1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2016
4  * Author: Amit Singh Tomar, amittomer25@gmail.com
5  *
6  * Ethernet driver for H3/A64/A83T based SoC's
7  *
8  * It is derived from the work done by
9  * LABBE Corentin & Chen-Yu Tsai for Linux, THANKS!
10  *
11 */
12 
13 #include <cpu_func.h>
14 #include <log.h>
15 #include <asm/cache.h>
16 #include <asm/global_data.h>
17 #include <asm/io.h>
18 #include <asm/arch/clock.h>
19 #include <asm/arch/gpio.h>
20 #include <common.h>
21 #include <clk.h>
22 #include <dm.h>
23 #include <fdt_support.h>
24 #include <dm/device_compat.h>
25 #include <linux/bitops.h>
26 #include <linux/delay.h>
27 #include <linux/err.h>
28 #include <malloc.h>
29 #include <miiphy.h>
30 #include <net.h>
31 #include <reset.h>
32 #include <dt-bindings/pinctrl/sun4i-a10.h>
33 #include <wait_bit.h>
34 #if CONFIG_IS_ENABLED(DM_GPIO)
35 #include <asm-generic/gpio.h>
36 #endif
37 
38 #define MDIO_CMD_MII_BUSY		BIT(0)
39 #define MDIO_CMD_MII_WRITE		BIT(1)
40 
41 #define MDIO_CMD_MII_PHY_REG_ADDR_MASK	0x000001f0
42 #define MDIO_CMD_MII_PHY_REG_ADDR_SHIFT	4
43 #define MDIO_CMD_MII_PHY_ADDR_MASK	0x0001f000
44 #define MDIO_CMD_MII_PHY_ADDR_SHIFT	12
45 #define MDIO_CMD_MII_CLK_CSR_DIV_16	0x0
46 #define MDIO_CMD_MII_CLK_CSR_DIV_32	0x1
47 #define MDIO_CMD_MII_CLK_CSR_DIV_64	0x2
48 #define MDIO_CMD_MII_CLK_CSR_DIV_128	0x3
49 #define MDIO_CMD_MII_CLK_CSR_SHIFT	20
50 
51 #define CONFIG_TX_DESCR_NUM	32
52 #define CONFIG_RX_DESCR_NUM	32
53 #define CONFIG_ETH_BUFSIZE	2048 /* Note must be dma aligned */
54 
55 /*
56  * The datasheet says that each descriptor can transfers up to 4096 bytes
57  * But later, the register documentation reduces that value to 2048,
58  * using 2048 cause strange behaviours and even BSP driver use 2047
59  */
60 #define CONFIG_ETH_RXSIZE	2044 /* Note must fit in ETH_BUFSIZE */
61 
62 #define TX_TOTAL_BUFSIZE	(CONFIG_ETH_BUFSIZE * CONFIG_TX_DESCR_NUM)
63 #define RX_TOTAL_BUFSIZE	(CONFIG_ETH_BUFSIZE * CONFIG_RX_DESCR_NUM)
64 
65 #define H3_EPHY_DEFAULT_VALUE	0x58000
66 #define H3_EPHY_DEFAULT_MASK	GENMASK(31, 15)
67 #define H3_EPHY_ADDR_SHIFT	20
68 #define REG_PHY_ADDR_MASK	GENMASK(4, 0)
69 #define H3_EPHY_LED_POL		BIT(17)	/* 1: active low, 0: active high */
70 #define H3_EPHY_SHUTDOWN	BIT(16)	/* 1: shutdown, 0: power up */
71 #define H3_EPHY_SELECT		BIT(15) /* 1: internal PHY, 0: external PHY */
72 
73 #define SC_RMII_EN		BIT(13)
74 #define SC_EPIT			BIT(2) /* 1: RGMII, 0: MII */
75 #define SC_ETCS_MASK		GENMASK(1, 0)
76 #define SC_ETCS_EXT_GMII	0x1
77 #define SC_ETCS_INT_GMII	0x2
78 #define SC_ETXDC_MASK		GENMASK(12, 10)
79 #define SC_ETXDC_OFFSET		10
80 #define SC_ERXDC_MASK		GENMASK(9, 5)
81 #define SC_ERXDC_OFFSET		5
82 
83 #define CONFIG_MDIO_TIMEOUT	(3 * CONFIG_SYS_HZ)
84 
85 #define AHB_GATE_OFFSET_EPHY	0
86 
87 /* IO mux settings */
88 #define SUN8I_IOMUX_H3		2
89 #define SUN8I_IOMUX_R40		5
90 #define SUN8I_IOMUX_H6		5
91 #define SUN8I_IOMUX_H616	2
92 #define SUN8I_IOMUX		4
93 
94 /* H3/A64 EMAC Register's offset */
95 #define EMAC_CTL0		0x00
96 #define EMAC_CTL0_FULL_DUPLEX		BIT(0)
97 #define EMAC_CTL0_SPEED_MASK		GENMASK(3, 2)
98 #define EMAC_CTL0_SPEED_10		(0x2 << 2)
99 #define EMAC_CTL0_SPEED_100		(0x3 << 2)
100 #define EMAC_CTL0_SPEED_1000		(0x0 << 2)
101 #define EMAC_CTL1		0x04
102 #define EMAC_CTL1_SOFT_RST		BIT(0)
103 #define EMAC_CTL1_BURST_LEN_SHIFT	24
104 #define EMAC_INT_STA		0x08
105 #define EMAC_INT_EN		0x0c
106 #define EMAC_TX_CTL0		0x10
107 #define	EMAC_TX_CTL0_TX_EN		BIT(31)
108 #define EMAC_TX_CTL1		0x14
109 #define	EMAC_TX_CTL1_TX_MD		BIT(1)
110 #define	EMAC_TX_CTL1_TX_DMA_EN		BIT(30)
111 #define	EMAC_TX_CTL1_TX_DMA_START	BIT(31)
112 #define EMAC_TX_FLOW_CTL	0x1c
113 #define EMAC_TX_DMA_DESC	0x20
114 #define EMAC_RX_CTL0		0x24
115 #define	EMAC_RX_CTL0_RX_EN		BIT(31)
116 #define EMAC_RX_CTL1		0x28
