1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * svm_vmcall_test
4 *
5 * Copyright © 2021 Amazon.com, Inc. or its affiliates.
6 *
7 * Xen shared_info / pvclock testing
8 */
9
10 #include "test_util.h"
11 #include "kvm_util.h"
12 #include "processor.h"
13
14 #include <stdint.h>
15 #include <time.h>
16 #include <sched.h>
17
18 #define VCPU_ID 5
19
20 #define SHINFO_REGION_GVA 0xc0000000ULL
21 #define SHINFO_REGION_GPA 0xc0000000ULL
22 #define SHINFO_REGION_SLOT 10
23 #define PAGE_SIZE 4096
24
25 #define PVTIME_ADDR (SHINFO_REGION_GPA + PAGE_SIZE)
26 #define RUNSTATE_ADDR (SHINFO_REGION_GPA + PAGE_SIZE + 0x20)
27 #define VCPU_INFO_ADDR (SHINFO_REGION_GPA + 0x40)
28
29 #define RUNSTATE_VADDR (SHINFO_REGION_GVA + PAGE_SIZE + 0x20)
30 #define VCPU_INFO_VADDR (SHINFO_REGION_GVA + 0x40)
31
32 #define EVTCHN_VECTOR 0x10
33
34 static struct kvm_vm *vm;
35
36 #define XEN_HYPERCALL_MSR 0x40000000
37
38 #define MIN_STEAL_TIME 50000
39
40 struct pvclock_vcpu_time_info {
41 u32 version;
42 u32 pad0;
43 u64 tsc_timestamp;
44 u64 system_time;
45 u32 tsc_to_system_mul;
46 s8 tsc_shift;
47 u8 flags;
48 u8 pad[2];
49 } __attribute__((__packed__)); /* 32 bytes */
50
51 struct pvclock_wall_clock {
52 u32 version;
53 u32 sec;
54 u32 nsec;
55 } __attribute__((__packed__));
56
57 struct vcpu_runstate_info {
58 uint32_t state;
59 uint64_t state_entry_time;
60 uint64_t time[4];
61 };
62
63 struct arch_vcpu_info {
64 unsigned long cr2;
65 unsigned long pad; /* sizeof(vcpu_info_t) == 64 */
66 };
67
68 struct vcpu_info {
69 uint8_t evtchn_upcall_pending;
70 uint8_t evtchn_upcall_mask;
71 unsigned long evtchn_pending_sel;
72 struct arch_vcpu_info arch;
73 struct pvclock_vcpu_time_info time;
74 }; /* 64 bytes (x86) */
75
76 #define RUNSTATE_running 0
77 #define RUNSTATE_runnable 1
78 #define RUNSTATE_blocked 2
79 #define RUNSTATE_offline 3
80
evtchn_handler(struct ex_regs * regs)81 static void evtchn_handler(struct ex_regs *regs)
82 {
83 struct vcpu_info *vi = (void *)VCPU_INFO_VADDR;
84 vi->evtchn_upcall_pending = 0;
85
86 GUEST_SYNC(0x20);
87 }
88
guest_code(void)89 static void guest_code(void)
90 {
91 struct vcpu_runstate_info *rs = (void *)RUNSTATE_VADDR;
92
93 __asm__ __volatile__(
94 "sti\n"
95 "nop\n"
96 );
97
98 /* Trigger an interrupt injection */
99 GUEST_SYNC(0);
100
101 /* Test having the host set runstates manually */
102 GUEST_SYNC(RUNSTATE_runnable);
103 GUEST_ASSERT(rs->time[RUNSTATE_runnable] != 0);
104 GUEST_ASSERT(rs->state == 0);
105
106 GUEST_SYNC(RUNSTATE_blocked);
107 GUEST_ASSERT(rs->time[RUNSTATE_blocked] != 0);
108 GUEST_ASSERT(rs->state == 0);
109
110 GUEST_SYNC(RUNSTATE_offline);
111 GUEST_ASSERT(rs->time[RUNSTATE_offline] != 0);
112 GUEST_ASSERT(rs->state == 0);
113
114 /* Test runstate time adjust */
115 GUEST_SYNC(4);
116 GUEST_ASSERT(rs->time[RUNSTATE_blocked] == 0x5a);
117 GUEST_ASSERT(rs->time[RUNSTATE_offline] == 0x6b6b);
118
119 /* Test runstate time set */
120 GUEST_SYNC(5);
121 GUEST_ASSERT(rs->state_entry_time >= 0x8000);
122 GUEST_ASSERT(rs->time[RUNSTATE_runnable] == 0);
123 GUEST_ASSERT(rs->time[RUNSTATE_blocked] == 0x6b6b);
124 GUEST_ASSERT(rs->time[RUNSTATE_offline] == 0x5a);
125
126 /* sched_yield() should result in some 'runnable' time */
127 GUEST_SYNC(6);
128 GUEST_ASSERT(rs->time[RUNSTATE_runnable] >= MIN_STEAL_TIME);
129
130 GUEST_DONE();
131 }
132
cmp_timespec(struct timespec * a,struct timespec * b)133 static int cmp_timespec(struct timespec *a, struct timespec *b)
134 {
135 if (a->tv_sec > b->tv_sec)
136 return 1;
137 else if (a->tv_sec < b->tv_sec)
138 return -1;
139 else if (a->tv_nsec > b->tv_nsec)
140 return 1;
141 else if (a->tv_nsec < b->tv_nsec)
142 return -1;
