1 /*
2 * Copyright (c) 2013-2021, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <assert.h>
8
9 #include <arch_helpers.h>
10 #include <common/debug.h>
11 #include <drivers/arm/gicv3.h>
12 #include <drivers/arm/fvp/fvp_pwrc.h>
13 #include <lib/extensions/spe.h>
14 #include <lib/mmio.h>
15 #include <lib/psci/psci.h>
16 #include <plat/arm/common/arm_config.h>
17 #include <plat/arm/common/plat_arm.h>
18 #include <platform_def.h>
19
20 #include "fvp_private.h"
21 #include "../drivers/arm/gic/v3/gicv3_private.h"
22
23
24 #if ARM_RECOM_STATE_ID_ENC
25 /*
26 * The table storing the valid idle power states. Ensure that the
27 * array entries are populated in ascending order of state-id to
28 * enable us to use binary search during power state validation.
29 * The table must be terminated by a NULL entry.
30 */
31 const unsigned int arm_pm_idle_states[] = {
32 /* State-id - 0x01 */
33 arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_RET,
34 ARM_PWR_LVL0, PSTATE_TYPE_STANDBY),
35 /* State-id - 0x02 */
36 arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_RUN, ARM_LOCAL_STATE_OFF,
37 ARM_PWR_LVL0, PSTATE_TYPE_POWERDOWN),
38 /* State-id - 0x22 */
39 arm_make_pwrstate_lvl1(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
40 ARM_PWR_LVL1, PSTATE_TYPE_POWERDOWN),
41 /* State-id - 0x222 */
42 arm_make_pwrstate_lvl2(ARM_LOCAL_STATE_OFF, ARM_LOCAL_STATE_OFF,
43 ARM_LOCAL_STATE_OFF, ARM_PWR_LVL2, PSTATE_TYPE_POWERDOWN),
44 0,
45 };
46 #endif
47
48 /*******************************************************************************
49 * Function which implements the common FVP specific operations to power down a
50 * cluster in response to a CPU_OFF or CPU_SUSPEND request.
51 ******************************************************************************/
fvp_cluster_pwrdwn_common(void)52 static void fvp_cluster_pwrdwn_common(void)
53 {
54 uint64_t mpidr = read_mpidr_el1();
55
56 #if ENABLE_SPE_FOR_LOWER_ELS
57 /*
58 * On power down we need to disable statistical profiling extensions
59 * before exiting coherency.
60 */
61 spe_disable();
62 #endif
63
64 /* Disable coherency if this cluster is to be turned off */
65 fvp_interconnect_disable();
66
67 #if HW_ASSISTED_COHERENCY
68 uint32_t reg;
69
70 /*
71 * If we have determined this core to be the last man standing and we
72 * intend to power down the cluster proactively, we provide a hint to
73 * the power controller that cluster power is not required when all
74 * cores are powered down.
75 * Note that this is only an advisory to power controller and is supported
76 * by SoCs with DynamIQ Shared Units only.
77 */
78 reg = read_clusterpwrdn();
79
80 /* Clear and set bit 0 : Cluster power not required */
81 reg &= ~DSU_CLUSTER_PWR_MASK;
82 reg |= DSU_CLUSTER_PWR_OFF;
83 write_clusterpwrdn(reg);
84 #endif
85
86 /* Program the power controller to turn the cluster off */
87 fvp_pwrc_write_pcoffr(mpidr);
88 }
89
90 /*
91 * Empty implementation of these hooks avoid setting the GICR_WAKER.Sleep bit
92 * on ARM GICv3 implementations on FVP. This is required, because FVP does not
93 * support SYSTEM_SUSPEND and it is `faked` in firmware. Hence, for wake up
94 * from `fake` system suspend the GIC must not be powered off.