117 #define	EMAC_RX_CTL1_RX_MD		BIT(1)
118 #define	EMAC_RX_CTL1_RX_RUNT_FRM	BIT(2)
119 #define	EMAC_RX_CTL1_RX_ERR_FRM		BIT(3)
120 #define	EMAC_RX_CTL1_RX_DMA_EN		BIT(30)
121 #define	EMAC_RX_CTL1_RX_DMA_START	BIT(31)
122 #define EMAC_RX_DMA_DESC	0x34
123 #define EMAC_MII_CMD		0x48
124 #define EMAC_MII_DATA		0x4c
125 #define EMAC_ADDR0_HIGH		0x50
126 #define EMAC_ADDR0_LOW		0x54
127 #define EMAC_TX_DMA_STA		0xb0
128 #define EMAC_TX_CUR_DESC	0xb4
129 #define EMAC_TX_CUR_BUF		0xb8
130 #define EMAC_RX_DMA_STA		0xc0
131 #define EMAC_RX_CUR_DESC	0xc4
132 
133 #define EMAC_DESC_OWN_DMA	BIT(31)
134 #define EMAC_DESC_LAST_DESC	BIT(30)
135 #define EMAC_DESC_FIRST_DESC	BIT(29)
136 #define EMAC_DESC_CHAIN_SECOND	BIT(24)
137 
138 #define EMAC_DESC_RX_ERROR_MASK	0x400068db
139 
140 DECLARE_GLOBAL_DATA_PTR;
141 
142 enum emac_variant {
143 	A83T_EMAC = 1,
144 	H3_EMAC,
145 	A64_EMAC,
146 	R40_GMAC,
147 	H6_EMAC,
148 };
149 
150 struct emac_dma_desc {
151 	u32 status;
152 	u32 ctl_size;
153 	u32 buf_addr;
154 	u32 next;
155 } __aligned(ARCH_DMA_MINALIGN);
156 
157 struct emac_eth_dev {
158 	struct emac_dma_desc rx_chain[CONFIG_TX_DESCR_NUM];
159 	struct emac_dma_desc tx_chain[CONFIG_RX_DESCR_NUM];
160 	char rxbuffer[RX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN);
161 	char txbuffer[TX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN);
162 
163 	u32 interface;
164 	u32 phyaddr;
165 	u32 link;
166 	u32 speed;
167 	u32 duplex;
168 	u32 phy_configured;
169 	u32 tx_currdescnum;
170 	u32 rx_currdescnum;
171 	u32 addr;
172 	u32 tx_slot;
173 	bool use_internal_phy;
174 
175 	enum emac_variant variant;
176 	void *mac_reg;
177 	phys_addr_t sysctl_reg;
178 	struct phy_device *phydev;
179 	struct mii_dev *bus;
180 	struct clk tx_clk;
181 	struct clk ephy_clk;
182 	struct reset_ctl tx_rst;
183 	struct reset_ctl ephy_rst;
184 #if CONFIG_IS_ENABLED(DM_GPIO)
185 	struct gpio_desc reset_gpio;
186 #endif
187 };
188 
189 
190 struct sun8i_eth_pdata {
191 	struct eth_pdata eth_pdata;
192 	u32 reset_delays[3];
193 	int tx_delay_ps;
194 	int rx_delay_ps;
195 };
196 
197 
sun8i_mdio_read(struct mii_dev * bus,int addr,int devad,int reg)198 static int sun8i_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
199 {
200 	struct udevice *dev = bus->priv;
201 	struct emac_eth_dev *priv = dev_get_priv(dev);
202 	u32 mii_cmd;
203 	int ret;
204 
205 	mii_cmd = (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) &
206 		MDIO_CMD_MII_PHY_REG_ADDR_MASK;
207 	mii_cmd |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) &
208 		MDIO_CMD_MII_PHY_ADDR_MASK;
209 
210 	/*
211 	 * The EMAC clock is either 200 or 300 MHz, so we need a divider
212 	 * of 128 to get the MDIO frequency below the required 2.5 MHz.
213 	 */
214 	mii_cmd |= MDIO_CMD_MII_CLK_CSR_DIV_128 << MDIO_CMD_MII_CLK_CSR_SHIFT;
215 
216 	mii_cmd |= MDIO_CMD_MII_BUSY;
217 
218 	writel(mii_cmd, priv->mac_reg + EMAC_MII_CMD);
219 
220 	ret = wait_for_bit_le32(priv->mac_reg + EMAC_MII_CMD,
221 				MDIO_CMD_MII_BUSY, false,
222 				CONFIG_MDIO_TIMEOUT, true);
223 	if (ret < 0)
224 		return ret;
225 
226 	return readl(priv->mac_reg + EMAC_MII_DATA);
227 }
228 
sun8i_mdio_write(struct mii_dev * bus,int addr,int devad,int reg,u16 val)229 static int sun8i_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
230 			    u16 val)
231 {
232 	struct udevice *dev = bus->priv;
233 	struct emac_eth_dev *priv = dev_get_priv(dev);
234 	u32 mii_cmd;
235 
236 	mii_cmd = (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) &
237 		MDIO_CMD_MII_PHY_REG_ADDR_MASK;
238 	mii_cmd |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) &
239 		MDIO_CMD_MII_PHY_ADDR_MASK;
240 
241 	/*
242 	 * The EMAC clock is either 200 or 300 MHz, so we need a divider
243 	 * of 128 to get the MDIO frequency below the required 2.5 MHz.
