptr is used to determine if we need to separate pointer
1255 * asterisk (*) from previous part of type signature with space, so
1256 * that we get `int ***`, instead of `int * * *`. We default to true
1257 * for cases where we have single pointer in a chain. E.g., in ptr ->
1258 * func_proto case. func_proto will start a new emit_type_chain call
1259 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1260 * don't want to prepend space for that last pointer.
1261 */
1262 bool last_was_ptr = true;
1263 const struct btf_type *t;
1264 const char *name;
1265 __u16 kind;
1266 __u32 id;
1267
1268 while (decls->cnt) {
1269 id = decls->ids[--decls->cnt];
1270 if (id == 0) {
1271 /* VOID is a special snowflake */
1272 btf_dump_emit_mods(d, decls);
1273 btf_dump_printf(d, "void");
1274 last_was_ptr = false;
1275 continue;
1276 }
1277
1278 t = btf__type_by_id(d->btf, id);
1279 kind = btf_kind(t);
1280
1281 switch (kind) {
1282 case BTF_KIND_INT:
1283 case BTF_KIND_FLOAT:
1284 btf_dump_emit_mods(d, decls);
1285 name = btf_name_of(d, t->name_off);
1286 btf_dump_printf(d, "%s", name);
1287 break;
1288 case BTF_KIND_STRUCT:
1289 case BTF_KIND_UNION:
1290 btf_dump_emit_mods(d, decls);
1291 /* inline anonymous struct/union */
1292 if (t->name_off == 0 && !d->skip_anon_defs)
1293 btf_dump_emit_struct_def(d, id, t, lvl);
1294 else
1295 btf_dump_emit_struct_fwd(d, id, t);
1296 break;
1297 case BTF_KIND_ENUM:
1298 btf_dump_emit_mods(d, decls);
1299 /* inline anonymous enum */
1300 if (t->name_off == 0 && !d->skip_anon_defs)
1301 btf_dump_emit_enum_def(d, id, t, lvl);
1302 else
1303 btf_dump_emit_enum_fwd(d, id, t);
1304 break;
1305 case BTF_KIND_FWD:
1306 btf_dump_emit_mods(d, decls);
1307 btf_dump_emit_fwd_def(d, id, t);
1308 break;
1309 case BTF_KIND_TYPEDEF:
1310 btf_dump_emit_mods(d, decls);
1311 btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1312 break;
1313 case BTF_KIND_PTR:
1314 btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1315 break;
1316 case BTF_KIND_VOLATILE:
1317 btf_dump_printf(d, " volatile");
1318 break;
1319 case BTF_KIND_CONST:
1320 btf_dump_printf(d, " const");
1321 break;
1322 case BTF_KIND_RESTRICT:
1323 btf_dump_printf(d, " restrict");
1324 break;
1325 case BTF_KIND_ARRAY: {
1326 const struct btf_array *a = btf_array(t);
1327 const struct btf_type *next_t;
1328 __u32 next_id;
1329 bool multidim;
1330 /*
1331 * GCC has a bug
1332 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1333 * which causes it to emit extra const/volatile
1334 * modifiers for an array, if array's element type has
1335 * const/volatile modifiers. Clang doesn't do that.
1336 * In general, it doesn't seem very meaningful to have
1337 * a const/volatile modifier for array, so we are
1338 * going to silently skip them here.
1339 */
1340 btf_dump_drop_mods(d, decls);
1341
1342 if (decls->cnt == 0) {
1343 btf_dump_emit_name(d, fname, last_was_ptr);
1344 btf_dump_printf(d, "[%u]", a->nelems);
1345 return;
1346 }
1347
1348 next_id = decls->ids[decls->cnt - 1];
1349 next_t = btf__type_by_id(d->btf, next_id);
1350 multidim = btf_is_array(next_t);
1351 /* we need space if we have named non-pointer */
1352 if (fname[0] && !last_was_ptr)
1353 btf_dump_printf(d, " ");
1354 /* no parentheses for multi-dimensional array */
1355 if (!multidim)
1356 btf_dump_printf(d, "(");
1357 btf_dump_emit_type_chain(d, decls, fname, lvl);
1358 if (!multidim)
1359 btf_dump_printf(d, ")");
1360 btf_dump_printf(d, "[%u]", a->nelems);
1361 return;
1362 }
1363 case BTF_KIND_FUNC_PROTO: {
1364 const struct btf_param *p = btf_params(t);
1365 __u16 vlen = btf_vlen(t);
1366 int i;
1367
1368 /*
1369 * GCC emits extra volatile qualifier for
1370 * __attribute__((noreturn)) function pointers. Clang
1371 * doesn't do it. It's a GCC quirk for backwards
1372 * compatibility with code written for GCC <2.5. So,
1373 * similarly to extra qualifiers for array, just drop
1374 * them, instead of handling them.