95 */
arm_gicv3_distif_pre_save(unsigned int rdist_proc_num)96 void arm_gicv3_distif_pre_save(unsigned int rdist_proc_num)
97 {}
98
arm_gicv3_distif_post_restore(unsigned int rdist_proc_num)99 void arm_gicv3_distif_post_restore(unsigned int rdist_proc_num)
100 {}
101
fvp_power_domain_on_finish_common(const psci_power_state_t * target_state)102 static void fvp_power_domain_on_finish_common(const psci_power_state_t *target_state)
103 {
104 unsigned long mpidr;
105
106 assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
107 ARM_LOCAL_STATE_OFF);
108
109 /* Get the mpidr for this cpu */
110 mpidr = read_mpidr_el1();
111
112 /* Perform the common cluster specific operations */
113 if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
114 ARM_LOCAL_STATE_OFF) {
115 /*
116 * This CPU might have woken up whilst the cluster was
117 * attempting to power down. In this case the FVP power
118 * controller will have a pending cluster power off request
119 * which needs to be cleared by writing to the PPONR register.
120 * This prevents the power controller from interpreting a
121 * subsequent entry of this cpu into a simple wfi as a power
122 * down request.
123 */
124 fvp_pwrc_write_pponr(mpidr);
125
126 /* Enable coherency if this cluster was off */
127 fvp_interconnect_enable();
128 }
129 /* Perform the common system specific operations */
130 if (target_state->pwr_domain_state[ARM_PWR_LVL2] ==
131 ARM_LOCAL_STATE_OFF)
132 arm_system_pwr_domain_resume();
133
134 /*
135 * Clear PWKUPR.WEN bit to ensure interrupts do not interfere
136 * with a cpu power down unless the bit is set again
137 */
138 fvp_pwrc_clr_wen(mpidr);
139 }
140
141 /*******************************************************************************
142 * FVP handler called when a CPU is about to enter standby.
143 ******************************************************************************/
fvp_cpu_standby(plat_local_state_t cpu_state)144 static void fvp_cpu_standby(plat_local_state_t cpu_state)
145 {
146 u_register_t scr = read_scr_el3();
147
148 assert(cpu_state == ARM_LOCAL_STATE_RET);
149
150 /*
151 * Enable the Non-secure interrupt to wake the CPU.
152 * In GICv3 affinity routing mode, the Non-secure Group 1 interrupts
153 * use Physical FIQ at EL3 whereas in GICv2, Physical IRQ is used.
154 * Enabling both the bits works for both GICv2 mode and GICv3 affinity
155 * routing mode.
156 */
157 write_scr_el3(scr | SCR_IRQ_BIT | SCR_FIQ_BIT);
158 isb();
159
160 /*
161 * Enter standby state.
162 * dsb is good practice before using wfi to enter low power states.
163 */
164 dsb();
165 wfi();
166
167 /*
168 * Restore SCR_EL3 to the original value, synchronisation of SCR_EL3
169 * is done by eret in el3_exit() to save some execution cycles.
170 */
171 write_scr_el3(scr);
172 }
173
174 /*******************************************************************************
175 * FVP handler called when a power domain is about to be turned on. The
176 * mpidr determines the CPU to be turned on.
177 ******************************************************************************/
fvp_pwr_domain_on(u_register_t mpidr)178 static int fvp_pwr_domain_on(u_register_t mpidr)
179 {
180 int rc = PSCI_E_SUCCESS;
181 unsigned int psysr;
182
183 /*
184 * Ensure that we do not cancel an inflight power off request for the
185 * target cpu. That would leave it in a zombie wfi. Wait for it to power
186 * off and then program the power controller to turn that CPU on.
187 */
188 do {
189 psysr = fvp_pwrc_read_psysr(mpidr);
190 } while ((psysr & PSYSR_AFF_L0) != 0U);
191
192 fvp_pwrc_write_pponr(mpidr);
193 return rc;
194 }
195
196 /*******************************************************************************
197 * FVP handler called when a power domain is about to be turned off. The
198 * target_state encodes the power state that each level should transition to.