244 	 */
245 	mii_cmd |= MDIO_CMD_MII_CLK_CSR_DIV_128 << MDIO_CMD_MII_CLK_CSR_SHIFT;
246 
247 	mii_cmd |= MDIO_CMD_MII_WRITE;
248 	mii_cmd |= MDIO_CMD_MII_BUSY;
249 
250 	writel(val, priv->mac_reg + EMAC_MII_DATA);
251 	writel(mii_cmd, priv->mac_reg + EMAC_MII_CMD);
252 
253 	return wait_for_bit_le32(priv->mac_reg + EMAC_MII_CMD,
254 				 MDIO_CMD_MII_BUSY, false,
255 				 CONFIG_MDIO_TIMEOUT, true);
256 }
257 
sun8i_eth_write_hwaddr(struct udevice * dev)258 static int sun8i_eth_write_hwaddr(struct udevice *dev)
259 {
260 	struct emac_eth_dev *priv = dev_get_priv(dev);
261 	struct eth_pdata *pdata = dev_get_plat(dev);
262 	uchar *mac_id = pdata->enetaddr;
263 	u32 macid_lo, macid_hi;
264 
265 	macid_lo = mac_id[0] + (mac_id[1] << 8) + (mac_id[2] << 16) +
266 		(mac_id[3] << 24);
267 	macid_hi = mac_id[4] + (mac_id[5] << 8);
268 
269 	writel(macid_hi, priv->mac_reg + EMAC_ADDR0_HIGH);
270 	writel(macid_lo, priv->mac_reg + EMAC_ADDR0_LOW);
271 
272 	return 0;
273 }
274 
sun8i_adjust_link(struct emac_eth_dev * priv,struct phy_device * phydev)275 static void sun8i_adjust_link(struct emac_eth_dev *priv,
276 			      struct phy_device *phydev)
277 {
278 	u32 v;
279 
280 	v = readl(priv->mac_reg + EMAC_CTL0);
281 
282 	if (phydev->duplex)
283 		v |= EMAC_CTL0_FULL_DUPLEX;
284 	else
285 		v &= ~EMAC_CTL0_FULL_DUPLEX;
286 
287 	v &= ~EMAC_CTL0_SPEED_MASK;
288 
289 	switch (phydev->speed) {
290 	case 1000:
291 		v |= EMAC_CTL0_SPEED_1000;
292 		break;
293 	case 100:
294 		v |= EMAC_CTL0_SPEED_100;
295 		break;
296 	case 10:
297 		v |= EMAC_CTL0_SPEED_10;
298 		break;
299 	}
300 	writel(v, priv->mac_reg + EMAC_CTL0);
301 }
302 
sun8i_emac_set_syscon_ephy(struct emac_eth_dev * priv,u32 reg)303 static u32 sun8i_emac_set_syscon_ephy(struct emac_eth_dev *priv, u32 reg)
304 {
305 	if (priv->use_internal_phy) {
306 		/* H3 based SoC's that has an Internal 100MBit PHY
307 		 * needs to be configured and powered up before use
308 		*/
309 		reg &= ~H3_EPHY_DEFAULT_MASK;
310 		reg |=  H3_EPHY_DEFAULT_VALUE;
311 		reg |= priv->phyaddr << H3_EPHY_ADDR_SHIFT;
312 		reg &= ~H3_EPHY_SHUTDOWN;
313 		return reg | H3_EPHY_SELECT;
314 	}
315 
316 	/* This is to select External Gigabit PHY on those boards with
317 	 * an internal PHY. Does not hurt on other SoCs. Linux does
318 	 * it as well.
319 	 */
320 	return reg & ~H3_EPHY_SELECT;
321 }
322 
sun8i_emac_set_syscon(struct sun8i_eth_pdata * pdata,struct emac_eth_dev * priv)323 static int sun8i_emac_set_syscon(struct sun8i_eth_pdata *pdata,
324 				 struct emac_eth_dev *priv)
325 {
326 	u32 reg;
327 
328 	if (priv->variant == R40_GMAC) {
329 		/* Select RGMII for R40 */
330 		reg = readl(priv->sysctl_reg + 0x164);
331 		reg |= SC_ETCS_INT_GMII |
332 		       SC_EPIT |
333 		       (CONFIG_GMAC_TX_DELAY << SC_ETXDC_OFFSET);
334 
335 		writel(reg, priv->sysctl_reg + 0x164);
336 		return 0;
337 	}
338 
339 	reg = readl(priv->sysctl_reg + 0x30);
340 
341 	reg = sun8i_emac_set_syscon_ephy(priv, reg);
342 
343 	reg &= ~(SC_ETCS_MASK | SC_EPIT);
344 	if (priv->variant == H3_EMAC ||
345 	    priv->variant == A64_EMAC ||
346 	    priv->variant == H6_EMAC)
347 		reg &= ~SC_RMII_EN;
348 
349 	switch (priv->interface) {
350 	case PHY_INTERFACE_MODE_MII:
351 		/* default */
352 		break;
353 	case PHY_INTERFACE_MODE_RGMII:
354 	case PHY_INTERFACE_MODE_RGMII_ID:
355 	case PHY_INTERFACE_MODE_RGMII_RXID:
356 	case PHY_INTERFACE_MODE_RGMII_TXID:
357 		reg |= SC_EPIT | SC_ETCS_INT_GMII;
358 		break;
359 	case PHY_INTERFACE_MODE_RMII:
360 		if (priv->variant == H3_EMAC ||
361 		    priv->variant == A64_EMAC ||
362 		    priv->variant == H6_EMAC) {
363 			reg |= SC_RMII_EN | SC_ETCS_EXT_GMII;
364 		break;
365 		}
366 		/* RMII not supported on A83T */
367 	default:
368 		debug("%s: Invalid PHY interface\n", __func__);
369 		return -EINVAL;
370 	}
371 
372 	if (pdata->tx_delay_ps)
373 		reg |= ((pdata->tx_delay_ps / 100) << SC_ETXDC_OFFSET)
374 			 & SC_ETXDC_MASK;
375 
376 	if (pdata->rx_delay_ps)