1375 */
1376 btf_dump_drop_mods(d, decls);
1377 if (decls->cnt) {
1378 btf_dump_printf(d, " (");
1379 btf_dump_emit_type_chain(d, decls, fname, lvl);
1380 btf_dump_printf(d, ")");
1381 } else {
1382 btf_dump_emit_name(d, fname, last_was_ptr);
1383 }
1384 btf_dump_printf(d, "(");
1385 /*
1386 * Clang for BPF target generates func_proto with no
1387 * args as a func_proto with a single void arg (e.g.,
1388 * `int (*f)(void)` vs just `int (*f)()`). We are
1389 * going to pretend there are no args for such case.
1390 */
1391 if (vlen == 1 && p->type == 0) {
1392 btf_dump_printf(d, ")");
1393 return;
1394 }
1395
1396 for (i = 0; i < vlen; i++, p++) {
1397 if (i > 0)
1398 btf_dump_printf(d, ", ");
1399
1400 /* last arg of type void is vararg */
1401 if (i == vlen - 1 && p->type == 0) {
1402 btf_dump_printf(d, "...");
1403 break;
1404 }
1405
1406 name = btf_name_of(d, p->name_off);
1407 btf_dump_emit_type_decl(d, p->type, name, lvl);
1408 }
1409
1410 btf_dump_printf(d, ")");
1411 return;
1412 }
1413 default:
1414 pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1415 kind, id);
1416 return;
1417 }
1418
1419 last_was_ptr = kind == BTF_KIND_PTR;
1420 }
1421
1422 btf_dump_emit_name(d, fname, last_was_ptr);
1423 }
1424
1425 /* show type name as (type_name) */
btf_dump_emit_type_cast(struct btf_dump * d,__u32 id,bool top_level)1426 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id,
1427 bool top_level)
1428 {
1429 const struct btf_type *t;
1430
1431 /* for array members, we don't bother emitting type name for each
1432 * member to avoid the redundancy of
1433 * .name = (char[4])[(char)'f',(char)'o',(char)'o',]
1434 */
1435 if (d->typed_dump->is_array_member)
1436 return;
1437
1438 /* avoid type name specification for variable/section; it will be done
1439 * for the associated variable value(s).
1440 */
1441 t = btf__type_by_id(d->btf, id);
1442 if (btf_is_var(t) || btf_is_datasec(t))
1443 return;
1444
1445 if (top_level)
1446 btf_dump_printf(d, "(");
1447
1448 d->skip_anon_defs = true;
1449 d->strip_mods = true;
1450 btf_dump_emit_type_decl(d, id, "", 0);
1451 d->strip_mods = false;
1452 d->skip_anon_defs = false;
1453
1454 if (top_level)
1455 btf_dump_printf(d, ")");
1456 }
1457
1458 /* return number of duplicates (occurrences) of a given name */
btf_dump_name_dups(struct btf_dump * d,struct hashmap * name_map,const char * orig_name)1459 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1460 const char *orig_name)
1461 {
1462 size_t dup_cnt = 0;
1463
1464 hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1465 dup_cnt++;
1466 hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1467
1468 return dup_cnt;
1469 }
1470
btf_dump_resolve_name(struct btf_dump * d,__u32 id,struct hashmap * name_map)1471 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1472 struct hashmap *name_map)
1473 {
1474 struct btf_dump_type_aux_state *s = &d->type_states[id];
1475 const struct btf_type *t = btf__type_by_id(d->btf, id);
1476 const char *orig_name = btf_name_of(d, t->name_off);
1477 const char **cached_name = &d->cached_names[id];
1478 size_t dup_cnt;
1479
1480 if (t->name_off == 0)
1481 return "";
1482
1483 if (s->name_resolved)
1484 return *cached_name ? *cached_name : orig_name;
1485
1486 dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1487 if (dup_cnt > 1) {
1488 const size_t max_len = 256;
1489 char new_name[max_len];
1490
1491 snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1492 *cached_name = strdup(new_name);
1493 }
1494
1495 s->name_resolved = 1;
1496 return *cached_name ? *cached_name : orig_name;
1497 }
1498
btf_dump_type_name(struct btf_dump * d,__u32 id)1499 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1500 {
1501 return btf_dump_resolve_name(d, id, d->type_names);
1502 }
1503
btf_dump_ident_name(struct btf_dump * d,__u32 id)1504 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1505 {
1506 return btf_dump_resolve_name(d, id, d->ident_names);
1507 }
1508
1509 static int btf_dump_dump_type_data(struct btf_dump *d,
1510 const char *fname,
1511 const struct btf_type *t,
1512 __u32 id,
1513 const void *data,
1514 __u8 bits_offset,
1515 __u8 bit_sz);
1516
btf_dump_data_newline(struct btf_dump * d)1517 static const char *btf_dump_data_newline(struct btf_dump *d)
1518 {
1519 return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n";
1520 }
1521
btf_dump_data_delim(struct btf_dump * d)1522 static const char *btf_dump_data_delim(struct btf_dump *d)
1523 {
1524 return d->typed_dump->depth == 0 ? "" : ",";
1525 }
1526
btf_dump_data_pfx(struct btf_dump * d)1527 static void btf_dump_data_pfx(struct btf_dump *d)
1528 {
1529 int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth;
1530
1531 if (d->typed_dump->compact)
1532 return;
1533
1534 for (i = 0; i < lvl; i++)
1535 btf_dump_printf(d, "%s", d->typed_dump->indent_str);
1536 }
1537
1538 /* A macro is used here as btf_type_value[s]() appends format specifiers
1539 * to the format specifier passed in; these do the work of appending
1540 * delimiters etc while the caller simply has to specify the type values
1541 * in the format specifier + value(s).