199 ******************************************************************************/
fvp_pwr_domain_off(const psci_power_state_t * target_state)200 static void fvp_pwr_domain_off(const psci_power_state_t *target_state)
201 {
202 assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
203 ARM_LOCAL_STATE_OFF);
204
205 /*
206 * If execution reaches this stage then this power domain will be
207 * suspended. Perform at least the cpu specific actions followed
208 * by the cluster specific operations if applicable.
209 */
210
211 /* Prevent interrupts from spuriously waking up this cpu */
212 plat_arm_gic_cpuif_disable();
213
214 /* Turn redistributor off */
215 plat_arm_gic_redistif_off();
216
217 /* Program the power controller to power off this cpu. */
218 fvp_pwrc_write_ppoffr(read_mpidr_el1());
219
220 if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
221 ARM_LOCAL_STATE_OFF)
222 fvp_cluster_pwrdwn_common();
223
224 }
225
226 /*******************************************************************************
227 * FVP handler called when a power domain is about to be suspended. The
228 * target_state encodes the power state that each level should transition to.
229 ******************************************************************************/
fvp_pwr_domain_suspend(const psci_power_state_t * target_state)230 static void fvp_pwr_domain_suspend(const psci_power_state_t *target_state)
231 {
232 unsigned long mpidr;
233
234 /*
235 * FVP has retention only at cpu level. Just return
236 * as nothing is to be done for retention.
237 */
238 if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
239 ARM_LOCAL_STATE_RET)
240 return;
241
242 assert(target_state->pwr_domain_state[ARM_PWR_LVL0] ==
243 ARM_LOCAL_STATE_OFF);
244
245 /* Get the mpidr for this cpu */
246 mpidr = read_mpidr_el1();
247
248 /* Program the power controller to enable wakeup interrupts. */
249 fvp_pwrc_set_wen(mpidr);
250
251 /* Prevent interrupts from spuriously waking up this cpu */
252 plat_arm_gic_cpuif_disable();
253
254 /*
255 * The Redistributor is not powered off as it can potentially prevent
256 * wake up events reaching the CPUIF and/or might lead to losing
257 * register context.
258 */
259
260 /* Perform the common cluster specific operations */
261 if (target_state->pwr_domain_state[ARM_PWR_LVL1] ==
262 ARM_LOCAL_STATE_OFF)
263 fvp_cluster_pwrdwn_common();
264
265 /* Perform the common system specific operations */
266 if (target_state->pwr_domain_state[ARM_PWR_LVL2] ==
267 ARM_LOCAL_STATE_OFF)
268 arm_system_pwr_domain_save();
269
270 /* Program the power controller to power off this cpu. */
271 fvp_pwrc_write_ppoffr(read_mpidr_el1());
272 }
273
274 /*******************************************************************************
275 * FVP handler called when a power domain has just been powered on after
276 * being turned off earlier. The target_state encodes the low power state that
277 * each level has woken up from.
278 ******************************************************************************/
fvp_pwr_domain_on_finish(const psci_power_state_t * target_state)279 static void fvp_pwr_domain_on_finish(const psci_power_state_t *target_state)
280 {
281 fvp_power_domain_on_finish_common(target_state);
282
283 }
284
285 /*******************************************************************************
286 * FVP handler called when a power domain has just been powered on and the cpu
287 * and its cluster are fully participating in coherent transaction on the
288 * interconnect. Data cache must be enabled for CPU at this point.
289 ******************************************************************************/
fvp_pwr_domain_on_finish_late(const psci_power_state_t * target_state)290 static void fvp_pwr_domain_on_finish_late(const psci_power_state_t *target_state)
291 {
292 /* Program GIC per-cpu distributor or re-distributor interface */
293 plat_arm_gic_pcpu_init();
294
295 /* Enable GIC CPU interface */
296 plat_arm_gic_cpuif_enable();
297 }
298
299 /*******************************************************************************
300 * FVP handler called when a power domain has just been powered on after
301 * having been suspended earlier. The target_state encodes the low power state
302 * that each level has woken up from.