377 		reg |= ((pdata->rx_delay_ps / 100) << SC_ERXDC_OFFSET)
378 			 & SC_ERXDC_MASK;
379 
380 	writel(reg, priv->sysctl_reg + 0x30);
381 
382 	return 0;
383 }
384 
sun8i_phy_init(struct emac_eth_dev * priv,void * dev)385 static int sun8i_phy_init(struct emac_eth_dev *priv, void *dev)
386 {
387 	struct phy_device *phydev;
388 
389 	phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface);
390 	if (!phydev)
391 		return -ENODEV;
392 
393 	phy_connect_dev(phydev, dev);
394 
395 	priv->phydev = phydev;
396 	phy_config(priv->phydev);
397 
398 	return 0;
399 }
400 
401 #define cache_clean_descriptor(desc)					\
402 	flush_dcache_range((uintptr_t)(desc), 				\
403 			   (uintptr_t)(desc) + sizeof(struct emac_dma_desc))
404 
405 #define cache_inv_descriptor(desc)					\
406 	invalidate_dcache_range((uintptr_t)(desc),			\
407 			       (uintptr_t)(desc) + sizeof(struct emac_dma_desc))
408 
rx_descs_init(struct emac_eth_dev * priv)409 static void rx_descs_init(struct emac_eth_dev *priv)
410 {
411 	struct emac_dma_desc *desc_table_p = &priv->rx_chain[0];
412 	char *rxbuffs = &priv->rxbuffer[0];
413 	struct emac_dma_desc *desc_p;
414 	int i;
415 
416 	/*
417 	 * Make sure we don't have dirty cache lines around, which could
418 	 * be cleaned to DRAM *after* the MAC has already written data to it.
419 	 */
420 	invalidate_dcache_range((uintptr_t)desc_table_p,
421 			      (uintptr_t)desc_table_p + sizeof(priv->rx_chain));
422 	invalidate_dcache_range((uintptr_t)rxbuffs,
423 				(uintptr_t)rxbuffs + sizeof(priv->rxbuffer));
424 
425 	for (i = 0; i < CONFIG_RX_DESCR_NUM; i++) {
426 		desc_p = &desc_table_p[i];
427 		desc_p->buf_addr = (uintptr_t)&rxbuffs[i * CONFIG_ETH_BUFSIZE];
428 		desc_p->next = (uintptr_t)&desc_table_p[i + 1];
429 		desc_p->ctl_size = CONFIG_ETH_RXSIZE;
430 		desc_p->status = EMAC_DESC_OWN_DMA;
431 	}
432 
433 	/* Correcting the last pointer of the chain */
434 	desc_p->next = (uintptr_t)&desc_table_p[0];
435 
436 	flush_dcache_range((uintptr_t)priv->rx_chain,
437 			   (uintptr_t)priv->rx_chain +
438 			sizeof(priv->rx_chain));
439 
440 	writel((uintptr_t)&desc_table_p[0], (priv->mac_reg + EMAC_RX_DMA_DESC));
441 	priv->rx_currdescnum = 0;
442 }
443 
tx_descs_init(struct emac_eth_dev * priv)444 static void tx_descs_init(struct emac_eth_dev *priv)
445 {
446 	struct emac_dma_desc *desc_table_p = &priv->tx_chain[0];
447 	char *txbuffs = &priv->txbuffer[0];
448 	struct emac_dma_desc *desc_p;
449 	int i;
450 
451 	for (i = 0; i < CONFIG_TX_DESCR_NUM; i++) {
452 		desc_p = &desc_table_p[i];
453 		desc_p->buf_addr = (uintptr_t)&txbuffs[i * CONFIG_ETH_BUFSIZE];
454 		desc_p->next = (uintptr_t)&desc_table_p[i + 1];
455 		desc_p->ctl_size = 0;
456 		desc_p->status = 0;
457 	}
458 
459 	/* Correcting the last pointer of the chain */
460 	desc_p->next =  (uintptr_t)&desc_table_p[0];
461 
462 	/* Flush the first TX buffer descriptor we will tell the MAC about. */
463 	cache_clean_descriptor(desc_table_p);
464 
465 	writel((uintptr_t)&desc_table_p[0], priv->mac_reg + EMAC_TX_DMA_DESC);
466 	priv->tx_currdescnum = 0;
467 }
468 
sun8i_emac_eth_start(struct udevice * dev)469 static int sun8i_emac_eth_start(struct udevice *dev)
470 {
471 	struct emac_eth_dev *priv = dev_get_priv(dev);
472 	int ret;
473 
474 	/* Soft reset MAC */
475 	writel(EMAC_CTL1_SOFT_RST, priv->mac_reg + EMAC_CTL1);
476 	ret = wait_for_bit_le32(priv->mac_reg + EMAC_CTL1,
477 				EMAC_CTL1_SOFT_RST, false, 10, true);
478 	if (ret) {
479 		printf("%s: Timeout\n", __func__);
480 		return ret;
481 	}
482 
483 	/* Rewrite mac address after reset */
484 	sun8i_eth_write_hwaddr(dev);
485 
486 	/* transmission starts after the full frame arrived in TX DMA FIFO */
487 	setbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_MD);
488 
489 	/*
490 	 * RX DMA reads data from RX DMA FIFO to host memory after a
491 	 * complete frame has been written to RX DMA FIFO
492 	 */
493 	setbits_le32(priv->mac_reg + EMAC_RX_CTL1, EMAC_RX_CTL1_RX_MD);
494 
495 	/* DMA burst length */