1542 */
1543 #define btf_dump_type_values(d, fmt, ...) \
1544 btf_dump_printf(d, fmt "%s%s", \
1545 ##__VA_ARGS__, \
1546 btf_dump_data_delim(d), \
1547 btf_dump_data_newline(d))
1548
btf_dump_unsupported_data(struct btf_dump * d,const struct btf_type * t,__u32 id)1549 static int btf_dump_unsupported_data(struct btf_dump *d,
1550 const struct btf_type *t,
1551 __u32 id)
1552 {
1553 btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t));
1554 return -ENOTSUP;
1555 }
1556
btf_dump_get_bitfield_value(struct btf_dump * d,const struct btf_type * t,const void * data,__u8 bits_offset,__u8 bit_sz,__u64 * value)1557 static int btf_dump_get_bitfield_value(struct btf_dump *d,
1558 const struct btf_type *t,
1559 const void *data,
1560 __u8 bits_offset,
1561 __u8 bit_sz,
1562 __u64 *value)
1563 {
1564 __u16 left_shift_bits, right_shift_bits;
1565 const __u8 *bytes = data;
1566 __u8 nr_copy_bits;
1567 __u64 num = 0;
1568 int i;
1569
1570 /* Maximum supported bitfield size is 64 bits */
1571 if (t->size > 8) {
1572 pr_warn("unexpected bitfield size %d\n", t->size);
1573 return -EINVAL;
1574 }
1575
1576 /* Bitfield value retrieval is done in two steps; first relevant bytes are
1577 * stored in num, then we left/right shift num to eliminate irrelevant bits.
1578 */
1579 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1580 for (i = t->size - 1; i >= 0; i--)
1581 num = num * 256 + bytes[i];
1582 nr_copy_bits = bit_sz + bits_offset;
1583 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1584 for (i = 0; i < t->size; i++)
1585 num = num * 256 + bytes[i];
1586 nr_copy_bits = t->size * 8 - bits_offset;
1587 #else
1588 # error "Unrecognized __BYTE_ORDER__"
1589 #endif
1590 left_shift_bits = 64 - nr_copy_bits;
1591 right_shift_bits = 64 - bit_sz;
1592
1593 *value = (num << left_shift_bits) >> right_shift_bits;
1594
1595 return 0;
1596 }
1597
btf_dump_bitfield_check_zero(struct btf_dump * d,const struct btf_type * t,const void * data,__u8 bits_offset,__u8 bit_sz)1598 static int btf_dump_bitfield_check_zero(struct btf_dump *d,
1599 const struct btf_type *t,
1600 const void *data,
1601 __u8 bits_offset,
1602 __u8 bit_sz)
1603 {
1604 __u64 check_num;
1605 int err;
1606
1607 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num);
1608 if (err)
1609 return err;
1610 if (check_num == 0)
1611 return -ENODATA;
1612 return 0;
1613 }
1614
btf_dump_bitfield_data(struct btf_dump * d,const struct btf_type * t,const void * data,__u8 bits_offset,__u8 bit_sz)1615 static int btf_dump_bitfield_data(struct btf_dump *d,
1616 const struct btf_type *t,
1617 const void *data,
1618 __u8 bits_offset,
1619 __u8 bit_sz)
1620 {
1621 __u64 print_num;
1622 int err;
1623
1624 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num);
1625 if (err)
1626 return err;
1627
1628 btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num);
1629
1630 return 0;
1631 }
1632
1633 /* ints, floats and ptrs */
btf_dump_base_type_check_zero(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)1634 static int btf_dump_base_type_check_zero(struct btf_dump *d,
1635 const struct btf_type *t,
1636 __u32 id,
1637 const void *data)
1638 {
1639 static __u8 bytecmp[16] = {};
1640 int nr_bytes;
1641
1642 /* For pointer types, pointer size is not defined on a per-type basis.