143 else
144 return 0;
145 }
146
main(int argc,char * argv[])147 int main(int argc, char *argv[])
148 {
149 struct timespec min_ts, max_ts, vm_ts;
150
151 int xen_caps = kvm_check_cap(KVM_CAP_XEN_HVM);
152 if (!(xen_caps & KVM_XEN_HVM_CONFIG_SHARED_INFO) ) {
153 print_skip("KVM_XEN_HVM_CONFIG_SHARED_INFO not available");
154 exit(KSFT_SKIP);
155 }
156
157 bool do_runstate_tests = !!(xen_caps & KVM_XEN_HVM_CONFIG_RUNSTATE);
158
159 clock_gettime(CLOCK_REALTIME, &min_ts);
160
161 vm = vm_create_default(VCPU_ID, 0, (void *) guest_code);
162 vcpu_set_cpuid(vm, VCPU_ID, kvm_get_supported_cpuid());
163
164 /* Map a region for the shared_info page */
165 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
166 SHINFO_REGION_GPA, SHINFO_REGION_SLOT, 2, 0);
167 virt_map(vm, SHINFO_REGION_GVA, SHINFO_REGION_GPA, 2);
168
169 struct kvm_xen_hvm_config hvmc = {
170 .flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL,
171 .msr = XEN_HYPERCALL_MSR,
172 };
173 vm_ioctl(vm, KVM_XEN_HVM_CONFIG, &hvmc);
174
175 struct kvm_xen_hvm_attr lm = {
176 .type = KVM_XEN_ATTR_TYPE_LONG_MODE,
177 .u.long_mode = 1,
178 };
179 vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &lm);
180
181 struct kvm_xen_hvm_attr ha = {
182 .type = KVM_XEN_ATTR_TYPE_SHARED_INFO,
183 .u.shared_info.gfn = SHINFO_REGION_GPA / PAGE_SIZE,
184 };
185 vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &ha);
186
187 struct kvm_xen_vcpu_attr vi = {
188 .type = KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO,
189 .u.gpa = VCPU_INFO_ADDR,
190 };
191 vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &vi);
192
193 struct kvm_xen_vcpu_attr pvclock = {
194 .type = KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO,
195 .u.gpa = PVTIME_ADDR,
196 };
197 vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &pvclock);
198
199 struct kvm_xen_hvm_attr vec = {
200 .type = KVM_XEN_ATTR_TYPE_UPCALL_VECTOR,
201 .u.vector = EVTCHN_VECTOR,
202 };
203 vm_ioctl(vm, KVM_XEN_HVM_SET_ATTR, &vec);
204
205 vm_init_descriptor_tables(vm);
206 vcpu_init_descriptor_tables(vm, VCPU_ID);
207 vm_install_exception_handler(vm, EVTCHN_VECTOR, evtchn_handler);
208
209 if (do_runstate_tests) {
210 struct kvm_xen_vcpu_attr st = {
211 .type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR,
212 .u.gpa = RUNSTATE_ADDR,
213 };
214 vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &st);
215 }
216
217 struct vcpu_info *vinfo = addr_gpa2hva(vm, VCPU_INFO_VADDR);
218 vinfo->evtchn_upcall_pending = 0;
219
220 struct vcpu_runstate_info *rs = addr_gpa2hva(vm, RUNSTATE_ADDR);
221 rs->state = 0x5a;
222
223 bool evtchn_irq_expected = false;
224
225 for (;;) {
226 volatile struct kvm_run *run = vcpu_state(vm, VCPU_ID);
227 struct ucall uc;
228
229 vcpu_run(vm, VCPU_ID);
230
231 TEST_ASSERT(run->exit_reason == KVM_EXIT_IO,
232 "Got exit_reason other than KVM_EXIT_IO: %u (%s)\n",
233 run->exit_reason,
234 exit_reason_str(run->exit_reason));
235
236 switch (get_ucall(vm, VCPU_ID, &uc)) {
237 case UCALL_ABORT:
238 TEST_FAIL("%s", (const char *)uc.args[0]);
239 /* NOT REACHED */
240 case UCALL_SYNC: {
241 struct kvm_xen_vcpu_attr rst;
242 long rundelay;
243
244 if (do_runstate_tests)
245 TEST_ASSERT(rs->state_entry_time == rs->time[0] +
246 rs->time[1] + rs->time[2] + rs->time[3],
247 "runstate times don't add up");
248
249 switch (uc.args[1]) {
250 case 0:
251 evtchn_irq_expected = true;
252 vinfo->evtchn_upcall_pending = 1;
253 break;
254
255 case RUNSTATE_runnable...RUNSTATE_offline:
256 TEST_ASSERT(!evtchn_irq_expected, "Event channel IRQ not seen");
257 if (!do_runstate_tests)
258 goto done;
259 rst.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT;