496 	writel(8 << EMAC_CTL1_BURST_LEN_SHIFT, priv->mac_reg + EMAC_CTL1);
497 
498 	/* Initialize rx/tx descriptors */
499 	rx_descs_init(priv);
500 	tx_descs_init(priv);
501 
502 	/* PHY Start Up */
503 	ret = phy_startup(priv->phydev);
504 	if (ret)
505 		return ret;
506 
507 	sun8i_adjust_link(priv, priv->phydev);
508 
509 	/* Start RX/TX DMA */
510 	setbits_le32(priv->mac_reg + EMAC_RX_CTL1, EMAC_RX_CTL1_RX_DMA_EN |
511 		     EMAC_RX_CTL1_RX_ERR_FRM | EMAC_RX_CTL1_RX_RUNT_FRM);
512 	setbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_DMA_EN);
513 
514 	/* Enable RX/TX */
515 	setbits_le32(priv->mac_reg + EMAC_RX_CTL0, EMAC_RX_CTL0_RX_EN);
516 	setbits_le32(priv->mac_reg + EMAC_TX_CTL0, EMAC_TX_CTL0_TX_EN);
517 
518 	return 0;
519 }
520 
parse_phy_pins(struct udevice * dev)521 static int parse_phy_pins(struct udevice *dev)
522 {
523 	int offset;
524 	const char *pin_name;
525 	int drive, pull = SUN4I_PINCTRL_NO_PULL, i;
526 	u32 iomux;
527 
528 	offset = fdtdec_lookup_phandle(gd->fdt_blob, dev_of_offset(dev),
529 				       "pinctrl-0");
530 	if (offset < 0) {
531 		printf("WARNING: emac: cannot find pinctrl-0 node\n");
532 		return offset;
533 	}
534 
535 	drive = fdt_getprop_u32_default_node(gd->fdt_blob, offset, 0,
536 					     "drive-strength", ~0);
537 	if (drive != ~0) {
538 		if (drive <= 10)
539 			drive = SUN4I_PINCTRL_10_MA;
540 		else if (drive <= 20)
541 			drive = SUN4I_PINCTRL_20_MA;
542 		else if (drive <= 30)
543 			drive = SUN4I_PINCTRL_30_MA;
544 		else
545 			drive = SUN4I_PINCTRL_40_MA;
546 	}
547 
548 	if (fdt_get_property(gd->fdt_blob, offset, "bias-pull-up", NULL))
549 		pull = SUN4I_PINCTRL_PULL_UP;
550 	else if (fdt_get_property(gd->fdt_blob, offset, "bias-pull-down", NULL))
551 		pull = SUN4I_PINCTRL_PULL_DOWN;
552 
553 	/*
554 	 * The GPIO pinmux value is an integration choice, so depends on the
555 	 * SoC, not the EMAC variant.
556 	 */
557 	if (IS_ENABLED(CONFIG_MACH_SUN8I_H3))
558 		iomux = SUN8I_IOMUX_H3;
559 	else if (IS_ENABLED(CONFIG_MACH_SUN8I_R40))
560 		iomux = SUN8I_IOMUX_R40;
561 	else if (IS_ENABLED(CONFIG_MACH_SUN50I_H6))
562 		iomux = SUN8I_IOMUX_H6;
563 	else if (IS_ENABLED(CONFIG_MACH_SUN50I_H616))
564 		iomux = SUN8I_IOMUX_H616;
565 	else
566 		iomux = SUN8I_IOMUX;
567 
568 	for (i = 0; ; i++) {
569 		int pin;
570 
571 		pin_name = fdt_stringlist_get(gd->fdt_blob, offset,
572 					      "pins", i, NULL);
573 		if (!pin_name)
574 			break;
575 
576 		pin = sunxi_name_to_gpio(pin_name);
577 		if (pin < 0)
578 			continue;
579 
580 		sunxi_gpio_set_cfgpin(pin, iomux);
581 
582 		if (drive != ~0)
583 			sunxi_gpio_set_drv(pin, drive);
584 		if (pull != ~0)
585 			sunxi_gpio_set_pull(pin, pull);
586 	}
587 
588 	if (!i) {
589 		printf("WARNING: emac: cannot find pins property\n");
590 		return -2;
591 	}
592 
593 	return 0;
594 }
595 
sun8i_emac_eth_recv(struct udevice * dev,int flags,uchar ** packetp)596 static int sun8i_emac_eth_recv(struct udevice *dev, int flags, uchar **packetp)
597 {
598 	struct emac_eth_dev *priv = dev_get_priv(dev);
599 	u32 status, desc_num = priv->rx_currdescnum;
600 	struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num];
601 	uintptr_t data_start = (uintptr_t)desc_p->buf_addr;
602 	int length;
603 
604 	/* Invalidate entire buffer descriptor */
605 	cache_inv_descriptor(desc_p);
606 
607 	status = desc_p->status;
608 
609 	/* Check for DMA own bit */
610 	if (status & EMAC_DESC_OWN_DMA)
611 		return -EAGAIN;
612 
613 	length = (status >> 16) & 0x3fff;
614 
615 	/* make sure we read from DRAM, not our cache */
616 	invalidate_dcache_range(data_start,
617 				data_start + roundup(length, ARCH_DMA_MINALIGN));
618 
619 	if (status & EMAC_DESC_RX_ERROR_MASK) {
620 		debug("RX: packet error: 0x%x\n",
621 		      status & EMAC_DESC_RX_ERROR_MASK);
622 		return 0;
623 	}
624 	if (length < 0x40) {
625 		debug("RX: Bad Packet (runt)\n");
626 		return 0;
627 	}
628 
629 	if (length > CONFIG_ETH_RXSIZE) {
630 		debug("RX: Too large packet (%d bytes)\n", length);