1643 * On dump creation however, we store the pointer size.
1644 */
1645 if (btf_kind(t) == BTF_KIND_PTR)
1646 nr_bytes = d->ptr_sz;
1647 else
1648 nr_bytes = t->size;
1649
1650 if (nr_bytes < 1 || nr_bytes > 16) {
1651 pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id);
1652 return -EINVAL;
1653 }
1654
1655 if (memcmp(data, bytecmp, nr_bytes) == 0)
1656 return -ENODATA;
1657 return 0;
1658 }
1659
ptr_is_aligned(const struct btf * btf,__u32 type_id,const void * data)1660 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id,
1661 const void *data)
1662 {
1663 int alignment = btf__align_of(btf, type_id);
1664
1665 if (alignment == 0)
1666 return false;
1667
1668 return ((uintptr_t)data) % alignment == 0;
1669 }
1670
btf_dump_int_data(struct btf_dump * d,const struct btf_type * t,__u32 type_id,const void * data,__u8 bits_offset)1671 static int btf_dump_int_data(struct btf_dump *d,
1672 const struct btf_type *t,
1673 __u32 type_id,
1674 const void *data,
1675 __u8 bits_offset)
1676 {
1677 __u8 encoding = btf_int_encoding(t);
1678 bool sign = encoding & BTF_INT_SIGNED;
1679 char buf[16] __attribute__((aligned(16)));
1680 int sz = t->size;
1681
1682 if (sz == 0 || sz > sizeof(buf)) {
1683 pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1684 return -EINVAL;
1685 }
1686
1687 /* handle packed int data - accesses of integers not aligned on
1688 * int boundaries can cause problems on some platforms.
1689 */
1690 if (!ptr_is_aligned(d->btf, type_id, data)) {
1691 memcpy(buf, data, sz);
1692 data = buf;
1693 }
1694
1695 switch (sz) {
1696 case 16: {
1697 const __u64 *ints = data;
1698 __u64 lsi, msi;
1699
1700 /* avoid use of __int128 as some 32-bit platforms do not
1701 * support it.
1702 */
1703 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1704 lsi = ints[0];
1705 msi = ints[1];
1706 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1707 lsi = ints[1];
1708 msi = ints[0];
1709 #else
1710 # error "Unrecognized __BYTE_ORDER__"
1711 #endif
1712 if (msi == 0)
1713 btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi);
1714 else
1715 btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi,
1716 (unsigned long long)lsi);
1717 break;
1718 }
1719 case 8:
1720 if (sign)
1721 btf_dump_type_values(d, "%lld", *(long long *)data);
1722 else
1723 btf_dump_type_values(d, "%llu", *(unsigned long long *)data);
1724 break;
1725 case 4:
1726 if (sign)
1727 btf_dump_type_values(d, "%d", *(__s32 *)data);
1728 else
1729 btf_dump_type_values(d, "%u", *(__u32 *)data);
1730 break;
1731 case 2:
1732 if (sign)
1733 btf_dump_type_values(d, "%d", *(__s16 *)data);
1734 else
1735 btf_dump_type_values(d, "%u", *(__u16 *)data);
1736 break;
1737 case 1:
1738 if (d->typed_dump->is_array_char) {
1739 /* check for null terminator */
1740 if (d->typed_dump->is_array_terminated)
1741 break;
1742 if (*(char *)data == '\0') {
1743 d->typed_dump->is_array_terminated = true;
1744 break;
1745 }
1746 if (isprint(*(char *)data)) {
1747 btf_dump_type_values(d, "'%c'", *(char *)data);
1748 break;
1749 }
1750 }
1751 if (sign)
1752 btf_dump_type_values(d, "%d", *(__s8 *)data);
1753 else
1754 btf_dump_type_values(d, "%u", *(__u8 *)data);
1755 break;
1756 default:
1757 pr_warn("unexpected sz %d for id [%u]\n", sz, type_id);
1758 return -EINVAL;
1759 }
1760 return 0;
1761 }
1762
1763 union float_data {
1764 long double ld;
1765 double d;
1766 float f;
1767 };
1768
btf_dump_float_data(struct btf_dump * d,const struct btf_type * t,__u32 type_id,const void * data)1769 static int btf_dump_float_data(struct btf_dump *d,
1770 const struct btf_type *t,
1771 __u32 type_id,
1772 const void *data)
1773 {
1774 const union float_data *flp = data;
1775 union float_data fl;
1776 int sz = t->size;
1777
1778 /* handle unaligned data; copy to local union */
1779 if (!ptr_is_aligned(d->btf, type_id, data)) {
1780 memcpy(&fl, data, sz);
1781 flp = &fl;
1782 }
1783
1784 switch (sz) {
1785 case 16:
1786 btf_dump_type_values(d, "%Lf", flp->ld);
1787 break;