260 rst.u.runstate.state = uc.args[1];
261 vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &rst);
262 break;
263 case 4:
264 rst.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST;
265 memset(&rst.u, 0, sizeof(rst.u));
266 rst.u.runstate.state = (uint64_t)-1;
267 rst.u.runstate.time_blocked =
268 0x5a - rs->time[RUNSTATE_blocked];
269 rst.u.runstate.time_offline =
270 0x6b6b - rs->time[RUNSTATE_offline];
271 rst.u.runstate.time_runnable = -rst.u.runstate.time_blocked -
272 rst.u.runstate.time_offline;
273 vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &rst);
274 break;
275
276 case 5:
277 rst.type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA;
278 memset(&rst.u, 0, sizeof(rst.u));
279 rst.u.runstate.state = RUNSTATE_running;
280 rst.u.runstate.state_entry_time = 0x6b6b + 0x5a;
281 rst.u.runstate.time_blocked = 0x6b6b;
282 rst.u.runstate.time_offline = 0x5a;
283 vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_SET_ATTR, &rst);
284 break;
285 case 6:
286 /* Yield until scheduler delay exceeds target */
287 rundelay = get_run_delay() + MIN_STEAL_TIME;
288 do {
289 sched_yield();
290 } while (get_run_delay() < rundelay);
291 break;
292 case 0x20:
293 TEST_ASSERT(evtchn_irq_expected, "Unexpected event channel IRQ");
294 evtchn_irq_expected = false;
295 break;
296 }
297 break;
298 }
299 case UCALL_DONE:
300 goto done;
301 default:
302 TEST_FAIL("Unknown ucall 0x%lx.", uc.cmd);
303 }
304 }
305
306 done:
307 clock_gettime(CLOCK_REALTIME, &max_ts);
308
309 /*
310 * Just a *really* basic check that things are being put in the
311 * right place. The actual calculations are much the same for
312 * Xen as they are for the KVM variants, so no need to check.
313 */
314 struct pvclock_wall_clock *wc;
315 struct pvclock_vcpu_time_info *ti, *ti2;
316
317 wc = addr_gpa2hva(vm, SHINFO_REGION_GPA + 0xc00);
318 ti = addr_gpa2hva(vm, SHINFO_REGION_GPA + 0x40 + 0x20);
319 ti2 = addr_gpa2hva(vm, PVTIME_ADDR);
320
321 vm_ts.tv_sec = wc->sec;
322 vm_ts.tv_nsec = wc->nsec;
323 TEST_ASSERT(wc->version && !(wc->version & 1),
324 "Bad wallclock version %x", wc->version);
325 TEST_ASSERT(cmp_timespec(&min_ts, &vm_ts) <= 0, "VM time too old");
326 TEST_ASSERT(cmp_timespec(&max_ts, &vm_ts) >= 0, "VM time too new");
327
328 TEST_ASSERT(ti->version && !(ti->version & 1),
329 "Bad time_info version %x", ti->version);
330 TEST_ASSERT(ti2->version && !(ti2->version & 1),
331 "Bad time_info version %x", ti->version);
332
333 if (do_runstate_tests) {
334 /*
335 * Fetch runstate and check sanity. Strictly speaking in the
336 * general case we might not expect the numbers to be identical
337 * but in this case we know we aren't running the vCPU any more.
338 */
339 struct kvm_xen_vcpu_attr rst = {
340 .type = KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA,
341 };
342 vcpu_ioctl(vm, VCPU_ID, KVM_XEN_VCPU_GET_ATTR, &rst);
343
344 TEST_ASSERT(rs->state == rst.u.runstate.state, "Runstate mismatch");
345 TEST_ASSERT(rs->state_entry_time == rst.u.runstate.state_entry_time,
346 "State entry time mismatch");
347 TEST_ASSERT(rs->time[RUNSTATE_running] == rst.u.runstate.time_running,
348 "Running time mismatch");
349 TEST_ASSERT(rs->time[RUNSTATE_runnable] == rst.u.runstate.time_runnable,
350 "Runnable time mismatch");
351 TEST_ASSERT(rs->time[RUNSTATE_blocked] == rst.u.runstate.time_blocked,
352 "Blocked time mismatch");
353 TEST_ASSERT(rs->time[RUNSTATE_offline] == rst.u.runstate.time_offline,
354 "Offline time mismatch");
355
356 TEST_ASSERT(rs->state_entry_time == rs->time[0] +
357 rs->time[1] + rs->time[2] + rs->time[3],
358 "runstate times don't add up");
359 }
360 kvm_vm_free(vm);
361 return 0;
362 }
363