631 		return 0;
632 	}
633 
634 	*packetp = (uchar *)(ulong)desc_p->buf_addr;
635 
636 	return length;
637 }
638 
sun8i_emac_eth_send(struct udevice * dev,void * packet,int length)639 static int sun8i_emac_eth_send(struct udevice *dev, void *packet, int length)
640 {
641 	struct emac_eth_dev *priv = dev_get_priv(dev);
642 	u32 desc_num = priv->tx_currdescnum;
643 	struct emac_dma_desc *desc_p = &priv->tx_chain[desc_num];
644 	uintptr_t data_start = (uintptr_t)desc_p->buf_addr;
645 	uintptr_t data_end = data_start +
646 		roundup(length, ARCH_DMA_MINALIGN);
647 
648 	desc_p->ctl_size = length | EMAC_DESC_CHAIN_SECOND;
649 
650 	memcpy((void *)data_start, packet, length);
651 
652 	/* Flush data to be sent */
653 	flush_dcache_range(data_start, data_end);
654 
655 	/* frame begin and end */
656 	desc_p->ctl_size |= EMAC_DESC_LAST_DESC | EMAC_DESC_FIRST_DESC;
657 	desc_p->status = EMAC_DESC_OWN_DMA;
658 
659 	/* make sure the MAC reads the actual data from DRAM */
660 	cache_clean_descriptor(desc_p);
661 
662 	/* Move to next Descriptor and wrap around */
663 	if (++desc_num >= CONFIG_TX_DESCR_NUM)
664 		desc_num = 0;
665 	priv->tx_currdescnum = desc_num;
666 
667 	/* Start the DMA */
668 	setbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_DMA_START);
669 
670 	/*
671 	 * Since we copied the data above, we return here without waiting
672 	 * for the packet to be actually send out.
673 	 */
674 
675 	return 0;
676 }
677 
sun8i_emac_board_setup(struct udevice * dev,struct emac_eth_dev * priv)678 static int sun8i_emac_board_setup(struct udevice *dev,
679 				  struct emac_eth_dev *priv)
680 {
681 	int ret;
682 
683 	ret = clk_enable(&priv->tx_clk);
684 	if (ret) {
685 		dev_err(dev, "failed to enable TX clock\n");
686 		return ret;
687 	}
688 
689 	if (reset_valid(&priv->tx_rst)) {
690 		ret = reset_deassert(&priv->tx_rst);
691 		if (ret) {
692 			dev_err(dev, "failed to deassert TX reset\n");
693 			goto err_tx_clk;
694 		}
695 	}
696 
697 	/* Only H3/H5 have clock controls for internal EPHY */
698 	if (clk_valid(&priv->ephy_clk)) {
699 		ret = clk_enable(&priv->ephy_clk);
700 		if (ret) {
701 			dev_err(dev, "failed to enable EPHY TX clock\n");
702 			return ret;
703 		}
704 	}
705 
706 	if (reset_valid(&priv->ephy_rst)) {
707 		ret = reset_deassert(&priv->ephy_rst);
708 		if (ret) {
709 			dev_err(dev, "failed to deassert EPHY TX clock\n");
710 			return ret;
711 		}
712 	}
713 
714 	return 0;
715 
716 err_tx_clk:
717 	clk_disable(&priv->tx_clk);
718 	return ret;
719 }
720 
721 #if CONFIG_IS_ENABLED(DM_GPIO)
sun8i_mdio_reset(struct mii_dev * bus)722 static int sun8i_mdio_reset(struct mii_dev *bus)
723 {
724 	struct udevice *dev = bus->priv;
725 	struct emac_eth_dev *priv = dev_get_priv(dev);
726 	struct sun8i_eth_pdata *pdata = dev_get_plat(dev);
727 	int ret;
728 
729 	if (!dm_gpio_is_valid(&priv->reset_gpio))
730 		return 0;
731 
732 	/* reset the phy */
733 	ret = dm_gpio_set_value(&priv->reset_gpio, 0);
734 	if (ret)
735 		return ret;
736 
737 	udelay(pdata->reset_delays[0]);
738 
739 	ret = dm_gpio_set_value(&priv->reset_gpio, 1);
740 	if (ret)
741 		return ret;
742 
743 	udelay(pdata->reset_delays[1]);
744 
745 	ret = dm_gpio_set_value(&priv->reset_gpio, 0);
746 	if (ret)
747 		return ret;
748 
749 	udelay(pdata->reset_delays[2]);
750 
751 	return 0;
752 }
753 #endif
754 
sun8i_mdio_init(const char * name,struct udevice * priv)755 static int sun8i_mdio_init(const char *name, struct udevice *priv)
756 {
757 	struct mii_dev *bus = mdio_alloc();
758 
759 	if (!bus) {
760 		debug("Failed to allocate MDIO bus\n");
761 		return -ENOMEM;
762 	}
763 
764 	bus->read = sun8i_mdio_read;
765 	bus->write = sun8i_mdio_write;
766 	snprintf(bus->name, sizeof(bus->name), name);
767 	bus->priv = (void *)priv;
768 #if CONFIG_IS_ENABLED(DM_GPIO)
769 	bus->reset = sun8i_mdio_reset;
770 #endif
771 
772 	return  mdio_register(bus);
773 }
774 
sun8i_eth_free_pkt(struct udevice * dev,uchar * packet,int length)775 static int sun8i_eth_free_pkt(struct udevice *dev, uchar *packet,