1788 case 8:
1789 btf_dump_type_values(d, "%lf", flp->d);
1790 break;
1791 case 4:
1792 btf_dump_type_values(d, "%f", flp->f);
1793 break;
1794 default:
1795 pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1796 return -EINVAL;
1797 }
1798 return 0;
1799 }
1800
btf_dump_var_data(struct btf_dump * d,const struct btf_type * v,__u32 id,const void * data)1801 static int btf_dump_var_data(struct btf_dump *d,
1802 const struct btf_type *v,
1803 __u32 id,
1804 const void *data)
1805 {
1806 enum btf_func_linkage linkage = btf_var(v)->linkage;
1807 const struct btf_type *t;
1808 const char *l;
1809 __u32 type_id;
1810
1811 switch (linkage) {
1812 case BTF_FUNC_STATIC:
1813 l = "static ";
1814 break;
1815 case BTF_FUNC_EXTERN:
1816 l = "extern ";
1817 break;
1818 case BTF_FUNC_GLOBAL:
1819 default:
1820 l = "";
1821 break;
1822 }
1823
1824 /* format of output here is [linkage] [type] [varname] = (type)value,
1825 * for example "static int cpu_profile_flip = (int)1"
1826 */
1827 btf_dump_printf(d, "%s", l);
1828 type_id = v->type;
1829 t = btf__type_by_id(d->btf, type_id);
1830 btf_dump_emit_type_cast(d, type_id, false);
1831 btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off));
1832 return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0);
1833 }
1834
btf_dump_array_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)1835 static int btf_dump_array_data(struct btf_dump *d,
1836 const struct btf_type *t,
1837 __u32 id,
1838 const void *data)
1839 {
1840 const struct btf_array *array = btf_array(t);
1841 const struct btf_type *elem_type;
1842 __u32 i, elem_size = 0, elem_type_id;
1843 bool is_array_member;
1844
1845 elem_type_id = array->type;
1846 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
1847 elem_size = btf__resolve_size(d->btf, elem_type_id);
1848 if (elem_size <= 0) {
1849 pr_warn("unexpected elem size %d for array type [%u]\n", elem_size, id);
1850 return -EINVAL;
1851 }
1852
1853 if (btf_is_int(elem_type)) {
1854 /*
1855 * BTF_INT_CHAR encoding never seems to be set for
1856 * char arrays, so if size is 1 and element is
1857 * printable as a char, we'll do that.
1858 */
1859 if (elem_size == 1)
1860 d->typed_dump->is_array_char = true;
1861 }
1862
1863 /* note that we increment depth before calling btf_dump_print() below;
1864 * this is intentional. btf_dump_data_newline() will not print a
1865 * newline for depth 0 (since this leaves us with trailing newlines
1866 * at the end of typed display), so depth is incremented first.
1867 * For similar reasons, we decrement depth before showing the closing
1868 * parenthesis.
1869 */
1870 d->typed_dump->depth++;
1871 btf_dump_printf(d, "[%s", btf_dump_data_newline(d));
1872
1873 /* may be a multidimensional array, so store current "is array member"
1874 * status so we can restore it correctly later.
1875 */
1876 is_array_member = d->typed_dump->is_array_member;
1877 d->typed_dump->is_array_member = true;
1878 for (i = 0; i < array->nelems; i++, data += elem_size) {
1879 if (d->typed_dump->is_array_terminated)
1880 break;
1881 btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0);
1882 }
1883 d->typed_dump->is_array_member = is_array_member;
1884 d->typed_dump->depth--;
1885 btf_dump_data_pfx(d);
1886 btf_dump_type_values(d, "]");
1887
1888 return 0;
1889 }
1890
btf_dump_struct_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)1891 static int btf_dump_struct_data(struct btf_dump *d,
1892 const struct btf_type *t,
1893 __u32 id,
1894 const void *data)
1895 {
1896 const struct btf_member *m = btf_members(t);
1897 __u16 n = btf_vlen(t);
1898 int i, err;
1899
1900 /* note that we increment depth before calling btf_dump_print() below;
1901 * this is intentional. btf_dump_data_newline() will not print a
1902 * newline for depth 0 (since this leaves us with trailing newlines
1903 * at the end of typed display), so depth is incremented first.
1904 * For similar reasons, we decrement depth before showing the closing
1905 * parenthesis.