303 * TODO: At the moment we reuse the on finisher and reinitialize the secure
304 * context. Need to implement a separate suspend finisher.
305 ******************************************************************************/
fvp_pwr_domain_suspend_finish(const psci_power_state_t * target_state)306 static void fvp_pwr_domain_suspend_finish(const psci_power_state_t *target_state)
307 {
308 /*
309 * Nothing to be done on waking up from retention from CPU level.
310 */
311 if (target_state->pwr_domain_state[ARM_PWR_LVL0] ==
312 ARM_LOCAL_STATE_RET)
313 return;
314
315 fvp_power_domain_on_finish_common(target_state);
316
317 /* Enable GIC CPU interface */
318 plat_arm_gic_cpuif_enable();
319 }
320
321 /*******************************************************************************
322 * FVP handlers to shutdown/reboot the system
323 ******************************************************************************/
fvp_system_off(void)324 static void __dead2 fvp_system_off(void)
325 {
326 /* Write the System Configuration Control Register */
327 mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
328 V2M_CFGCTRL_START |
329 V2M_CFGCTRL_RW |
330 V2M_CFGCTRL_FUNC(V2M_FUNC_SHUTDOWN));
331 wfi();
332 ERROR("FVP System Off: operation not handled.\n");
333 panic();
334 }
335
fvp_system_reset(void)336 static void __dead2 fvp_system_reset(void)
337 {
338 /* Write the System Configuration Control Register */
339 mmio_write_32(V2M_SYSREGS_BASE + V2M_SYS_CFGCTRL,
340 V2M_CFGCTRL_START |
341 V2M_CFGCTRL_RW |
342 V2M_CFGCTRL_FUNC(V2M_FUNC_REBOOT));
343 wfi();
344 ERROR("FVP System Reset: operation not handled.\n");
345 panic();
346 }
347
fvp_node_hw_state(u_register_t target_cpu,unsigned int power_level)348 static int fvp_node_hw_state(u_register_t target_cpu,
349 unsigned int power_level)
350 {
351 unsigned int psysr;
352 int ret;
353
354 /*
355 * The format of 'power_level' is implementation-defined, but 0 must
356 * mean a CPU. We also allow 1 to denote the cluster
357 */
358 if ((power_level != ARM_PWR_LVL0) && (power_level != ARM_PWR_LVL1))
359 return PSCI_E_INVALID_PARAMS;
360
361 /*
362 * Read the status of the given MPDIR from FVP power controller. The
363 * power controller only gives us on/off status, so map that to expected
364 * return values of the PSCI call
365 */
366 psysr = fvp_pwrc_read_psysr(target_cpu);
367 if (psysr == PSYSR_INVALID)
368 return PSCI_E_INVALID_PARAMS;
369
370 if (power_level == ARM_PWR_LVL0) {
371 ret = ((psysr & PSYSR_AFF_L0) != 0U) ? HW_ON : HW_OFF;
372 } else {
373 /* power_level == ARM_PWR_LVL1 */
374 ret = ((psysr & PSYSR_AFF_L1) != 0U) ? HW_ON : HW_OFF;
375 }
376
377 return ret;
378 }
379
380 /*
381 * The FVP doesn't truly support power management at SYSTEM power domain. The
382 * SYSTEM_SUSPEND will be down-graded to the cluster level within the platform
383 * layer. The `fake` SYSTEM_SUSPEND allows us to validate some of the driver
384 * save and restore sequences on FVP.
385 */
386 #if !ARM_BL31_IN_DRAM
fvp_get_sys_suspend_power_state(psci_power_state_t * req_state)387 static void fvp_get_sys_suspend_power_state(psci_power_state_t *req_state)
388 {
389 unsigned int i;
390
391 for (i = ARM_PWR_LVL0; i <= PLAT_MAX_PWR_LVL; i++)
392 req_state->pwr_domain_state[i] = ARM_LOCAL_STATE_OFF;
393 }
394 #endif
395
396 /*******************************************************************************
397 * Handler to filter PSCI requests.