776 			      int length)
777 {
778 	struct emac_eth_dev *priv = dev_get_priv(dev);
779 	u32 desc_num = priv->rx_currdescnum;
780 	struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num];
781 
782 	/* give the current descriptor back to the MAC */
783 	desc_p->status |= EMAC_DESC_OWN_DMA;
784 
785 	/* Flush Status field of descriptor */
786 	cache_clean_descriptor(desc_p);
787 
788 	/* Move to next desc and wrap-around condition. */
789 	if (++desc_num >= CONFIG_RX_DESCR_NUM)
790 		desc_num = 0;
791 	priv->rx_currdescnum = desc_num;
792 
793 	return 0;
794 }
795 
sun8i_emac_eth_stop(struct udevice * dev)796 static void sun8i_emac_eth_stop(struct udevice *dev)
797 {
798 	struct emac_eth_dev *priv = dev_get_priv(dev);
799 
800 	/* Stop Rx/Tx transmitter */
801 	clrbits_le32(priv->mac_reg + EMAC_RX_CTL0, EMAC_RX_CTL0_RX_EN);
802 	clrbits_le32(priv->mac_reg + EMAC_TX_CTL0, EMAC_TX_CTL0_TX_EN);
803 
804 	/* Stop RX/TX DMA */
805 	clrbits_le32(priv->mac_reg + EMAC_TX_CTL1, EMAC_TX_CTL1_TX_DMA_EN);
806 	clrbits_le32(priv->mac_reg + EMAC_RX_CTL1, EMAC_RX_CTL1_RX_DMA_EN);
807 
808 	phy_shutdown(priv->phydev);
809 }
810 
sun8i_emac_eth_probe(struct udevice * dev)811 static int sun8i_emac_eth_probe(struct udevice *dev)
812 {
813 	struct sun8i_eth_pdata *sun8i_pdata = dev_get_plat(dev);
814 	struct eth_pdata *pdata = &sun8i_pdata->eth_pdata;
815 	struct emac_eth_dev *priv = dev_get_priv(dev);
816 	int ret;
817 
818 	priv->mac_reg = (void *)pdata->iobase;
819 
820 	ret = sun8i_emac_board_setup(dev, priv);
821 	if (ret)
822 		return ret;
823 
824 	sun8i_emac_set_syscon(sun8i_pdata, priv);
825 
826 	sun8i_mdio_init(dev->name, dev);
827 	priv->bus = miiphy_get_dev_by_name(dev->name);
828 
829 	return sun8i_phy_init(priv, dev);
830 }
831 
832 static const struct eth_ops sun8i_emac_eth_ops = {
833 	.start                  = sun8i_emac_eth_start,
834 	.write_hwaddr           = sun8i_eth_write_hwaddr,
835 	.send                   = sun8i_emac_eth_send,
836 	.recv                   = sun8i_emac_eth_recv,
837 	.free_pkt               = sun8i_eth_free_pkt,
838 	.stop                   = sun8i_emac_eth_stop,
839 };
840 
sun8i_handle_internal_phy(struct udevice * dev,struct emac_eth_dev * priv)841 static int sun8i_handle_internal_phy(struct udevice *dev, struct emac_eth_dev *priv)
842 {
843 	struct ofnode_phandle_args phandle;
844 	int ret;
845 
846 	ret = ofnode_parse_phandle_with_args(dev_ofnode(dev), "phy-handle",
847 					     NULL, 0, 0, &phandle);
848 	if (ret)
849 		return ret;
850 
851 	/* If the PHY node is not a child of the internal MDIO bus, we are
852 	 * using some external PHY.
853 	 */
854 	if (!ofnode_device_is_compatible(ofnode_get_parent(phandle.node),
855 					 "allwinner,sun8i-h3-mdio-internal"))
856 		return 0;
857 
858 	ret = clk_get_by_index_nodev(phandle.node, 0, &priv->ephy_clk);
859 	if (ret) {
860 		dev_err(dev, "failed to get EPHY TX clock\n");
861 		return ret;
862 	}
863 
864 	ret = reset_get_by_index_nodev(phandle.node, 0, &priv->ephy_rst);
865 	if (ret) {
866 		dev_err(dev, "failed to get EPHY TX reset\n");
867 		return ret;
868 	}
869 
870 	priv->use_internal_phy = true;
871 
872 	return 0;
873 }
874 
sun8i_emac_eth_of_to_plat(struct udevice * dev)875 static int sun8i_emac_eth_of_to_plat(struct udevice *dev)
876 {
877 	struct sun8i_eth_pdata *sun8i_pdata = dev_get_plat(dev);
878 	struct eth_pdata *pdata = &sun8i_pdata->eth_pdata;
879 	struct emac_eth_dev *priv = dev_get_priv(dev);
880 	const char *phy_mode;
881 	const fdt32_t *reg;
882 	int node = dev_of_offset(dev);
883 	int offset = 0;
884 #if CONFIG_IS_ENABLED(DM_GPIO)
885 	int reset_flags = GPIOD_IS_OUT;
886 #endif
887 	int ret;
888 
889 	pdata->iobase = dev_read_addr(dev);
890 	if (pdata->iobase == FDT_ADDR_T_NONE) {
891 		debug("%s: Cannot find MAC base address\n", __func__);
892 		return -EINVAL;
893 	}
894 
895 	priv->variant = dev_get_driver_data(dev);
896 
897 	if (!priv->variant) {