1906 */
1907 d->typed_dump->depth++;
1908 btf_dump_printf(d, "{%s", btf_dump_data_newline(d));
1909
1910 for (i = 0; i < n; i++, m++) {
1911 const struct btf_type *mtype;
1912 const char *mname;
1913 __u32 moffset;
1914 __u8 bit_sz;
1915
1916 mtype = btf__type_by_id(d->btf, m->type);
1917 mname = btf_name_of(d, m->name_off);
1918 moffset = btf_member_bit_offset(t, i);
1919
1920 bit_sz = btf_member_bitfield_size(t, i);
1921 err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8,
1922 moffset % 8, bit_sz);
1923 if (err < 0)
1924 return err;
1925 }
1926 d->typed_dump->depth--;
1927 btf_dump_data_pfx(d);
1928 btf_dump_type_values(d, "}");
1929 return err;
1930 }
1931
1932 union ptr_data {
1933 unsigned int p;
1934 unsigned long long lp;
1935 };
1936
btf_dump_ptr_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)1937 static int btf_dump_ptr_data(struct btf_dump *d,
1938 const struct btf_type *t,
1939 __u32 id,
1940 const void *data)
1941 {
1942 if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) {
1943 btf_dump_type_values(d, "%p", *(void **)data);
1944 } else {
1945 union ptr_data pt;
1946
1947 memcpy(&pt, data, d->ptr_sz);
1948 if (d->ptr_sz == 4)
1949 btf_dump_type_values(d, "0x%x", pt.p);
1950 else
1951 btf_dump_type_values(d, "0x%llx", pt.lp);
1952 }
1953 return 0;
1954 }
1955
btf_dump_get_enum_value(struct btf_dump * d,const struct btf_type * t,const void * data,__u32 id,__s64 * value)1956 static int btf_dump_get_enum_value(struct btf_dump *d,
1957 const struct btf_type *t,
1958 const void *data,
1959 __u32 id,
1960 __s64 *value)
1961 {
1962 /* handle unaligned enum value */
1963 if (!ptr_is_aligned(d->btf, id, data)) {
1964 __u64 val;
1965 int err;
1966
1967 err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val);
1968 if (err)
1969 return err;
1970 *value = (__s64)val;
1971 return 0;
1972 }
1973
1974 switch (t->size) {
1975 case 8:
1976 *value = *(__s64 *)data;
1977 return 0;
1978 case 4:
1979 *value = *(__s32 *)data;
1980 return 0;
1981 case 2:
1982 *value = *(__s16 *)data;
1983 return 0;
1984 case 1:
1985 *value = *(__s8 *)data;
1986 return 0;
1987 default:
1988 pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id);
1989 return -EINVAL;
1990 }
1991 }
1992
btf_dump_enum_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)1993 static int btf_dump_enum_data(struct btf_dump *d,
1994 const struct btf_type *t,
1995 __u32 id,
1996 const void *data)
1997 {
1998 const struct btf_enum *e;
1999 __s64 value;
2000 int i, err;
2001
2002 err = btf_dump_get_enum_value(d, t, data, id, &value);
2003 if (err)
2004 return err;
2005
2006 for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) {
2007 if (value != e->val)
2008 continue;
2009 btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2010 return 0;
2011 }
2012
2013 btf_dump_type_values(d, "%d", value);
2014 return 0;
2015 }
2016
btf_dump_datasec_data(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data)2017 static int btf_dump_datasec_data(struct btf_dump *d,
2018 const struct btf_type *t,
2019 __u32 id,
2020 const void *data)
2021 {
2022 const struct btf_var_secinfo *vsi;
2023 const struct btf_type *var;
2024 __u32 i;
2025 int err;
2026
2027 btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off));
2028
2029 for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) {
2030 var = btf__type_by_id(d->btf, vsi->type);
2031 err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0);
2032 if (err < 0)
2033 return err;
2034 btf_dump_printf(d, ";");
2035 }
2036 return 0;
2037 }
2038
2039 /* return size of type, or if base type overflows, return -E2BIG. */
btf_dump_type_data_check_overflow(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data,__u8 bits_offset)2040 static int btf_dump_type_data_check_overflow(struct btf_dump *d,
2041 const struct btf_type *t,
2042 __u32 id,
2043 const void *data,
2044 __u8 bits_offset)
2045 {
2046 __s64 size = btf__resolve_size(d->btf, id);
2047
2048 if (size < 0 || size >= INT_MAX) {
2049 pr_warn("unexpected size [%zu] for id [%u]\n",
2050 (size_t)size, id);
2051 return -EINVAL;
2052 }
2053
2054 /* Only do overflow checking for base types; we do not want to
2055 * avoid showing part of a struct, union or array, even if we
2056 * do not have enough data to show the full object. By
2057 * restricting overflow checking to base types we can ensure
2058 * that partial display succeeds, while avoiding overflowing
2059 * and using bogus data for display.