398 ******************************************************************************/
399 /*
400 * The system power domain suspend is only supported only via
401 * PSCI SYSTEM_SUSPEND API. PSCI CPU_SUSPEND request to system power domain
402 * will be downgraded to the lower level.
403 */
fvp_validate_power_state(unsigned int power_state,psci_power_state_t * req_state)404 static int fvp_validate_power_state(unsigned int power_state,
405 psci_power_state_t *req_state)
406 {
407 int rc;
408 rc = arm_validate_power_state(power_state, req_state);
409
410 /*
411 * Ensure that the system power domain level is never suspended
412 * via PSCI CPU SUSPEND API. Currently system suspend is only
413 * supported via PSCI SYSTEM SUSPEND API.
414 */
415 req_state->pwr_domain_state[ARM_PWR_LVL2] = ARM_LOCAL_STATE_RUN;
416 return rc;
417 }
418
419 /*
420 * Custom `translate_power_state_by_mpidr` handler for FVP. Unlike in the
421 * `fvp_validate_power_state`, we do not downgrade the system power
422 * domain level request in `power_state` as it will be used to query the
423 * PSCI_STAT_COUNT/RESIDENCY at the system power domain level.
424 */
fvp_translate_power_state_by_mpidr(u_register_t mpidr,unsigned int power_state,psci_power_state_t * output_state)425 static int fvp_translate_power_state_by_mpidr(u_register_t mpidr,
426 unsigned int power_state,
427 psci_power_state_t *output_state)
428 {
429 return arm_validate_power_state(power_state, output_state);
430 }
431
432 /*******************************************************************************
433 * Export the platform handlers via plat_arm_psci_pm_ops. The ARM Standard
434 * platform layer will take care of registering the handlers with PSCI.
435 ******************************************************************************/
436 plat_psci_ops_t plat_arm_psci_pm_ops = {
437 .cpu_standby = fvp_cpu_standby,
438 .pwr_domain_on = fvp_pwr_domain_on,
439 .pwr_domain_off = fvp_pwr_domain_off,
440 .pwr_domain_suspend = fvp_pwr_domain_suspend,
441 .pwr_domain_on_finish = fvp_pwr_domain_on_finish,
442 .pwr_domain_on_finish_late = fvp_pwr_domain_on_finish_late,
443 .pwr_domain_suspend_finish = fvp_pwr_domain_suspend_finish,
444 .system_off = fvp_system_off,
445 .system_reset = fvp_system_reset,
446 .validate_power_state = fvp_validate_power_state,
447 .validate_ns_entrypoint = arm_validate_psci_entrypoint,
448 .translate_power_state_by_mpidr = fvp_translate_power_state_by_mpidr,
449 .get_node_hw_state = fvp_node_hw_state,
450 #if !ARM_BL31_IN_DRAM
451 /*
452 * The TrustZone Controller is set up during the warmboot sequence after
453 * resuming the CPU from a SYSTEM_SUSPEND. If BL31 is located in SRAM
454 * this is not a problem but, if it is in TZC-secured DRAM, it tries to
455 * reconfigure the same memory it is running on, causing an exception.
456 */
457 .get_sys_suspend_power_state = fvp_get_sys_suspend_power_state,
458 #endif
459 .mem_protect_chk = arm_psci_mem_protect_chk,
460 .read_mem_protect = arm_psci_read_mem_protect,
461 .write_mem_protect = arm_nor_psci_write_mem_protect,
462 };
463
plat_arm_psci_override_pm_ops(plat_psci_ops_t * ops)464 const plat_psci_ops_t *plat_arm_psci_override_pm_ops(plat_psci_ops_t *ops)
465 {
466 return ops;
467 }
468