898 		printf("%s: Missing variant\n", __func__);
899 		return -EINVAL;
900 	}
901 
902 	ret = clk_get_by_name(dev, "stmmaceth", &priv->tx_clk);
903 	if (ret) {
904 		dev_err(dev, "failed to get TX clock\n");
905 		return ret;
906 	}
907 
908 	ret = reset_get_by_name(dev, "stmmaceth", &priv->tx_rst);
909 	if (ret && ret != -ENOENT) {
910 		dev_err(dev, "failed to get TX reset\n");
911 		return ret;
912 	}
913 
914 	offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "syscon");
915 	if (offset < 0) {
916 		debug("%s: cannot find syscon node\n", __func__);
917 		return -EINVAL;
918 	}
919 
920 	reg = fdt_getprop(gd->fdt_blob, offset, "reg", NULL);
921 	if (!reg) {
922 		debug("%s: cannot find reg property in syscon node\n",
923 		      __func__);
924 		return -EINVAL;
925 	}
926 	priv->sysctl_reg = fdt_translate_address((void *)gd->fdt_blob,
927 						 offset, reg);
928 	if (priv->sysctl_reg == FDT_ADDR_T_NONE) {
929 		debug("%s: Cannot find syscon base address\n", __func__);
930 		return -EINVAL;
931 	}
932 
933 	pdata->phy_interface = -1;
934 	priv->phyaddr = -1;
935 	priv->use_internal_phy = false;
936 
937 	offset = fdtdec_lookup_phandle(gd->fdt_blob, node, "phy-handle");
938 	if (offset < 0) {
939 		debug("%s: Cannot find PHY address\n", __func__);
940 		return -EINVAL;
941 	}
942 	priv->phyaddr = fdtdec_get_int(gd->fdt_blob, offset, "reg", -1);
943 
944 	phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL);
945 
946 	if (phy_mode)
947 		pdata->phy_interface = phy_get_interface_by_name(phy_mode);
948 	printf("phy interface%d\n", pdata->phy_interface);
949 
950 	if (pdata->phy_interface == -1) {
951 		debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
952 		return -EINVAL;
953 	}
954 
955 	if (priv->variant == H3_EMAC) {
956 		ret = sun8i_handle_internal_phy(dev, priv);
957 		if (ret)
958 			return ret;
959 	}
960 
961 	priv->interface = pdata->phy_interface;
962 
963 	if (!priv->use_internal_phy)
964 		parse_phy_pins(dev);
965 
966 	sun8i_pdata->tx_delay_ps = fdtdec_get_int(gd->fdt_blob, node,
967 						  "allwinner,tx-delay-ps", 0);
968 	if (sun8i_pdata->tx_delay_ps < 0 || sun8i_pdata->tx_delay_ps > 700)
969 		printf("%s: Invalid TX delay value %d\n", __func__,
970 		       sun8i_pdata->tx_delay_ps);
971 
972 	sun8i_pdata->rx_delay_ps = fdtdec_get_int(gd->fdt_blob, node,
973 						  "allwinner,rx-delay-ps", 0);
974 	if (sun8i_pdata->rx_delay_ps < 0 || sun8i_pdata->rx_delay_ps > 3100)
975 		printf("%s: Invalid RX delay value %d\n", __func__,
976 		       sun8i_pdata->rx_delay_ps);
977 
978 #if CONFIG_IS_ENABLED(DM_GPIO)
979 	if (fdtdec_get_bool(gd->fdt_blob, dev_of_offset(dev),
980 			    "snps,reset-active-low"))
981 		reset_flags |= GPIOD_ACTIVE_LOW;
982 
983 	ret = gpio_request_by_name(dev, "snps,reset-gpio", 0,
984 				   &priv->reset_gpio, reset_flags);
985 
986 	if (ret == 0) {
987 		ret = fdtdec_get_int_array(gd->fdt_blob, dev_of_offset(dev),
988 					   "snps,reset-delays-us",
989 					   sun8i_pdata->reset_delays, 3);
990 	} else if (ret == -ENOENT) {
991 		ret = 0;
992 	}
993 #endif
994 
995 	return 0;
996 }
997 
998 static const struct udevice_id sun8i_emac_eth_ids[] = {
999 	{.compatible = "allwinner,sun8i-h3-emac", .data = (uintptr_t)H3_EMAC },
1000 	{.compatible = "allwinner,sun50i-a64-emac",
1001 		.data = (uintptr_t)A64_EMAC },
1002 	{.compatible = "allwinner,sun8i-a83t-emac",
1003 		.data = (uintptr_t)A83T_EMAC },
1004 	{.compatible = "allwinner,sun8i-r40-gmac",
1005 		.data = (uintptr_t)R40_GMAC },
1006 	{.compatible = "allwinner,sun50i-h6-emac",
1007 		.data = (uintptr_t)H6_EMAC },
1008 	{ }
1009 };
1010 
1011 U_BOOT_DRIVER(eth_sun8i_emac) = {
1012 	.name   = "eth_sun8i_emac",
1013 	.id     = UCLASS_ETH,
1014 	.of_match = sun8i_emac_eth_ids,
1015 	.of_to_plat = sun8i_emac_eth_of_to_plat,
1016 	.probe  = sun8i_emac_eth_probe,
1017 	.ops    = &sun8i_emac_eth_ops,
1018 	.priv_auto	= sizeof(struct emac_eth_dev),
1019 	.plat_auto	= sizeof(struct sun8i_eth_pdata),
1020 	.flags = DM_FLAG_ALLOC_PRIV_DMA,
1021 };
1022