2060 */
2061 t = skip_mods_and_typedefs(d->btf, id, NULL);
2062 if (!t) {
2063 pr_warn("unexpected error skipping mods/typedefs for id [%u]\n",
2064 id);
2065 return -EINVAL;
2066 }
2067
2068 switch (btf_kind(t)) {
2069 case BTF_KIND_INT:
2070 case BTF_KIND_FLOAT:
2071 case BTF_KIND_PTR:
2072 case BTF_KIND_ENUM:
2073 if (data + bits_offset / 8 + size > d->typed_dump->data_end)
2074 return -E2BIG;
2075 break;
2076 default:
2077 break;
2078 }
2079 return (int)size;
2080 }
2081
btf_dump_type_data_check_zero(struct btf_dump * d,const struct btf_type * t,__u32 id,const void * data,__u8 bits_offset,__u8 bit_sz)2082 static int btf_dump_type_data_check_zero(struct btf_dump *d,
2083 const struct btf_type *t,
2084 __u32 id,
2085 const void *data,
2086 __u8 bits_offset,
2087 __u8 bit_sz)
2088 {
2089 __s64 value;
2090 int i, err;
2091
2092 /* toplevel exceptions; we show zero values if
2093 * - we ask for them (emit_zeros)
2094 * - if we are at top-level so we see "struct empty { }"
2095 * - or if we are an array member and the array is non-empty and
2096 * not a char array; we don't want to be in a situation where we
2097 * have an integer array 0, 1, 0, 1 and only show non-zero values.
2098 * If the array contains zeroes only, or is a char array starting
2099 * with a '\0', the array-level check_zero() will prevent showing it;
2100 * we are concerned with determining zero value at the array member
2101 * level here.
2102 */
2103 if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 ||
2104 (d->typed_dump->is_array_member &&
2105 !d->typed_dump->is_array_char))
2106 return 0;
2107
2108 t = skip_mods_and_typedefs(d->btf, id, NULL);
2109
2110 switch (btf_kind(t)) {
2111 case BTF_KIND_INT:
2112 if (bit_sz)
2113 return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz);
2114 return btf_dump_base_type_check_zero(d, t, id, data);
2115 case BTF_KIND_FLOAT:
2116 case BTF_KIND_PTR:
2117 return btf_dump_base_type_check_zero(d, t, id, data);
2118 case BTF_KIND_ARRAY: {
2119 const struct btf_array *array = btf_array(t);
2120 const struct btf_type *elem_type;
2121 __u32 elem_type_id, elem_size;
2122 bool ischar;
2123
2124 elem_type_id = array->type;
2125 elem_size = btf__resolve_size(d->btf, elem_type_id);
2126 elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2127
2128 ischar = btf_is_int(elem_type) && elem_size == 1;
2129
2130 /* check all elements; if _any_ element is nonzero, all
2131 * of array is displayed. We make an exception however
2132 * for char arrays where the first element is 0; these
2133 * are considered zeroed also, even if later elements are
2134 * non-zero because the string is terminated.
2135 */
2136 for (i = 0; i < array->nelems; i++) {
2137 if (i == 0 && ischar && *(char *)data == 0)
2138 return -ENODATA;
2139 err = btf_dump_type_data_check_zero(d, elem_type,
2140 elem_type_id,
2141 data +
2142 (i * elem_size),
2143 bits_offset, 0);
2144 if (err != -ENODATA)
2145 return err;
2146 }
2147 return -ENODATA;
2148 }
2149 case BTF_KIND_STRUCT:
2150 case BTF_KIND_UNION: {
2151 const struct btf_member *m = btf_members(t);
2152 __u16 n = btf_vlen(t);
2153
2154 /* if any struct/union member is non-zero, the struct/union
2155 * is considered non-zero and dumped.
2156 */
2157 for (i = 0; i < n; i++, m++) {
2158 const struct btf_type *mtype;
2159 __u32 moffset;
2160
2161 mtype = btf__type_by_id(d->btf, m->type);
2162 moffset = btf_member_bit_offset(t, i);
2163
2164 /* btf_int_bits() does not store member bitfield size;
2165 * bitfield size needs to be stored here so int display
2166 * of member can retrieve it.
2167 */
2168 bit_sz = btf_member_bitfield_size(t, i);
2169 err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8,
2170 moffset % 8, bit_sz);
2171 if (err != ENODATA)
2172 return err;
2173 }
2174 return -ENODATA;
2175 }
2176 case BTF_KIND_ENUM:
2177 err = btf_dump_get_enum_value(d, t, data, id, &value);
2178 if (err)
2179 return err;
2180 if (value == 0)
2181 return -ENODATA;
2182 return 0;
2183 default:
2184 return 0;
2185 }
2186 }
2187
2188 /* returns size of data dumped, or error. */
btf_dump_dump_type_data(struct btf_dump * d,const char * fname,const struct btf_type * t,__u32 id,const void * data,__u8 bits_offset,__u8 bit_sz)2189 static int btf_dump_dump_type_data(struct btf_dump *d,
2190 const char *fname,
2191 const struct btf_type *t,
2192 __u32 id,
2193 const void *data,
2194 __u8 bits_offset,
2195 __u8 bit_sz)
2196 {
2197 int size, err;
2198
2199 size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset);
2200 if (size < 0)
2201 return size;
2202 err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz);
2203 if (err) {
2204 /* zeroed data is expected and not an error, so simply skip
2205 * dumping such data. Record other errors however.
2206 */
2207 if (err == -ENODATA)
2208 return size;
2209 return err;
2210 }
2211 btf_dump_data_pfx(d);
2212
2213 if (!d->typed_dump->skip_names) {
2214 if (fname && strlen(fname) > 0)
2215 btf_dump_printf(d, ".%s = ", fname);
2216 btf_dump_emit_type_cast(d, id, true);
2217 }
2218
2219 t = skip_mods_and_typedefs(d->btf, id, NULL);
2220
2221 switch (btf_kind(t)) {
2222 case BTF_KIND_UNKN:
2223 case BTF_KIND_FWD:
2224 case BTF_KIND_FUNC:
2225 case BTF_KIND_FUNC_PROTO:
2226 case BTF_KIND_DECL_TAG:
2227 err = btf_dump_unsupported_data(d, t, id);
2228 break;
2229 case BTF_KIND_INT:
2230 if (bit_sz)
2231 err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz);
2232 else
2233 err = btf_dump_int_data(d, t, id, data, bits_offset);
2234 break;
2235 case BTF_KIND_FLOAT:
2236 err = btf_dump_float_data(d, t, id, data);
2237 break;
2238 case BTF_KIND_PTR:
2239 err = btf_dump_ptr_data(d, t, id, data);
2240 break;
2241 case BTF_KIND_ARRAY:
2242 err = btf_dump_array_data(d, t, id, data);
2243 break;
2244 case BTF_KIND_STRUCT:
2245 case BTF_KIND_UNION:
2246 err = btf_dump_struct_data(d, t, id, data);
2247 break;
2248 case BTF_KIND_ENUM:
2249 /* handle bitfield and int enum values */
2250 if (bit_sz) {
2251 __u64 print_num;
2252 __s64 enum_val;
2253
2254 err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz,
2255 &print_num);
2256 if (err)
2257 break;
2258 enum_val = (__s64)print_num;
2259 err = btf_dump_enum_data(d, t, id, &enum_val);
2260 } else
2261 err = btf_dump_enum_data(d, t, id, data);
2262 break;
2263 case BTF_KIND_VAR:
2264 err = btf_dump_var_data(d, t, id, data);
2265 break;
2266 case BTF_KIND_DATASEC:
2267 err = btf_dump_datasec_data(d, t, id, data);
2268 break;
2269 default:
2270 pr_warn("unexpected kind [%u] for id [%u]\n",
2271 BTF_INFO_KIND(t->info), id);
2272 return -EINVAL;
2273 }
2274 if (err < 0)
2275 return err;
2276 return size;
2277 }
2278
btf_dump__dump_type_data(struct btf_dump * d,__u32 id,const void * data,size_t data_sz,const struct btf_dump_type_data_opts * opts)2279 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
2280 const void *data, size_t data_sz,
2281 const struct btf_dump_type_data_opts *opts)
2282 {
2283 struct btf_dump_data typed_dump = {};
2284 const struct btf_type *t;
2285 int ret;
2286
2287 if (!OPTS_VALID(opts, btf_dump_type_data_opts))
2288 return libbpf_err(-EINVAL);
2289
2290 t = btf__type_by_id(d->btf, id);
2291 if (!t)
2292 return libbpf_err(-ENOENT);
2293
2294 d->typed_dump = &typed_dump;
2295 d->typed_dump->data_end = data + data_sz;
2296 d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0);
2297
2298 /* default indent string is a tab */
2299 if (!opts->indent_str)
2300 d->typed_dump->indent_str[0] = '\t';
2301 else
2302 strncat(d->typed_dump->indent_str, opts->indent_str,
2303 sizeof(d->typed_dump->indent_str) - 1);
2304
2305 d->typed_dump->compact = OPTS_GET(opts, compact, false);
2306 d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false);
2307 d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false);
2308
2309 ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0);
2310
2311 d->typed_dump = NULL;
2312
2313 return libbpf_err(ret);
2314 }
2315